Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.928
Filtrar
1.
J Pharm Pharmacol ; 71(10): 1520-1531, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385306

RESUMO

OBJECTIVE: This study proposed to use the nanotechnology to deliver glycoalkaloidic extract (AE) to bladder cancer cells, evaluating their activity in 2D and 3D models and the biological mechanism of cell death. METHODS: NPs were prepared by nanoprecipitation method using polylactic acid (PLA) and characterized considering their size, charge, particle concentration and stability. The cytotoxicity was evaluated in 2D and 3D model, and the apoptosis and cell cycle were investigated using flow cytometry. KEY FINDINGS: NPs loading AE (NP-AE) had diameter around 125 ± 6 nm (PdI <0.1) and negative charge. The encapsulation efficiency of SM and SS was higher than 85% for both compounds. The obtained formulation showed a significant in-vitro cytotoxic effect against RT4 cells in a dose-dependent manner with IC50 two fold lower than the free AE. The cytotoxic effect of NP-AE was mediated by apoptosis and cell cycle arrested in the S phase. RT4 cells cultured under 3D conditions exhibited a higher resistance to the treatments (IC50 ~ three fold higher than in 2D cell culture). CONCLUSION: The NP-AE might be a promising nanocarrier to load and deliver glycoalkaloids against bladder cancer.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Nanotecnologia/métodos , Tamanho da Partícula , Poliésteres/química , Fase S/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
2.
Oncol Rep ; 42(4): 1451-1458, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31364732

RESUMO

Epithelial­mesenchymal transition (EMT) is closely related to tumor metastasis, and offers insight into novel strategies for cancer treatment. HMQ­T­F2 (F2) is a taspine derivative, which has excellent anticancer activity in human cervical cancer. The present study aimed to evaluate the effect of F2 on in vitro migration of HeLa cells. The present data demonstrated that F2 inhibited migration of HeLa cells by negatively regulating the Wnt signaling pathway and reversing EMT. F2 not only mediated Frizzled8, p­LRP6 and LRP6 expression, but also downregulated the phosphorylation of GSK3ß, and concurrently decreased the nucleus protein expression of MMP2, MMP3, MMP7, MMP9, and c­Myc. In addition, the expression of N­cadherin, vimentin, Snail and HIF­1α were downregulated and that of E­cadherin was upregulated after F2 treatment. F2 was also associated with the downregulation of the PI3K/Akt/mTOR signaling pathways. Notably, F2 induced HeLa cell accumulation at the S phase and cell apoptosis. These results provide evidence that F2 inhibits HeLa cell migration, proliferation and promotes apoptosis. It also reverses EMT, potentially via the PI3K/Akt signaling pathway. Therefore, F2 may be a potential therapeutic reagent against cervical cancer.


Assuntos
Alcaloides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Alcaloides/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
3.
Biol Pharm Bull ; 42(10): 1689-1693, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31366853

RESUMO

Caffeic acid phenethyl ester (CAPE), an active polyphenolic component of honeybee propolis, has been demonstrated to have many medicinal properties. However, the antitumor effect and mechanism of CAPE on laryngeal carcinoma cells have not been examined. In this study, we treated HEp2 cells with various concentration of CAPE, and the results showed that CAPE can reduce the viability of HEp2 cells with IC50 values of 23.8 ± 0.7 µM for 72 h. Meanwhile, CAPE significantly inhibited activation of signal transducer and activator of transcription (Stat)3 in a concentration dependent manner in HEp2 cells and regulated the expression and transcription of Plk1. AG490, a specific Stat3 inhibitor, not only inhibited the activation and expression of Stat3, but also inhibited the expression of Plk1 in HEp2 cells, so Stat3 was probably involved in the regulation of Plk1 in HEp2 cells. In addition, treatment of CAPE leaded to a blockage of cell cycle in S phase in HEp2 cells. Therefore, CAPE inhibited the proliferation of HEp2 Cells probably by regulating Stat3/Plk1 pathway and inducing S phase arrest.


Assuntos
Ácidos Cafeicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Neoplasias Laríngeas/metabolismo , Álcool Feniletílico/análogos & derivados , Própole/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Laríngeas/tratamento farmacológico , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico
4.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426282

RESUMO

Though Pyrogallol, one of the natural polyphenols, was known to have anti-inflammatory and antitumor effects in breast and colon cancers, the underlying antitumor mechanisms of Pyrogallol, still remain unclear so far. Here, the antitumor mechanisms of Pyrogallol were elucidated in Hep3B and Huh7 hepatocellular carcinoma cells (HCCs). Pyrogallol showed significant cytotoxicity and reduced the number of colonies in Hep3B and Huh7 cells. Interestingly, Pyrogallol induced S-phase arrest and attenuated the protein expression of CyclinD1, Cyclin E, Cyclin A, c-Myc, S-phase kinase-associated protein 2 (Skp2), p-AKT, PI3K, increased the protein expression of p27, and also reduced the fluorescent expression of Cyclin E in Hep3B and Huh7 cells. Furthermore, Pyrogallol disturbed the interaction between Skp2, p27, and c-Myc in Huh7 cells. Notably, Pyrogallol upregulated miRNA levels of miR-134, and conversely, miR-134 inhibition rescued the decreased expression levels of c-Myc, Cyclin E, and Cyclin D1 and increased the expression of p27 by Pyrogallol in Huh7 cells. Taken together, our findings provide insight that Pyrogallol exerts antitumor effects in HCCs via miR-134 activation-mediated S-phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling as a potent anticancer candidate.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , Pirogalol/farmacologia , Antioxidantes/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fase S/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261874

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy. Telmisartan, an angiotensin II type 1 (AT1) receptor blocker (ARB) and a widely used antihypertensive, has been shown to inhibit proliferation of various cancer types. This study evaluated the effects of telmisartan on human ESCC cell proliferation in vitro and in vivo and sought to identify the microRNAs (miRNAs) involved in these antitumor effects. We examined the effects of telmisartan on three human ESCC cell lines (KYSE150, KYSE180, and KYSE850). Telmisartan inhibited proliferation of these three cell lines by inducing S-phase arrest, which was accompanied by decreased expression of cyclin A2, cyclin-dependent kinase 2, and other cell cycle-related proteins. Additionally, telmisartan reduced levels of phosphorylated ErbB3 and thrombospondin-1 in KYSE180 cells. Furthermore, expression of miRNAs was remarkably altered by telmisartan in vitro. Telmisartan also inhibited tumor growth in vivo in a xenograft mouse model. In conclusion, telmisartan inhibited cell proliferation and tumor growth in ESCC cells by inducing cell-cycle arrest.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Fase S/efeitos dos fármacos , Telmisartan/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Linhagem Celular Tumoral , Ciclina A2/genética , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Telmisartan/uso terapêutico , Trombospondina 1/genética , Trombospondina 1/metabolismo
6.
Nat Commun ; 10(1): 3213, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324785

RESUMO

Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation by enhancing Sirt2-RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing RNR activity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Ribonucleotídeo Redutases/metabolismo , Acetilação , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Humanos , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/genética , Fase S/efeitos dos fármacos , Sirtuína 2/metabolismo
7.
Pharmacology ; 104(3-4): 139-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31203272

RESUMO

We studied the effect of lignocaine (LIG) on lung cancer cells. LIG dose- and concentration-dependently reduced the viability of the lung cancer cell line 95D. Fluorescence microscopy revealed that LIG-induced apoptosis, and this was confirmed via flow cytometric analysis of cells treated with various concentrations of LIG; the drug increased the proportions of cells in S-phase. Bad and Bax levels rose, and that of Bcl2 fell significantly, after addition of LIG; Western blotting showed that the drug also reduced the levels of phosphorylated proteins involved in downstream phosphoinositide 3-kinases/mammalian target of rapamycin/mammalian target of rapamycin signaling. In conclusion, our results suggest that LIG may be a useful therapy for human lung carcinoma.


Assuntos
Anestésicos Locais/farmacologia , Antineoplásicos/farmacologia , Lidocaína/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Fosforilação/efeitos dos fármacos , Fase S/efeitos dos fármacos
8.
Nat Commun ; 10(1): 2400, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160565

RESUMO

BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.


Assuntos
Azepinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Neoplasias Cerebelares/genética , Ciclina D2/efeitos dos fármacos , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Meduloblastoma/genética , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fase S/efeitos dos fármacos
9.
Toxicol In Vitro ; 60: 420-436, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31175925

RESUMO

Metastatic prostate cancer, with no effective treatment, is among the leading causes of cancer-associated deaths in men. Overexpression of p38αMAPK has been observed in neuroendocrine prostate cancer patients and in both DU145 and PC-3 cell lines and represents a good drug target. Sulfonamide derivatives have shown biological activities against many human diseases, including cancer. CID-6033590, a sulfonylhydrazide compound, screened from PubChem database by molecular docking with p38αMAPK, was evaluated for anti-cancerous activities. CID-6033590 induced toxicity in both DU145 and PC-3 cells in a concentration and time-dependent manner with an IC50 value of 60 µM and 66 µM, respectively. Sub-cytotoxic concentrations of the compound significantly induced S-phase cell cycle arrest, inhibited cyclinA/CDK2 complex and blocked cell proliferation. Further, CID-6033590 downregulated phosphorylation of p38MAPK (P-p38) as well as its downstream targets, Activating transcription factor 2 (ATF-2) and Heat shock protein 27 (Hsp27). The compound increased ROS and decreased mitochondrial membrane potential (Δψm), downregulated Bcl-2 and survivin and cleaved poly ADP ribose polymerase (PARP) and caspase-3, indicating the induction of apoptosis. The evaluaion of the compound on noncancerous, human prostatic epithelial cell line RWPE-1, and healthy murine tissues yielded no significant toxicity. Taken together, we suggest CID-6033590 as a potential candidate for prostate cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Hidrazonas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Glutationa/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fase S/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Cell Prolif ; 52(4): e12637, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168899

RESUMO

OBJECTIVES: Chondrocyte proliferation and differentiation are crucial for endochondral ossification, but their regulatory mechanism remains unclear. The present study aimed to determine the physiological function of TGFß1 signalling in the proliferation and differentiation of antler chondrocytes and explore its relationship with Notch, Shh signalling and Foxa. MATERIALS AND METHODS: Immunofluorescence, Western blot, MTS assay, flow cytometry, RNA interference and real-time PCR were used to analyse the function and regulatory mechanisms of TGFß1 signalling in antler chondrocyte proliferation and differentiation. RESULTS: TGFß1, TGFBR1 and TGFBR2 were highly expressed in antler cartilage. TGFß1 promoted chondrocyte proliferation, increased the proportion of S-phase cells and induced the expression of hypertrophic chondrocyte markers Col X, Runx2 and Alpl. However, this induction was weakened by TGFß receptor inhibitor SB431542 and Smad3 inhibitor SIS3. Simultaneously, TGFß1 activated Notch and Shh signalling whose blockage attenuated the above effects of rTGFß1, whereas addition of rShh rescued the defects in chondrocyte proliferation and differentiation elicited by SB431542 and SIS3. Further analysis revealed that inhibition of Notch signalling impeded TGFß1 activation of the Shh pathway. Knockdown of Foxa1, Foxa2 and Foxa3 abrogated the effects of TGFß1 on chondrocyte differentiation. Notch and Shh signalling mediated the regulation of Foxa transcription factors by TGFß1. CONCLUSIONS: TGFß1 signalling could induce the proliferation and differentiation of antler chondrocytes through Notch-Shh-Foxa pathway.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Chifres de Veado , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Dioxóis/farmacologia , Proteínas Hedgehog/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Isoquinolinas/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptores Notch/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Transdução de Sinais/efeitos dos fármacos
11.
Mutat Res ; 815: 20-29, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31063901

RESUMO

Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase that is used as a chemotherapeutic agent to treat a number of chronic diseases. Addition of HU to cell cultures causes reduction of the dNTP cellular pool below levels that are required for DNA replication. This trigger dividing cells to arrest in early S-phase of the cell cycle. Cell division hinges on ribosome biogenesis, which is tightly regulated by rRNA synthesis. Remarkably, HU represses the expression of some genes the products of which are required for rRNA maturation. To gain more information on the cellular response to HU, we employed the yeast Saccharomyces cerevisiae as model organism and analyzed the changing aspects of closed to open forms of rRNA gene chromatin during cell cycle arrest, the arrangement of RNA polymerase-I (RNAPI) on the open genes, the presence of RNAPI transcription-factors, transcription and rRNA maturation. The rRNA gene chromatin structure was analyzed by psoralen crosslinking and the distribution of RNAPI was investigated by chromatin endogenous cleavage. In HU arrested cells nearly all rRNA genes were in the open form of chromatin, but only a portion of them was engaged with RNAPI. Analyses by chromatin immuno-precipitation confirmed that the overall formation of transcription pre-initiation complexes remained unchanged, suggesting that the onset of rRNA gene activation was not significantly affected by HU. Moreover, the in vitro transcription run-on assay indicated that RNAPI retained most of its transcription elongation activity. However, in HU treated cells, we found that: (1) RNAPI accumulated next to the 5'-end of rRNA genes; (2) considerably less rRNA filaments were observed in electron micrographs of rDNA transcription units; and (3) rRNA maturation was compromised. It is established that HU inhibition of ribonucleotide reductase holds back DNA replication. This study indicates a hitherto unexplored cellular response to HU, namely altered rRNA synthesis, which could participate to hamper cell division.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cromatina/genética , Genes de RNAr/genética , Hidroxiureia/farmacologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Transcrição Genética/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Replicação do DNA/genética , DNA Ribossômico/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
12.
Eur J Med Chem ; 175: 234-246, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082766

RESUMO

Selenocyanates and diselenides are potential antitumor agents. Here we report two series of selenium derivatives related to selenocyanates and diselenides containing carboxylic, amide and imide moieties. These compounds were screened for their potency and selectivity against seven tumor cell lines and two non-malignant cell lines. Results showed that MCF-7 cells were especially sensitive to the treatment, with seven compounds presenting GI50 values below 10 µM. Notably, the carboxylic selenocyanate 8b and the cyclic imide 10a also displayed high selectivity for tumor cells. Treatment of MCF-7 cells with these compounds resulted in cell cycle arrest at S phase, increased levels of pJNK and pAMPK and caspase independent cell death. Autophagy inhibitors wortmannin and chloroquine partially prevented 8b and 10a induced cell death. Consistent with autophagy, increased Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels were detected. Our results point to 8b and 10a as autophagic cell death inducers.


Assuntos
Adenilato Quinase/metabolismo , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Citostáticos/farmacologia , MAP Quinase Quinase 4/metabolismo , Compostos Organosselênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citostáticos/administração & dosagem , Citostáticos/química , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Compostos Organosselênicos/administração & dosagem , Compostos Organosselênicos/química , Fase S/efeitos dos fármacos
13.
Int J Mol Med ; 44(1): 57-66, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115494

RESUMO

Cisplatin is one of the primary compounds used in the treatment of nasopharyngeal carcinoma (NPC), and fibroblast growth factor receptor 2 (FGFR2) has emerged to be a promising target for treatment in various tumors. Therefore, the present study aimed to explore whether the expression levels of FGFR2 in NPC tissues and cell lines were altered, and whether the efficiency of cisplatin was increased following the downregulation of FGFR2. The downregulation of FGFR2 was achieved by transfection with a small interfering RNA against FGFR2. Tissues of patients with NPC were analyzed by immunohistochemistry. Cell viability was examined using a Cell Counting Kit­8 assay. Cell cycle analysis was performed using flow cytometry. mRNA and protein levels were measured by reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. FGFR2 was observed to be overexpressed in cancer tissues of patients with NPC and in the NPC SUNE1, C666­1, 6­10B and HNE­3 cell lines, and resulted in an unfavorable prognosis. Cisplatin treatment decreased cell viability and increased FGFR2 expression. The silencing of FGFR2 was demonstrated to augment the effects of cisplatin treatment, including decreasing the cell viability and inducing cell cycle arrest, which involved the increase and decrease of the durations of G1 and S phases, respectively, and a decrease in the expression levels of cyclin D1 and CDC25A, and increasing the rate of apoptosis via the intrinsic apoptosis pathway, as demonstrated by the upregulation of cleaved caspase­3 and B­cell lymphoma 2 (Bcl­2)­associated X protein and downregulation of Bcl­2, in SUNE1 and C666­1 cell lines. FGFR2 was overexpressed in the cancer tissues of patients with NPC and in NPC cell lines, resulting in an unfavorable prognosis. The downregulation of FGFR2 decreased cell viability via cell cycle arrest at G1 phase, and increased the efficacy of the cisplatin­based induction of apoptosis through the intrinsic apoptosis pathway.


Assuntos
Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas de Neoplasias/biossíntese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Fase G1/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas de Neoplasias/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Fase S/efeitos dos fármacos
14.
Nat Chem ; 11(6): 578-586, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988414

RESUMO

Polymerization reactions conducted inside cells must be compatible with the complex intracellular environment, which contains numerous molecules and functional groups that could potentially prevent or quench polymerization reactions. Here we report a strategy for directly synthesizing unnatural polymers in cells through free radical photopolymerization using a number of biocompatible acrylic and methacrylic monomers. This offers a platform to manipulate, track and control cellular behaviour by the in cellulo generation of macromolecules that have the ability to alter cellular motility, label cells by the generation of fluorescent polymers for long-term tracking studies, as well as generate a variety of nanostructures within cells. It is remarkable that free radical polymerization chemistry can take place within such complex cellular environments. This demonstration opens up a multitude of new possibilities for how chemists can modulate cellular function and behaviour and for understanding cellular behaviour in response to the generation of free radicals.


Assuntos
Radicais Livres/química , Polimerização/efeitos da radiação , Ácidos Polimetacrílicos/síntese química , Poliestirenos/síntese química , Acrilatos/química , Acrilatos/efeitos da radiação , Acrilatos/toxicidade , Citoesqueleto de Actina/efeitos dos fármacos , Compostos de Anilina/química , Compostos de Anilina/efeitos da radiação , Compostos de Anilina/toxicidade , Movimento Celular/efeitos dos fármacos , Fluorescência , Células HeLa , Humanos , Metacrilatos/química , Metacrilatos/efeitos da radiação , Metacrilatos/toxicidade , Propano/análogos & derivados , Propano/química , Propano/efeitos da radiação , Fase S/efeitos dos fármacos , Estirenos/química , Estirenos/efeitos da radiação , Estirenos/toxicidade , Raios Ultravioleta , Compostos de Vinila/química , Compostos de Vinila/efeitos da radiação , Compostos de Vinila/toxicidade
15.
Chem Biol Interact ; 304: 106-123, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840857

RESUMO

Naphthalene diimide (NDI) derivatives have been shown to exhibit promising antineoplastic properties. In the current study, we assessed the anticancer and anti-bacterial properties of di-substituted NDI derivative. The naphthalene-bis-hydrazimide, 1, negatively affected the cell viability of three cancer cell lines (AGS, HeLa and PC3) and induced S phase cell cycle arrest along with SubG0/G1 accumulation. Amongst three cell lines, gastric cancer cell line, AGS, showed the highest sensitivity towards the NDI derivative 1. Compound 1 induced extensive DNA double strand breaks causing p53 activation leading to transcription of p53 target gene p21 in AGS cells. Reduction in protein levels of p21 and BRCA1 suggested that 1 treated AGS cells underwent cell death due to accumulation of DNA damage as a result of impaired DNA damage repair. ß-catenin downregulation and consequently decrease in levels of c-Myc may have led to 1 induced AGS cell proliferation inhibition.1 induced AGS cell S phase arrest was mediated through CylinA/CDK2 downregulation. The possible mechanisms involved in anticancer activity of 1 includes ROS upregulation, induction of DNA damage, disruption of mitochondrial membrane potential causing ATP depletion, inhibition of cell proliferation and downregulation of antiapoptotic factors ultimately leading to mitochondria mediated apoptosis. Further compound 1 also inhibited H. pylori proliferation as well as H. pylori induced morphological changes in AGS cells. These findings suggest that NDI derivative 1 exhibits two-pronged anticancer activity, one by directly inhibiting cancer cell growth and inducing apoptosis and the other by inhibiting H. pylori.


Assuntos
Adenocarcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação para Baixo/efeitos dos fármacos , Imidas/farmacologia , Naftalenos/farmacologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Fase S/efeitos dos fármacos , Neoplasias Gástricas/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Methods Mol Biol ; 1866: 49-60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725407

RESUMO

Cancer cells require elevated amounts of methionine (MET) and arrest their growth under conditions of MET restriction (MR). This phenomenon is termed MET dependence. Fluorescence-activated cell sorting (FACS) first indicated that the MET-dependent SV40-transformed cancer cells were arrested in the S and G2 phases of the cell cycle when under MR. This is in contrast to a G1-phase accumulation of cells, which occurs only in MET-supplemented medium at very high cell densities and which is similar to the G1 cell-cycle block which occurs in cultures of normal fibroblasts at high density. When the human PC-3 prostate carcinoma cell line was cultured in MET-free, homocysteine-containing (MET-HCY+) medium, there was an extreme increment in DNA content without cell division indicating that the cells were blocked in S phase. Recombinant methioninase (rMETase) treatment of cancer cells also selectively trapped cancer cells in S/G2: The cell cycle phase of the cancer cells was visualized with the fluorescence ubiquitination cell cycle indicator (FUCCI). At the time of rMETase-induced S/G2-phase trap, identified by the cancer cells' green fluorescence by FUCCI imaging, the cancer cells were administered S-phase-dependent chemotherapy drugs, which interact with DNA or block DNA synthesis such as doxorubicin, cisplatin, or 5-fluorouracil (5-FU) and which were highly effective in killing the cancer cells. In contrast, treatment of cancer cells with drugs in the presence of MET, only led to the majority of the cancer cell population being blocked in G0/G1 phase, identified by the cancer cells becoming red fluorescent in the FUCCI system. The G0/G1 blocked cells were resistant to the chemotherapy. MR has the potential for highly effective cell-cycle-based treatment strategy for cancer in the clinic.


Assuntos
Pontos de Checagem do Ciclo Celular , Metionina/deficiência , Neoplasias/patologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Dieta , Fase G2/efeitos dos fármacos , Humanos , Camundongos Nus , Fase S/efeitos dos fármacos
17.
Biomed Pharmacother ; 112: 108603, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784914

RESUMO

C-21 steroids displayed the activities of immunosuppressive, anti-inflammatory and anti-virus effects by the reports. However, its antitumor effects and molecular mechanism remain unclear. We previously isolated and identified a C-21 steroidal glycoside (BW18) from the root of Cynanchum atratum Bunge. This study was aimed to assess anti-leukemia activity and its underlying mechanism in K562 cells. MTT assay results showed that BW18 inhibited cell viability and proliferation of K562 cells. We also found that BW18 could induce S phase cell cycle arrest and apoptosis. Furthermore, our results demonstrated that BW18 regulated the expression of apoptosis and cell cycle related proteins. Mechanism investigation revealed that the anti-leukemia activity of BW18 may be mediated through MAPK pathway. These findings indicate that BW18 possesses an excellent anti-leukemia activity via regulating MAPK pathway leading to S phase cell cycle arrest and apoptosis, which suggested BW18 could be as a potential alternative therapeutic agent for CML patients.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glicosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fitosteróis/farmacologia , Fase S/efeitos dos fármacos , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos/isolamento & purificação , Glicosídeos/uso terapêutico , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fitosteróis/isolamento & purificação , Fitosteróis/uso terapêutico , Fase S/fisiologia
18.
PLoS One ; 14(2): e0212210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779812

RESUMO

Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids.


Assuntos
Fase G1/efeitos dos fármacos , Glucocorticoides/farmacologia , Células Secretoras de Insulina/metabolismo , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fase S/efeitos dos fármacos , Adulto , Idoso , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/citologia , Masculino , Pessoa de Meia-Idade , Ratos
19.
Mol Neurobiol ; 56(1): 465-489, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29721855

RESUMO

Amyloid beta-peptide (Aß), the neurotoxic component of senile plaques in Alzheimer's disease (AD) brains, is known to trigger cell cycle reentry in post-mitotic neurons followed by apoptosis. However, the underlying mechanisms remain unclear. Recently, we have reported that Aßs stimulate the expression of inhibitor of differentiation-1 (Id1) to induce sonic hedgehog (SHH) (Hung et al., Mol Neurobiol 53(2):793-809, 2016), and both are mitogens capable of triggering cell cycle progression. In this work, we tested the hypothesis that Aß-induced Id1 and SHH contribute to cell cycle reentry leading to apoptosis in neurons. We found that Aß triggered cell cycle progression in the post-mitotic neurons, as indicated by the increased expression of two G1-phase markers including cyclin D1 and phosphorylated retinoblastoma protein (pRb), two G2-phase markers such as proliferating cell nuclear antigen (PCNA) and incorporation of 5-bromo-2'-deoxyuridine (BrdU) into newly synthesized DNA, as well as the mitotic marker histone H3 phosphorylated at Ser-10. As expected, Aß also enhanced caspase-3 cleavage in the cortical neurons. Id1 siRNA, the neutralization antibody against SHH (SHH-Ab), and the cyclin-dependent kinase (CDK)-4/6 inhibitor PD0332991 all attenuated, in part or in full, the Aß-induced expression of these cell cycle markers. Indeed, exogenous recombinant Id1 protein and the biologically active N-terminal fragment of SHH (SHH-N) were both sufficient to enhance the expression of cell cycle markers independent of Aß. Taken together, our results revealed the critical roles of Id1 and SHH mediating Aß-dependent cell cycle reentry and subsequently caspase-dependent apoptosis in the fully differentiated post-mitotic neurons, at least in vitro.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/efeitos dos fármacos , Córtex Cerebral/patologia , Proteínas Hedgehog/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Mitose/efeitos dos fármacos , Neurônios/patologia , Fragmentos de Peptídeos/toxicidade , Animais , Canabidiol/farmacologia , Caspase 3/metabolismo , Células Cultivadas , Humanos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/toxicidade , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Fase S/efeitos dos fármacos
20.
Int J Biol Macromol ; 122: 1100-1114, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219515

RESUMO

Immunotherapeutic nanoparticles (NPs) could be a viable option for delivering cytotoxic agents in a manner which suppresses their toxic manifestations. Doxorubicin (DOX) loaded NPs were prepared using fucoidan (FCD), an immunomodulatory polysaccharide and evaluated against cancer. FCD was electrostatically assembled with cationic polyethylenimine (PEI) through intermolecular electrostatic interactions to develop an immunomodulatory platform to deliver DOX. FCD NPs offered improved cytotoxicity (2.64 folds), cell cycle arrest in G1-S phase (34.65%) and apoptosis (66.12%) in tumor cells compared to free DOX. The enhanced apoptosis was due to raised mitochondrial depolarization (88.00%). In vivo anticancer activity in 4T1 induced tumor bearing BALB/c mice demonstrated a 2.95 folds enhanced efficacy of NPs. Importantly, NPs treatment generated an immunotherapeutic response indicated by gradual increment of the plasma IL-12 levels and reversed polarization of tumor associated macrophages (TAMs) towards M1 subtype. Furthermore, pharmacokinetic study suggested that NPs administration in tumor infested mice caused serum DOX levels to vary in a biphasic pattern, with twin peaks occurring at 1 h and 6 h which help in maintaining preferential drug localization in tumor. Developed NPs would be an excellent approach for improved immune-chemotherapy (in terms of efficacy, safety and immunocompetency) against cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Fatores Imunológicos/farmacologia , Nanopartículas/química , Polissacarídeos/farmacologia , Eletricidade Estática , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Caspase 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Sinergismo Farmacológico , Fase G1/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Fase S/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA