Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
Mol Carcinog ; 58(11): 2052-2064, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397499

RESUMO

Recent studies have indicated that using statins to inhibit the mevalonate pathway induces mutant p53 degradation by impairing the interaction of mutant p53 with DnaJ subfamily A member 1 (DNAJA1). However, the role of the C-terminus of DNAJA1 with a CAAX box for farnesylation in the binding, folding, and translocation of client proteins such as mutant p53 is not known. In the present study, we used a genetically engineered mouse model of pancreatic carcinoma and showed that atorvastatin significantly increased animal survival and inhibited pancreatic carcinogenesis. There was a dramatic decrease in mutant p53 protein accumulation in the pancreatic acini, pancreas intraepithelial neoplasia lesions, and adenocarcinoma. Supplementation with farnesyl pyrophosphate, a substrate for protein farnesylation, rescued atorvastatin-induced mutant p53 degradation in pancreatic cancer cells. Tipifarnib, a farnesyltransferase inhibitor, mirrored atorvastatin's effects on mutant p53, degraded mutant p53 in a dose-dependent manner, and converted farnesylated DNAJA1 into unfarnesylated DNAJA1. Farnesyltransferase gene knockdown also significantly promoted mutant p53 degradation. Coimmunoprecipitation either by an anti-DNAJA1 or p53 antibody confirmed the direct interaction of mutant p53 and DNAJA1 and higher doses of atorvastatin treatments converted more farnesylated DNAJA1 into unfarnesylated DNAJA1 with much less mutant p53 pulled down by DNAJA1. Strikingly, C394S mutant DNAJA1, in which the cysteine of the CAAX box was mutated to serine, was no longer able to be farnesylated and lost the ability to maintain mutant p53 stabilization. Our results show that farnesylated DNAJA1 is a crucial chaperone in maintaining mutant p53 stabilization and targeting farnesylated DNAJA1 by atorvastatin will be critical for inhibiting p53 mutant cancer.


Assuntos
Atorvastatina/farmacologia , Proteínas de Choque Térmico HSP40/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prenilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinolonas/farmacologia
2.
Expert Opin Ther Pat ; 29(5): 315-325, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31023104

RESUMO

INTRODUCTION: Bisphosphonates (BPs) are widely used to manage a variety of bone disorders, including osteoporosis, metastatic bone disease and myeloma bone disease. The nitrogen-containing BPs (NBPs) target osteoclast activity by disrupting protein prenylation via inhibition of farnesyl diphosphate synthase (FDPS). AREAS COVERED: This review summarizes the recent advances in BPs with a focus on the latest patents (2015-2018). Patents involving novel BPs, new modes of BP delivery, as well as use of BPs to deliver other drugs to bone are discussed. A review of phosphonate-based drugs targeting geranylgeranyl diphosphate synthase (GGDPS) or geranylgeranyl transferase II (GGTase II) as alternative strategies to disrupt protein geranylgeranylation is provided. EXPERT OPINION: While the NBPs remain the mainstay of treatment for most bone disorders, further understanding of their pharmacological properties could lead to further refinement of their chemical structures and optimization of efficacy and safety profiles. In addition, the development of NBP analogs or drug delivery mechanisms that allow for nonbone tissue exposure could allow for the use of these drugs as direct anticancer agents. The development of GGDPS and GGTase II inhibitors represents alternative heterocycle phosphonate-based strategies to disrupt protein geranylgeranylation and may have potential as anticancer agents and/or as bone-targeted therapies.


Assuntos
Doenças Ósseas/tratamento farmacológico , Difosfonatos/uso terapêutico , Prenilação de Proteína/efeitos dos fármacos , Animais , Doenças Ósseas/fisiopatologia , Difosfonatos/farmacologia , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Farnesiltranstransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Humanos , Osteoclastos/efeitos dos fármacos , Patentes como Assunto , Transferases/antagonistas & inibidores
3.
Arch Pharm (Weinheim) ; 352(5): e1800227, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30947375

RESUMO

Unprecedented triazinyl-isoxazoles were afforded via an effective cycloaddition reaction between nitrile oxides and the scarcely described 2-ethynyl-4,6-dimethoxy-1,3,5-triazine as dipolarophile. The biological evaluation of the newly synthesized compounds showed that the inhibition of human farnesyltransferase by zinc complexation could be improved with triazine-isoxazole moieties. The replacement of the isoxazole unit by a pyrrolidin-2-one was detrimental to the inhibitory activity while the pyrrolidin-2-thione derivatives conserved the biological potential. The potential of selected compounds to disrupt protein farnesylation in Chinese hamster ovary (CHO) cells transfected with pEGFP-CAAX was also evaluated.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Isoxazóis/farmacologia , Pirrolidinonas/farmacologia , Triazinas/farmacologia , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Humanos , Isoxazóis/química , Estrutura Molecular , Pirrolidinonas/química , Relação Estrutura-Atividade , Triazinas/química
4.
Oncogene ; 38(26): 5308-5320, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918331

RESUMO

Rab proteins play an essential role in regulating intracellular membrane trafficking processes. Rab activity is dependent upon geranylgeranylation, a post-translational modification that involves the addition of 20-carbon isoprenoid chains via the enzyme geranylgeranyl transferase (GGTase) II. We have focused on the development of inhibitors against geranylgeranyl diphosphate synthase (GGDPS), which generates the isoprenoid donor (GGPP), as anti-Rab agents. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abnormal mucin production and these mucins play important roles in tumor development, metastasis and chemo-resistance. We hypothesized that GGDPS inhibitor (GGDPSi) treatment would induce PDAC cell death by disrupting mucin trafficking, thereby inducing the unfolded protein response pathway (UPR) and apoptosis. To this end, we evaluated the effects of RAM2061, a potent GGDPSi, against PDAC. Our studies revealed that GGDPSi treatment activates the UPR and triggers apoptosis in a variety of human and mouse PDAC cell lines. Furthermore, GGDPSi treatment was found to disrupt the intracellular trafficking of key mucins such as MUC1. These effects could be recapitulated by incubation with a specific GGTase II inhibitor, but not a GGTase I inhibitor, consistent with the effect being dependent on disruption of Rab-mediated activities. In addition, siRNA-mediated knockdown of GGDPS induces upregulation of UPR markers and disrupts MUC1 trafficking in PDAC cells. Experiments in two mouse models of PDAC demonstrated that GGDPSi treatment significantly slows tumor growth. Collectively, these data support further development of GGDPSi therapy as a novel strategy for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Crit Rev Biochem Mol Biol ; 54(1): 41-60, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30773935

RESUMO

Dysregulation of isoprenoid biosynthesis is implicated in numerous biochemical disorders that play a role in the onset and/or progression of age-related diseases, such as hypercholesterolemia, osteoporosis, various cancers, and neurodegeneration. The mevalonate metabolic pathway is responsible for the biosynthesis of the two key isoprenoid metabolites, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Post-translational prenylation of various proteins, including the small GTP-binding proteins (GTPases), with either FPP or GGPP is vital for proper localization and activation of these proteins. Prenylated GTPases play a critical role in cell signaling, proliferation, cellular plasticity, oncogenesis, and cancer metastasis. Pre-clinical and clinical studies strongly suggest that inhibition of protein prenylation can be an effective treatment for non-skeletal cancers. In this review, we summarize the most recent drug discovery efforts focusing on blocking protein farnesylation and/or geranylgeranylation and the biochemical and structural data available in guiding the current on-going studies in drug discovery. Furthermore, we provide a summary on the biochemical association between disruption of protein prenylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR) signaling, and cancer.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/metabolismo , Geraniltranstransferase/metabolismo , Humanos , Ácido Mevalônico/metabolismo , Modelos Moleculares , Neoplasias/metabolismo , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação de Proteína/efeitos dos fármacos , Sesquiterpenos/antagonistas & inibidores , Sesquiterpenos/metabolismo
6.
Org Biomol Chem ; 17(10): 2798-2808, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793727

RESUMO

Based on N-acyliminium species, two efficient and rapid approaches to diversify spirocyclic systems connected by two different carbon centers to the isoindole ring have been developed. The imide reduction and the tandem oxidative cleavage of olefin/formyl-amide equilibration were at first selected as the key steps for these strategies. Ultimately the intramolecular α-amidoalkylation reaction was achieved through the arylation of α-acetoxy lactams or α-hydroxy lactams using, respectively, a Lewis acid or a Brønsted acid depending on the nature of N-acyliminium precursors. The latter led, in addition to the spiro-6-membered aza-heterocycles, to the formation of scarce spiro-5-membered analogues which show promising inhibitory activities on human farnesyltransferase in the nanomolar range demonstrating improved IC50 values of up to 1.5 nM.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Isoindóis/química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Modelos Moleculares , Conformação Molecular
7.
Invest New Drugs ; 37(2): 307-314, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171497

RESUMO

Introduction Based on preclinical cytotoxic synergy between tipifarnib and erlotinib, a phase I study of this combination was conducted in patients with advanced solid tumors to evaluate safety, tolerability, maximum tolerated dose (MTD) and preliminary evidence of efficacy. Methods Patient enrollment followed the traditional "3 + 3" dose escalation scheme, through 4 dose levels, ranging from tipifarnib 200 mg twice daily plus erlotinib 75 mg once daily to tipifarnib 300 mg twice daily plus erlotinib 150 mg once daily. After the MTD of the combination was identified, 12 additional patients were treated to better define the pharmacokinetics and pharmacodynamics of these agents. Results A total of 27 patients were enrolled in the study (dose escalation, 15; dose expansion, 12). Dose limiting toxicity was seen in one patient at dose level 4 (grade 3 diarrhea). The MTD was reached at erlotinib 150 mg once daily combined with tipifarnib 300 mg twice daily. The most common side effects of the combination of all grades were diarrhea (85.2%), fatigue (77.8%), rash (70.4%), and anorexia (59.3%). Overall, 2 patients (7.4%; with liver cancer and melanoma, respectively) had partial responses, 10 (37%) had stable disease, 11 had progressive disease (40.7%) and 4 stopped treatment prematurely for assessment. Conclusion The combination of tipifarnib and erlotinib was well tolerated. Erlotinib 150 mg once daily for 28 days combined with tipifarnib 300 mg twice daily for 21 days was identified as the recommended phase 2 dose. Tipifarnib is currently being evaluated in HRAS mutant tumors, providing a potential opportunity to further test this combination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Terapia de Salvação , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/administração & dosagem , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Quinolonas/administração & dosagem , Distribuição Tecidual
8.
Mini Rev Med Chem ; 18(19): 1611-1623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068272

RESUMO

Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farnesyl group to it. This Ras protein, on localization to the cell membrane, has the ability to induce activation of various growth and proliferation pathways of the cell. Over-activation of mutated Ras may lead to the development of cancer. Farnesyl Transferase catalyses the initial step in the posttranslational modification of normal as well as mutated Ras gene, thus facilitating its tethering to the cell membrane. Inhibition of Farnesyl Transferase is the main step in restricting the activity of mutant Ras protein. Thus the above enzyme has emerged as a novel target for anti-cancer agents. Here we review the role of Farnesyl Transferase in tumorigenesis and various compounds of synthetic and natural origin acting as Farnesyl Transferase inhibitors as potential anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Animais , Antineoplásicos/química , Inibidores Enzimáticos/química , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Genes ras , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/enzimologia , Neoplasias/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
9.
Biogerontology ; 19(6): 579-602, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29907918

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.


Assuntos
Dano ao DNA/efeitos dos fármacos , Difosfonatos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Genoma Humano/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Progéria/tratamento farmacológico , Sirolimo/uso terapêutico , Linhagem Celular , Ensaio Cometa , Difosfonatos/farmacologia , Quimioterapia Combinada , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Lamina Tipo A/genética , Laminas/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação , Progéria/genética , Progéria/metabolismo , Processamento de Proteína Pós-Traducional , Sirolimo/farmacologia
10.
Nat Commun ; 9(1): 1524, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670091

RESUMO

Oncolytic virus is an attractive anticancer agent that selectively lyses cancer through targeting cancer cells rather than normal cells. Although M1 virus is effective against several cancer types, certain cancer cells present low sensitivity to it. Here we identified that most of the components in the cholesterol biosynthesis pathway are downregulated after M1 virus infection. Further functional studies illustrate that mevalonate/protein farnesylation/ras homolog family member Q (RHOQ) axis inhibits M1 virus replication. Further transcriptome analysis shows that RHOQ knockdown obviously suppresses Rab GTPase and ATP-mediated membrane transporter system, which may mediate the antiviral effect of RHOQ. Based on this, inhibition of the above pathway significantly enhances the anticancer potency of M1 virus in vitro, in vivo, and ex vivo. Our research provides an intriguing strategy for the rational combination of M1 virus with farnesyl transferase inhibitors to enhance therapeutic efficacy.


Assuntos
Colesterol/química , Ácido Mevalônico/antagonistas & inibidores , Ácido Mevalônico/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Replicação Viral , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Farnesiltranstransferase/antagonistas & inibidores , Feminino , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Prenilação de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
11.
J Immunol ; 200(11): 3840-3856, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29703864

RESUMO

Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 µM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.


Assuntos
Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Farnesiltranstransferase/antagonistas & inibidores , Inflamação/tratamento farmacológico , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Proteínas ras/metabolismo , Animais , Asma/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Eosinófilos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Farnesiltranstransferase/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Invest New Drugs ; 36(5): 810-818, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29497895

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS) is the enzyme in the isoprenoid biosynthesis pathway that catalyzes the synthesis of the 20-carbon isoprenoid GGPP, which serves as the isoprenoid donor for protein geranylgeranylation reactions. Rab proteins mediate vesicle trafficking within the cell and their activity is dependent on geranylgeranylation. Our prior work has demonstrated that agents that disrupt Rab geranylgeranylation disrupt monoclonal protein trafficking in myeloma cells, resulting in induction of the unfolded protein response pathway and apoptosis. VSW1198 is a potent GGDPS inhibitor with measurable cellular activity at concentrations as low as 30 nM. Due to its potent activity against myeloma cells in vitro, we were interested in evaluating the toxicology profile, pharmacokinetic (PK) profile, tissue distribution pattern and metabolic stability of VSW1198 in preparation for in vivo efficacy studies. Single dose testing via IV administration in CD-1 mice revealed a maximum tolerated dose of 0.5 mg/kg. Doses ≥1 mg/kg resulted in liver toxicity that peaked around 6-7 days post-injection. Disruption of protein geranylgeranylation following repeat dosing of VSW1198 was confirmed via immunoblot analysis of unmodified Rap1a in multiple organs. The PK studies revealed a half-life of 47.7 ± 7.4 h. VSW1198 was present in all tested tissues with the highest levels in the liver. In both human liver microsomes and mouse S9 studies VSW1198 showed complete stability, suggesting no phase I or phase II metabolism. In summary, these studies demonstrate systemic distribution, on-target disruption of protein geranylgeranylation, and metabolic stability of a potent GGDPS inhibitor VSW1198 and form the basis for future efficacy studies in mouse models of myeloma.


Assuntos
Antineoplásicos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Animais , Feminino , Humanos , Fígado/efeitos dos fármacos , Dose Máxima Tolerável , Camundongos , Microssomos Hepáticos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Prenilação de Proteína , Distribuição Tecidual
13.
J Pharm Biomed Anal ; 153: 22-28, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29455093

RESUMO

An isomeric mixture of homogeranyl/homoneryl triazole bisphosphonates (VSW1198) has previously been shown to be a potent inhibitor of geranylgeranyl diphosphate (GGDP) synthase (GGDPS) and of therapeutic interest for the treatment of multiple myeloma. We have developed and validated a selective and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantitation of both the E- and Z- isomers of VSW1198 in cell culture media, mouse plasma and tissues. VSW1198 and internal standard are extracted from the bio-matrices by solid-phase extraction, followed by derivatization using trimethylsilyldiazomethane. The chromatographic separation of analytes was achieved on a Phenomenex Gemini NX column (150 mm * 2.0 mm, 5 µ) with gradient elution using 0.1% acetic acid and methanol/acetonitrile (1:1) as the mobile phase at a flow rate of 0.2 mL/min. Derivatized analytes were ionized with an electrospray ionization source in positive multiple reaction monitoring (MRM) mode and quantitated using MS/MS. The MS/MS response was linear over the concentration range from 0.38-1500 and 0.13-500 ng/mL for the E- and Z-isomers, respectively. The within- and between-day precision (relative standard deviation, % RSD) and accuracy were within the acceptable limits per FDA guidelines. The validated method was used for quantitative determination of the compounds in preclinical studies focused on the development of VSW1198 as a novel anti-cancer agent.


Assuntos
Antineoplásicos/química , Cromatografia Líquida/métodos , Farnesiltranstransferase/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Animais , Feminino , Isomerismo , Camundongos
15.
Bioorg Med Chem ; 26(2): 376-385, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29248353

RESUMO

Disruption of protein geranylgeranylation via inhibition of geranylgeranyl diphosphate synthase (GGDPS) represents a novel therapeutic strategy for a variety of malignancies, especially those characterized by excessive protein secretion such as multiple myeloma. Our work has demonstrated that some isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. Here we present the synthesis and biological evaluation of a new series of isoprenoid triazoles modified by incorporation of a methyl group at the α-carbon. These studies reveal that incorporation of an α-methyl substituent enhances the potency of these compounds as GGDPS inhibitors, and, in the case of the homogeranyl/homoneryl series, abrogates the effects of olefin stereochemistry on inhibitory activity. The incorporation of the methyl group allowed preparation of a POM-prodrug, which displayed a 10-fold increase in cellular activity compared to the corresponding salt. These studies form the basis for future preclinical studies investigating the anti-myeloma activity of these novel α-methyl triazole bisphosphonates.


Assuntos
Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Terpenos/farmacologia , Triazóis/farmacologia , Linhagem Celular Tumoral , Difosfonatos/síntese química , Difosfonatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Humanos , Metilação , Estrutura Molecular , Relação Estrutura-Atividade , Terpenos/síntese química , Terpenos/química , Triazóis/síntese química , Triazóis/química
16.
Cell Chem Biol ; 25(2): 185-193.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29276048

RESUMO

The bifunctional farnesyl/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key branchpoint enzyme in isoprenoid biosynthesis in Plasmodium falciparum (malaria) parasites. PfFPPS/GGPPS is a validated, high-priority antimalarial drug target. Unfortunately, current bisphosphonate drugs that inhibit FPPS and GGPPS enzymes by acting as a diphosphate substrate analog show poor bioavailability and selectivity for PfFPPS/GGPPS. We identified a new non-bisphosphonate compound, MMV019313, which is highly selective for PfFPPS/GGPPS and showed no activity against human FPPS or GGPPS. Inhibition of PfFPPS/GGPPS by MMV019313, but not bisphosphonates, was disrupted in an S228T variant, demonstrating that MMV019313 and bisphosphonates have distinct modes of inhibition. Molecular docking indicated that MMV019313 did not bind previously characterized substrate sites in PfFPPS/GGPPS. Our finding uncovers a new, selective small-molecule binding site in this important antimalarial drug target with superior druggability compared with the known inhibitor site and sets the stage for the development of Plasmodium-specific FPPS/GGPPS inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Geraniltranstransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequenas/química
17.
Stem Cell Reports ; 9(6): 1948-1960, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29198824

RESUMO

Accumulating evidence suggests that cancer cells with stem cell-like phenotypes drive disease progression and therapeutic resistance in glioblastoma (GBM). NOTCH regulates self-renewal and resistance to chemoradiotherapy in GBM stem cells. However, NOTCH-targeted γ-secretase inhibitors (GSIs) exhibited limited efficacy in GBM patients. We found that farnesyltransferase inhibitors (FTIs) significantly improved sensitivity to GSIs. This combination showed significant antineoplastic and radiosensitizing activities in GBM stem cells, whereas non-stem GBM cells were resistant. These combinatorial effects were mediated, at least partially, through inhibition of AKT and cell-cycle progression. Using subcutaneous and orthotopic GBM models, we showed that the combination of FTIs and GSIs, but not either agent alone, significantly reduced tumor growth. With concurrent radiation, this combination induced a durable response in a subset of orthotopic tumors. These findings collectively suggest that the combination of FTIs and GSIs is a promising therapeutic strategy for GBM through selectively targeting the cancer stem cell subpopulation.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Inibidores Enzimáticos/administração & dosagem , Farnesiltranstransferase/genética , Glioblastoma/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Farnesiltranstransferase/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Camundongos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomed Res Int ; 2017: 5270940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29226142

RESUMO

Progeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs) are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening. Utilizing nine training set compounds along with lonafarnib, a common feature pharmacophore was constructed consisting of four features. The validated Hypo1 was subsequently allowed to screen Maybridge, Chembridge, and Asinex databases to retrieve the novel lead candidates, which were then subjected to Lipinski's rule of 5 and ADMET for drug-like assessment. The obtained 3,372 compounds were forwarded to docking simulations and were manually examined for the key interactions with the crucial residues. Two compounds that have demonstrated a higher dock score than the reference compounds and showed interactions with the crucial residues were subjected to MD simulations and binding free energy calculations to assess the stability of docked conformation and to investigate the binding interactions in detail. Furthermore, this study suggests that the Hits may be more effective against progeria and further the DFT studies were executed to understand their orbital energies.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Progéria/tratamento farmacológico , Desenho de Drogas , Farnesiltranstransferase/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Piperidinas/uso terapêutico , Piridinas/uso terapêutico
19.
Cell Physiol Biochem ; 43(3): 1052-1063, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968609

RESUMO

BACKGROUND/AIMS: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B) undergo posttranslational modifications (e.g., isoprenylation) at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER) stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. METHODS: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. RESULTS: We report that exposure of pancreatic ß-cells to Simvastatin, an inhibitor of mevalonic acid (MVA) biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase) and inhibited ERK1/2 (regulator of cell proliferation). Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. CONCLUSION: Based on these findings we conclude that protein prenylation plays key roles in islet ß-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic ß-cells under the duress of metabolic stress (e.g., glucotoxicity).


Assuntos
Caspase 3/metabolismo , Lamina Tipo B/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Glucose/farmacologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Polietilenoglicóis/química , Prenilação de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinvastatina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Org Biomol Chem ; 15(38): 8110-8118, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28905970

RESUMO

In the current context of lack of emergence of innovative human farnesyltransferase inhibitors families, and given all new therapeutic perspectives that open up for such molecules in rare diseases (e.g. Hutchinson-Gilford progeria syndrome), and in delta hepatitis, cardiovascular or neuroinflammatory diseases, we have just discovered a new series of powerful inhibitors. These molecules are pyroglutamic acid derivatives, and were evaluated on human farnesyltransferase in vitro then modeled in silico on the active site of the protein. Three main points of the pyroglutamic acid cycle have undergone chemical modulations pyroglutamides in position 5 (compounds 7a-h), constrained bicyclic analogues of pyrroloimidazoledione type (compounds 1a-h), modulation of the position 3 (compounds 2-5 and 8), and allowed the first SAR in the field. Five derivatives in the current work have IC50 values in the small nanomolar range (2-5 nM). These new lead compounds open the way for the next generation of farnesyltransferase inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Ácido Pirrolidonocarboxílico/análogos & derivados , Sítios de Ligação , Simulação por Computador , Inibidores Enzimáticos/química , Humanos , Modelos Biológicos , Estrutura Molecular , Conformação Proteica , Ácido Pirrolidonocarboxílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA