Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(24): 9040-9047, 2024 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-39480410

RESUMO

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these challenges by providing a comprehensive, free web-based tool for parallel ligand-based virtual screening and network pharmacology, specifically targeting over 85 key proteins implicated in AD. This innovative approach is designed to enhance the identification and analysis of potential multitarget ligands, thereby accelerating the development of effective therapeutic strategies against AD. AlzyFinder Platform incorporates machine learning models to facilitate the ligand-based virtual screening process. These models, built with the XGBoost algorithm and optimized through Optuna, were meticulously trained and validated using robust methodologies to ensure high predictive accuracy. Validation included extensive testing with active, inactive, and decoy molecules, demonstrating the platform's efficacy in distinguishing active compounds. The models are evaluated based on balanced accuracy, precision, and F1 score metrics. A unique soft-voting ensemble approach is utilized to refine the classification process, integrating the strengths of individual models. This methodological framework enables a comprehensive analysis of interaction data, which is presented in multiple formats such as tables, heat maps, and interactive Ligand-Protein Interaction networks, thus enhancing the visualization and analysis of drug-protein interactions. AlzyFinder was applied to screen five molecules recently reported (and not used to train or validate the ML models) as active compounds against five key AD targets. The platform demonstrated its efficacy by accurately predicting all five molecules as true positives with a probability greater than 0.70. This result underscores the platform's capability in identifying potential therapeutic compounds with high precision. In conclusion, AlzyFinder's innovative approach extends beyond traditional virtual screening by incorporating network pharmacology analysis, thus providing insights into the systemic actions of drug candidates. This feature allows for the exploration of ligand-protein and protein-protein interactions and their extensions, offering a comprehensive view of potential therapeutic impacts. As the first open-access platform of its kind, AlzyFinder stands as a valuable resource for the AD research community, available at http://www.alzyfinder-platform.udec.cl with supporting data and scripts accessible via GitHub https://github.com/ramirezlab/AlzyFinder.


Assuntos
Doença de Alzheimer , Avaliação Pré-Clínica de Medicamentos , Aprendizado de Máquina , Ligantes , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacologia em Rede , Humanos , Interface Usuário-Computador , Descoberta de Drogas/métodos
2.
Braz J Med Biol Res ; 57: e13388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958365

RESUMO

Jiawei Xinglou Chengqi Granule (JXCG) is an effective herbal medicine for the treatment of ischemic stroke (IS). JXCG has been shown to effectively ameliorate cerebral ischemic symptoms in clinical practice, but the underlying mechanisms are unclear. In this study, we investigated the mechanisms of action of JXCG in the treatment of IS by combining metabolomics with network pharmacology. The chemical composition of JXCG was analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS) untargeted metabolomics were used to identify differential metabolites within metabolic pathways. Network pharmacology was applied to mine potential targets of JXCG in the treatment of IS. The identified key targets were validated by constructing an integrated network of metabolomics and network pharmacology and by molecular docking using Cytoscape. The effect of JXCG on IS was evaluated in vivo, and the predicted targets and pathways of JXCG in IS therapy were assessed using immunoblotting. Combining metabolomics and network pharmacology, we identified the therapeutic targets of JXCG for IS. Notably, JXCG lessened neuronal damage and reduced cerebral infarct size in rats with IS. Western blot analysis showed that JXCG upregulated PRKCH and downregulated PRKCE and PRKCQ proteins. Our combined network pharmacology and metabolomics findings showed that JXCG may have therapeutic potential in the treatment of IS by targeting multiple factors and pathways.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Metabolômica , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Masculino , Ratos , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
3.
Expert Opin Drug Discov ; 19(8): 975-990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963148

RESUMO

INTRODUCTION: Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED: Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION: In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.


Assuntos
Anticonvulsivantes , Descoberta de Drogas , Epilepsia , Humanos , Anticonvulsivantes/farmacologia , Descoberta de Drogas/métodos , Epilepsia/tratamento farmacológico , Animais , Desenvolvimento de Medicamentos/métodos , Terapia de Alvo Molecular , Farmacologia em Rede , Epilepsia Resistente a Medicamentos/tratamento farmacológico
4.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138427

RESUMO

Peripheral venous hypertension has emerged as a prominent characteristic of venous disease (VD). This disease causes lower limb edema due to impaired blood transport in the veins. The phlebotonic drugs in use showed moderate evidence for reducing edema slightly in the lower legs and little or no difference in the quality of life. To enhance the probability of favorable experimental results, a virtual screening procedure was employed to identify molecules with potential therapeutic activity in VD. Compounds obtained from multiple databases, namely AC Discovery, NuBBE, BIOFACQUIM, and InflamNat, were compared with reference compounds. The examination of structural similarity, targets, and signaling pathways in venous diseases allows for the identification of compounds with potential usefulness in VD. The computational tools employed were rcdk and chemminer from R-Studio and Cytoscape. An extended fingerprint analysis allowed us to obtain 1846 from 41,655 compounds compiled. Only 229 compounds showed pharmacological targets in the PubChem server, of which 84 molecules interacted with the VD network. Because of their descriptors and multi-target capacity, only 18 molecules of 84 were identified as potential candidates for experimental evaluation. We opted to evaluate the berberine compound because of its affordability, and extensive literature support. The experiment showed the proposed activity in an acute venous hypertension model.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , Humanos , Farmacologia em Rede , Qualidade de Vida , Transdução de Sinais , Edema/tratamento farmacológico , Hipertensão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
5.
Clin Transl Oncol ; 25(8): 2427-2437, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36952106

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous hematological cancer. The current diagnosis and therapy model of AML has gradually shifted to personalization and accuracy. Artesunate, a member of the artemisinin family, has anti-tumor impacts on AML. This research uses network pharmacology and molecular docking to anticipate artesunate potential mechanisms of action in the therapy of AML. METHODS: Screening the action targets of artesunate through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PubChem, and Swiss Target Prediction databases; The databases of Online Mendelian Inheritance in Man (OMIM), Disgenet, GeneCards, and Drugbank were utilized to identify target genes of AML, and an effective target of artesunate for AML treatment was obtained through cross-analysis. Protein-protein interaction (PPI) networks are built on the Cytoscape platform. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the relevant targets using R software. Finally, using molecular docking technology and Pymol, we performed verification of the effects of active components and essential targets. RESULTS: Artesunate 30 effective targets for treating AML include CASP3, EGFR, MAPK1, and STAT3, four targeted genes that may have a crucial function in disease management. The virus infection-related pathway (HeptatisB (HBV), Human papillomavirus (HPV), Epstein-Barr virus (EBV) infection and etc.), FoxO, viral carcinogenesis, and proteoglycans in cancer signaling pathways have all been hypothesized to be involved in the action mechanism of GO, which is enriched in 2044 biological processes, 125 molecular functions, 209 cellular components, and 106 KEGG pathways. Molecular docking findings revealed that artesunate was critically important in the therapy of AML due to its high affinity for the four primary disease targets. Molecular docking with a low binding energy yields helpful information for developing medicines against AML. CONCLUSIONS: Consequently, artesunate may play a role in multi-targeted, multi-signaling pathways in treating AML, suggesting that artesunate may have therapeutic potential for AML.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Vírus Epstein-Barr , Leucemia Mieloide Aguda , Humanos , Simulação de Acoplamento Molecular , Artesunato/uso terapêutico , Farmacologia em Rede , Herpesvirus Humano 4 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Bases de Dados Genéticas
6.
Eur J Pharm Sci ; 183: 106399, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740101

RESUMO

Valproic acid (VPA) is a short-chain fatty acid widely prescribed in the treatment of seizure disorders and epilepsy syndromes, although its therapeutic value may be undermined by its toxicity. VPA serious adverse effects are reported to have a significant and dose-dependent incidence, many associated with VPA-induced hyperammonemia. This effect has been linked with reduced levels of carnitine; an endogenous compound involved in fatty acid's mitochondrial ß-oxidation by facilitation of its entrance via the carnitine shuttle. High exposure to VPA can lead to carnitine depletion causing a misbalance between the intra-mitochondrial ß-oxidation and the microsomal ω-oxidation, a pathway that produces toxic metabolites such as 4-en-VPA which inhibits ammonia elimination. Moreover, a reduction in carnitine levels might be also related to VPA-induced obesity and lipids disorder. In turn, L-carnitine supplementation (CS) has been recommended and empirically used to reduce VPA's hepatotoxicity. The aim of this work was to develop a Quantitative Systems Pharmacology (QSP) model to characterize VPA-induced hyperammonemia and evaluate the benefits of CS in preventing hyperammonemia under both chronic treatment and after VPA overdosing. The QSP model included a VPA population pharmacokinetics model that allowed the prediction of total and unbound concentrations after single and multiple oral doses considering its saturable binding to plasma proteins. Predictions of time courses for 2-en-VPA, 4-en-DPA, VPA-glucuronide, carnitine, ammonia and urea levels, and for the relative change in fatty acids, Acetyl-CoA, and glutamate reflected the VPA induced changes and the efficacy of the treatment with L-carnitine. The QSP model was implemented to give a rational basis for the L-carnitine dose selection to optimize CS depending on VPA dosage regime and to assess the currently recommended L-carnitine rescue therapy after VPA overdosing. Results show that a L-carnitine dose equal to the double of the VPA dose using the same interdose interval would maintain the ammonia levels at baseline. The QSP model may be expanded in the future to describe other adverse events linked to VPA-induced changes in endogenous compounds.


Assuntos
Overdose de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hiperamonemia , Humanos , Ácido Valproico , Carnitina/uso terapêutico , Hiperamonemia/induzido quimicamente , Hiperamonemia/tratamento farmacológico , Amônia/efeitos adversos , Farmacologia em Rede , Suplementos Nutricionais , Anticonvulsivantes/uso terapêutico
7.
Clin Transl Oncol ; 25(2): 384-395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369630

RESUMO

BACKGROUND: Salidroside is a phenolic natural product, which is a kind of Rhodiola rosea. It has been confirmed that it has inhibitory effects on chronic myeloid leukemia, but the specific performance of its molecular effects is still unclear. OBJECTIVE: To systematically study the pharmacological mechanism of salidroside on chronic myeloid leukemia by means of network pharmacology. METHODS: First, the possible target genes of salidroside were predicted through the Traditional Chinese Medicine Pharmacology Database and Analysis Platform, the target gene names were converted into standardized gene names using the Uniprot website. At the same time, the related target genes of chronic myeloid leukemia were collected from GeneCards and DisGenet; Collect summary data and screen for commonly targeted genes. Then, the above-mentioned intersected genes were imported into the String website to construct the protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. To investigate the overall pharmacological effects of salidroside on chronic myeloid leukemia, we constructed a drug component-target gene-disease (CTD) network. Finally, molecular docking was performed to verify the possible binding conformation between salidroside and the candidate target. RESULTS: A total of 126 salidroside target genes were retrieved, and 106 of them had interactions with chronic myeloid leukemia. The pharmacological effects of salidroside on chronic myeloid leukemia are related to some important oncogenes and signaling pathways. Molecular docking studies confirmed that the main role of salidroside binding to the target genes is hydrogen bonding. CONCLUSIONS: We revealed the potential mechanism of action of salidroside against chronic myeloid leukemia, verified by network pharmacology combined with molecular docking. However, salidroside is a promising drug for the prevention and treatment of chronic myeloid leukemia, and further research is needed to prove it.


Assuntos
Medicamentos de Ervas Chinesas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Glucosídeos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
8.
Braz. J. Pharm. Sci. (Online) ; 59: e22394, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505845

RESUMO

Abstract This study aimed to investigate the molecular mechanism of Picrasma quassioides Benn against inflammation by means of network pharmacology. The paper will provide a reference for multi-target and multi-channel treatment of inflammation with traditional Chinese medicine. Through screening and analysis, 11 active ingredients and 109 anti-inflammation prediction targets were obtained and constructed a compound-target network. The targets such as VEGFA, TLR4 and STAT3 may play a crucial role. Network enrichment analysis showed that the 109 potential targets constitute a number of pathways or inflammatory reactions closely related to inflammation, including NF-κB signaling pathway and MAPK signaling pathway. The docking results indicated that the binding energy of Picrasidine Y and the inflammatory factors VEGFA is the highest. This study predicted the role of multiple active compounds in the alkaloids of Picrasma in the inflammatory response, and provided a theoretical basis for the anti-inflammatory mechanism of Picrasma


Assuntos
Pesquisa/classificação , Picrasma/classificação , Alcaloides/análise , Farmacologia em Rede/instrumentação , Anti-Inflamatórios/análise , Medicina Tradicional Chinesa
9.
Biogerontology ; 23(4): 453-471, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781578

RESUMO

Senescent cells accumulate within tissues during aging and secrete an array of pro-inflammatory molecules known as senescent-associated secretory phenotype (SASP), which contribute to the appearance and progression of various chronic degenerative diseases. Novel pharmacological approaches aimed at modulating or eliminating senescent cells´ harmful effects have recently emerged: Senolytics are molecules that selectively eliminate senescent cells, while senomorphics modulate or decrease the inflammatory response to specific SASP. So far, the physicochemical, structural, and pharmacological properties that define these two kinds of pharmacological approaches remain unclear. Therefore, the identification and correct choice of molecules, based on their physicochemical, structural, and pharmacological properties, likely to exhibit the desired senotherapeutic activity is crucial for developing effective, selective, and safe senotherapies. Here we compared the physicochemical, structural, and pharmacological properties of 84 senolytics and 79 senomorphics using a chemoinformatic and systems pharmacology approach. We found great physicochemical, structural, and pharmacological similarities between them, also reflected in their cellular responses measured through transcriptome perturbations. The identified similarities between senolytics and senomorphics might explain the dual activity of some of those molecules. These findings will help design and discover new, more effective, and highly selective senotherapeutic agents.


Assuntos
Senescência Celular , Senoterapia , Senescência Celular/fisiologia , Quimioinformática , Doença Crônica , Humanos , Farmacologia em Rede
10.
Ann Hepatol ; 27(4): 100701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35351639

RESUMO

INTRODUCTION AND OBJECTIVES: Hepatocellular carcinoma (HCC) ranks third on the list of the leading cause for cancer death globally. The treatment of HCC patients is unsatisfactory. However, the traditional Chinese medicine Chebulae Fructus has potential efficacy in the treatment of HCC. MATERIALS AND METHODS: We mined the active ingredients of Chebulae Fructus and its main targets from the Traditional Chinese Medicine Systems Pharmacology database. HCC-related datasets were downloaded from The Cancer Genome Atlas database and differentially expressed genes (DEGs) in HCC were obtained by differential expression analysis. Top10 small molecule compounds capable of reversing HCC pathology were screened by the Connectivity Map database based on DEGs. Ellipticine, an extract of Chebulae Fructus, had the potential to reverse HCC pathology. Protein-Protein Interaction (PPI) networks of DEGs in HCC were constructed using STRING. Eighteen potential targets of Chebulae Fructus for the treatment of HCC were obtained by taking intersection of DEGs in HCC with targets corresponding to the active constituents of Chebulae Fructus. In addition, MTT assay was also employed to examine the effect of ellipticine on HCC cell viability. RESULTS: It has been shown that ellipticine and ellagic acid have antitumor activity. Random Walk with Restart analysis of PPI networks was performed using potential targets as seeds, and the genes with the top 50 affinity coefficients were selected to construct a drug-active constituent-gene interaction network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of key genes involved in the treatment of HCC with Chebulae Fructus demonstrated that these genes were mainly enriched in signaling pathways related to tumor metabolism such as cAMP signaling pathway and Ras signaling pathway. Finally, it was verified by MTT assay that proliferation of HCC cells could be remarkably hindered. CONCLUSIONS: We excavated ellipticine, a key active constituent of Chebulae Fructus, by network pharmacology, and elucidated the signaling pathways involved in Chebulae Fructus, providing a theoretical basis for the use of Chebulae Fructus for HCC clinical application.


Assuntos
Carcinoma Hepatocelular , Elipticinas , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Farmacologia em Rede , Extratos Vegetais , Mapas de Interação de Proteínas , Terminalia
11.
Braz. J. Pharm. Sci. (Online) ; 58: e201157, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403735

RESUMO

Abstract Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine, demonstrating an increasing incidence every year. TongXieYaoFang (TXYF) has been used widely in China as a complementary therapy to relieve the symptoms of IBD for hundreds of years. In the present research, a network pharmacology-based approach was used to systematically explore the intrinsic mechanisms of TXYF in IBD at the molecular level. Network pharmacology-based methods, which mainly included database mining, screening of bioactive compounds, target prediction, collection of IBD-related targets, gene enrichment analysis, network construction, and molecular docking, were employed in the present study. Network analysis revealed a total of 108 potential targets derived from 22 component compounds of TXYF, among which 34 targets were common with the IBD-related targets. In the protein-protein interaction (PPI) network, 10 key targets were identified. The gene enrichment analysis suggested that anti-inflammatory processes, such as NF-kappa B signaling pathway and Toll-like receptor signaling pathway, could be the core processes involved in the action of TXYF in IBD. Molecular docking results revealed that three compounds present in TXYF exhibited strong binding affinity for PTGS2. The present study provides novel insights into the molecular mechanisms and network approaches of TXYF action in IBD from a systemic perspective. The potential targets and pathways identified in the present study would assist in further research on the clinical application of TXYF in IBD therapy.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Intestinos/anormalidades , Medicina Tradicional Chinesa/métodos , NF-kappa B , Receptores Toll-Like , Farmacologia em Rede/instrumentação
12.
Int. j. morphol ; 40(5): 1152-1164, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1405284

RESUMO

SUMMARY: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) can protect diabetic kidneys, but the mechanisms are unclear. This work is to investigate the potential mechanisms of C. tinctoria Nutt. in the treatment of diabetic nephropathy based on network pharmacology analysis of its active ingredients. Twelve small molecular compounds of C. tinctoria Nutt. and targets related to diabetic nephropathy were docked by Discovery Studio 3.0. DAVID database was used for GO enrichment and KEGG pathway analysis. Cytoscape 3.6.1 was used to construct active ingredient-target network. Cell viability was detected with MTT. Glucose consumption was analyzed with glucose oxidase method. Protein expression was measured with Western blot and immunofluorescence. Electron microscopy observed autophagosomes. The core active ingredients of C. tinctoria Nutt. included heriguard, flavanomarein, maritimein, and marein. Twenty-one core targets of the 43 potential targets were PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK, and ABL2. These 21 core targets were significantly enriched in 50 signaling pathways. Thirty- four signaling pathways were closely related to diabetic nephropathy, of which the top pathways were PI3K/AKT, insulin, and mTOR, and insulin resistance. The enriched GO terms included biological processes of protein phosphorylation, and the positive regulation of PI3K signaling and cytokine secretion; cellular components of cytosol, extracellular region, and extracellular space; and molecular function of protein kinase activity, ATP binding, and non-membrane spanning protein tyrosine kinase activity. In vitro experiments found that marein increased the expression of phosphorylated AKT/AKT in human renal glomerular endothelial cells of an insulin resistance model induced by high glucose, as well as increased and decreased, respectively, the levels of the microtubule-associated proteins, LC3 and P62. C. tinctoria Nutt. has many active ingredients, with main ingredients of heriguard, flavanomarein, maritimein, and marein, and may exert anti-diabetic nephropathy effect through various signaling pathways and targets.


RESUMEN: Coreopsis tinctoria Nutt. (C. tinctoria Nutt.) puede proteger riñones diabéticos, sin embargo los mecanismos son desconocidos. Este trabajo se realizó para investigar los potenciales mecanismos de C. tinctoria Nutt. en el tratamiento de la nefropatía diabética basado en el análisis de farmacología en red de sus principios activos. Doce compuestos moleculares pequeños de C. tinctoria Nutt. y los objetivos relacionados con la nefropatía diabética fueron acoplados por Discovery Studio 3.0. La base de datos DAVID se utilizó para el enriquecimiento GO y el análisis de la vía KEGG. Se usó Cytoscape 3.6.1 para construir una red de ingrediente-objetivo activa. La viabili- dad celular se detectó mediante MTT. El consumo de glucosa se analizó con el método de glucosa oxidasa. La expresión proteica fue determinada mediante Western blot e inmunofluorescencia. En la microscopía electrónica se observó autofagosomas. Los principales ingredientes activos de C. tinctoria Nutt. incluyeron heriguard, flavanomarein, maritimin y marein. Veintiún de los 43 objetivos potenciales fueron PYGM, TLR2, RAF1, PRKAA2, GPR119, INS, CSF2, TNF, IAPP, AKR1B1, GSK3B, SYK, NFKB2, ESR2, CDK2, FGFR1, HTRA1, AMY2A, CAMK4, GCK y ABL2. Estos 21 objetivos principales se enriquecieron significativamente en 50 vías de señalización. Treinta y cuatro vías de señalización estuvieron estrechamente relacionadas con la nefropatía diabética, de las cuales las principales vías fueron PI3K/ AKT, insulina y mTOR, y resistencia a la insulina. Los términos GO enriquecidos incluyeron procesos biológicos de fosforilación proteica, la regulación positiva de la señalización de PI3K y la secreción de citoquinas; componentes celulares del citosol, región extracelular y espacio extracelular; y la función molecular de la actividad de la proteína quinasa, la unión de ATP y la actividad de la proteína tirosina quinasa que no se extiende por la membrana. Los experimentos in vitro encontraron que la mareína aumentaba la expresión de AKT/AKT fosforilada en células endoteliales glomerulares renales humanas en un modelo de resistencia a la insulina inducida por niveles elevados de glucosa, así como aumentaron y disminuyeron respectivamente, los niveles de las proteínas asociadas a los microtúbulos, LC3 y P62. C. tinctoria Nutt. tiene muchos principios activos, con ingredientes principales de heriguard, flavanomarein, maritimain y marein, y puede ejercer un efecto de nefropatía antidiabética a través de distintass vías de señalización y objetivos.


Assuntos
Coreopsis/química , Nefropatias Diabéticas , Farmacologia em Rede , Microscopia Eletrônica , Western Blotting , Imunofluorescência , Chalconas
13.
Braz. J. Pharm. Sci. (Online) ; 58: e19856, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383962

RESUMO

Abstract TCMSP platform of systematic pharmacology of traditional Chinese medicine This study aimed to investigate the molecular mechanism of Fructus Ligustri Lucidi (NZZ, Chinese abbreviation) against osteoporosis (OP) by means of network pharmacology.ChemDraw Professional 15.1 software and Molinspiration Smiles database were used to draw the chemical formulas of the components. The active ingredients and related target proteins of NZZ were searched in platform of systematic pharmacology of traditional Chinese medicine database, Drugbank, Therapeutic Target Database, SymMap and other databases. Gene Ontology(GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out on the selected target through Enrichr and KEGG Automatic Annotation databases, and their mechanism was studied. A total of 29 compounds and 140 corresponding targets, including 14 key targets and 14 protein factors in protein-protein interaction core network were obtained. The key targets were tumor necrosis factor(TNF), interleukin(IL)-6R and sestrogen receptor alpha. The number of GO items was 466 (P<0.05), including 399 items of biological process (BP), 54 items of cell composition (MF) and 13 items of molecular function (CC). KEGG pathway enrichment screened 85 signaling pathways (P<0.05), including the IL-17 signaling pathway, TNF signaling pathway, advanced glycation end products and their receptors signaling pathway and cAMP signaling pathway. The active ingredients of NZZ. exert their anti-OP effects through multi-components, multi-targets and multi-pathways, which can provide new evidence for further study of their anti-OP mechanism.


Assuntos
Osteoporose/patologia , Pesquisa/classificação , Ligustrum/efeitos adversos , Genes , Farmacologia em Rede/instrumentação , Software/classificação , Fator de Necrose Tumoral alfa/farmacologia , Produtos Finais de Glicação Avançada/efeitos adversos , Interleucina-17/análogos & derivados , Ontologia Genética , População do Leste Asiático , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA