Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.820
Filtrar
1.
Cell Physiol Biochem ; 54(1): 142-159, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028545

RESUMO

BACKGROUND/AIMS: It is well established that oxidative stress and inflammation are common pathogenic features of retinal degenerative diseases. ITH12674 is a novel compound that induces the transcription factor Nrf2; in so doing, the molecule exhibits anti-inflammatory, and antioxidant properties, and affords neuroprotection in rat cortical neurons subjected to oxidative stress. We here tested the hypothesis that ITH12674 could slow the retinal degeneration that causes blindness in rd10 mice, a model of retinitis pigmentosa. METHODS: Animals were intraperitoneally treated with 1 or 10 mg/Kg ITH12674 or placebo from P16 to P30. At P30, retinal functionality and visual acuity were analyzed by electroretinography and optomotor test. By immunohistochemistry we quantified the photoreceptor rows and analyzed their morphology and connectivity. Oxidative stress and inflammatory state was studied by Western blot, and microglia reactivity was monitored by flow cytometry. The blood-brain barrier permeation of ITH12674 was evaluated using a PAMPA-BBB assay. RESULTS: In rd10 mice treated with 10 mg/Kg of the compound, the following changes were observed (with respect to placebo): (i) a decrease of vision loss with higher scotopic a- and b-waves; (ii) increased visual acuity; (iii) preservation of cone photoreceptors morphology, as well as their synaptic connectivity; (iv) reduced expression of TNF-α and NF-κB; (v) increased expression of p38 MAPK and Atg12-Atg5 complex; and (vi) decreased CD11c, MHC class II and CD169 positive cell populations. CONCLUSION: These data support the view that a Nrf2 inducer compound may arise as a new therapeutic strategy to combat retinal neurodegeneration. At present, we are chemically optimising compound ITH12674 with the focus on improving its neuroprotective potential in retinal neurodegenerative diseases.


Assuntos
Isotiocianatos/uso terapêutico , Melatonina/análogos & derivados , Fator 2 Relacionado a NF-E2/agonistas , Retinite Pigmentosa/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/química , Isotiocianatos/farmacologia , Masculino , Melatonina/química , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/patologia , Retina/efeitos dos fármacos , Retina/metabolismo , Retinite Pigmentosa/metabolismo , Retinite Pigmentosa/patologia , Fator de Necrose Tumoral alfa/metabolismo , Acuidade Visual/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Life Sci ; 242: 117240, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891722

RESUMO

Lycium barbarum polysaccharides (LBP) are derived from Wolfberry and have antioxidant activities. This study aimed to evaluate the efficacy of LBP for kidney injury in a rat model of sepsis. Male rats were divided randomly to control group (Con), LPS group (LPS), ulinastatin group (ULI), low dose LBP group (LBP-1), middle dose LBP group (LBP-2) and high dose LBP group (LBP-3). After intraperitoneal injection of LPS (5 mg/kg) to make sepsis model (LPS group), 10,000 U/kg ulinastatin were given in ULI group, and 200, 400 and 800 mg/kg LBP was given in LBP-1, -2, -3 group, respectively. Serum IL-1ß, IL-6, IL-8, TNF-α and NF-κB levels were measured by ELISA. Nrf2, Keap1, NF-κB, HO-1 and NQO1 expression levels were detected by PCR and Western blot analysis. We found that LBP decreased the levels of NF-κB and pro-inflammatory cytokines while attenuated kidney injury. In addition, LBP regulated Keap1-Nrf2/ARE signaling pathway in the kidney. In conclusion, LBP attenuates inflammation injury in the kidney via possible regulation of Keap1-Nrf2/ARE signaling.


Assuntos
Lesão Renal Aguda/prevenção & controle , Elementos de Resposta Antioxidante/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sepse/complicações , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
3.
Life Sci ; 242: 117248, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899224

RESUMO

Diabetic nephropathy is the most common long-term complication of diabetes mellitus. The Methylglyoxal (MGO) production is mainly by metabolic pathways, such as lipolysis and glycolysis, its increases in the DM enhances oxidative stress and plays a crucial role in the diabetic nephrotic pathogenesis. Phosphocreatine (PCr) can improve lipopolysaccharide, ox-LDL-induced atherosclerosis, and alleviate vascular endothelial cell injury in diabetes. The aim of our present study is to examine the potential role of phosphocreatine (PCr) as a molecule protects against diabetes-induced Kidney Injury in-vitro and in-vivo through ERK/Nrf2/HO-1 signaling pathway. NRK-52E cells treatment with PCr obviously suppressed MGO-induced change of viability, apoptosis, coupled with decreased Bax/Bcl-2ratio, casapse-9 and caspase-3expressions. We determined the generation of reactive oxygen species (ROS) using membrane permeable fluorescent probe DCFH-DA as well as intracellular calcium by flow cytometry. ERK, Nrf2 and HO-1 expressions were determined by Western blot. PCr pretreatment significantly returned the oxidative stress enzymes to normal condition in-vitro and in-vivo. PCr pretreatment significantly reduced apoptosis, calcium and ROS production, induced by MGO, in NRK-52E cells. Moreover, pretreatment with PCr significantly inhibited cleaved caspase-3, cleaved caspase-9 and p-ERK expressions, while increased Nrf-2 and HO-1 expressions. Furthermore, PCr pretreatment significantly decreased p-ERK expression of MGO-induced injury in NRK-52E cells transfected with p-ERK cDNA. In conclusion, the renal protective effect of PCr in-vitro and in-vivo depends on suppressing apoptosis and ROS generation through ERK mediated Nrf-2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the diabetic nephropathy treatment.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Heme Oxigenase (Desciclizante)/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfocreatina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Citometria de Fluxo , Imunofluorescência , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
4.
Life Sci ; 244: 117329, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954747

RESUMO

MicroRNAs (miRs) are small non-coding pieces of RNA that are involved in a variety of physiologic processes such as apoptosis, cell proliferation, cell differentiation, cell cycle and cell survival. These multifunctional nucleotides are also capable of preventing oxidative damages by modulating antioxidant defense systems in a variety of milieu, such as in diabetes. Although the exact molecular mechanisms by which miRs modulate the antioxidant defense elements are unclear, some evidence suggests that they may exert these effects via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This intracellular mechanism is crucial in the maintenance of the physiologic redox balance by regulating the expression and activity of various cellular antioxidative defense elements and thereby plays a pivotal role in the development of oxidative stress. Any impairment in the Nrf2 signaling pathway may result in oxidative damage-dependent complications such as various diabetic complications, neurological disorders and cancer. In the current review, we discuss the modulatory effects of miRs on the Nrf2 signaling pathway, which can potentially be novel therapeutic targets.


Assuntos
Complicações do Diabetes/prevenção & controle , Regulação da Expressão Gênica , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Estresse Oxidativo , Animais , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Transdução de Sinais
5.
Life Sci ; 244: 117331, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972209

RESUMO

AIM: Drug-induced liver and kidney injuries are worldwide problems that cause restrictions in the use of drugs. The injury is highly mediated by oxidative stress and inflammation pathways. So, demonstrating the role of the natural compound (Vit.D) on the prevention of acetaminophen (APAP) overdose toxicity and the molecular mechanism through NrF2/BACH1/HO-1 pathway is promising. EXPERIMENTAL: Male Sprague Dawley rats (40 rats) were divided randomly into 4 groups: Normal, APAP, APAP+Vit.D (500 IU/kg) and APAP+Vit.D (1000 IU/kg). The APAP toxicity caused by 2 g/kg (orally) on day 7. KEY FINDINGS: Vit D decreased significantly liver and kidney functions: serum ALT and AST activities (P < 0.0005); creatinine and urea (P < 0.0005) concentrations; liver and kidney histopathological scores. Furthermore, Vit.D ameliorated APAP-caused oxidative stress through the liver malondialdehyde concentration's decrease and the total antioxidant capacity's increase (P < 0.0005). The molecular mechanism of Vit.D may include the prevention of high deteriorating increase of oxidative stress mediators: hepatic and renal NrF2 and BACH1 tissue expression in addition to serum HO-1 (P < 0.0005); the increase of inflammatory mediators; hepatic and renal NF-κB tissue expression, serum interleukin-10 (P < 0.0005) and TNF-α (P < 0.05). The 500 IU/kg Vit.D administration caused better protection results especially on the histopathological and immunohistochemical results than the 1000 IU/kg Vit.D administration. SIGNIFICANCE: Vit.D ameliorates APAP-induced liver and kidney injury that may be attributed to its ability to moderately increase antioxidant status to counteract the toxicity without the massive destructive increase in the anti-oxidant pathway (NrF2/HO-1/BACH1). So, this work represents a great prophylactic role of Vit.D against drug-induced liver and kidney injury.


Assuntos
Acetaminofen/toxicidade , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Heme Oxigenase (Desciclizante)/metabolismo , Rim/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Repressoras/metabolismo , Vitamina D/administração & dosagem , Doença Aguda , Analgésicos não Entorpecentes/toxicidade , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Rim/metabolismo , Rim/patologia , Masculino , Fator 2 Relacionado a NF-E2/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Vitaminas/administração & dosagem
6.
J Photochem Photobiol B ; 202: 111672, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778952

RESUMO

In highly proliferating cancer cells oncogenic mutations reprogram the metabolism and increase the production of reactive oxygen species (ROS). Cancer cells prevent ROS accumulation by upregulating antioxidant systems. Here we show that an increase of oxidative stress (ROS and singlet oxygen), generated by photoactivated TMPyP4, results in the upregulation of KRAS and Nrf2, the major regulator of the redox homeostasis. In agreement with a previous observation, the ectopic expression of KRAS G12D or G12 V is found to stimulate Nrf2. This suggests that ROS, KRAS and Nrf2 establish a molecular axis controlling the redox homeostasis in cancer cells. We found that this axis also modulates the function of the NF-kB/Snail/RKIP circuitry, regulating the survival and apoptosis pathways. Our data show that low ROS levels, obtained when Nrf2 is activated by KRAS, results in the upregulation of prosurvival Snail and simultaneous downregulation of proapoptotic RKIP: an expression pattern favouring cell proliferation. By contrast, high ROS levels, obtained when Nrf2 is inhibited by a small molecule (luteolin), favour apoptosis by upregulating proapoptotic RKIP and downregulating prosurvival Snail. The results of this study are useful to design efficient photodynamic therapy (PDT) against cancer. We hypothesize that cancer cells can be sensitized to PDT when the photosensitizer is used in the presence of an inhibitor of Nrf2 (adjuvant). To test this hypothesis, we used luteolin (3',4',5,7-tetrahydroflavone) as Nrf2 inhibitor, since it reduces the expression of Nrf2 and increases intracellular ROS. By means of colony formation and viability assays we found that when Nrf2 is inhibited, PDT shows an increase of efficiency up to 45%.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
7.
Fitoterapia ; 140: 104434, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760067

RESUMO

Fritillaria cirrhosa bulbus is a Chinese folk herb famous for its antitussive, expectorant, anti-asthma and anti-inflammatory properties, and is widely used to treat respiratory diseases. However, the impacts of F. cirrhosa bulbus on oxidative stress are still unkown. In the present study, we investigated the potential effect and mechanism of six isosteroid alkaloids with different chemical structures from F. cirrhosa bulbus on protection against cigarette smoke-induced oxidative stress in RAW264.7 macrophages. The results showed that six isosteroid alkaloids reduced reactive oxygen species (ROS) production, elevated glutathione (GSH) level and promoted heme oxygenase (HO-1) expression, which is in association with induction of NF-E2-related factor 2 (Nrf2) nuclear translocation and up-regulation of Nrf2 expression. Among these alkaloids, verticinone, verticine, imperialine-3-ß-D-glucoside, delavine and peimisine exhibited more potent effect against CSE-induced oxidative stress than that of imperialine. These findings for the first time demonstrated that F. cirrhosa bulbus may play a protective role in cellular oxidative stress by activating Nrf2-mediated antioxidant pathway. Furthermore, the differences in antioxidant effects of these alkaloids were compared, as well as the corresponding structure-activity relationships were preliminarily elucidated. This suggested that F. cirrhosa bulbus might be a promising therapeutic treatment for the prevent of oxidative stress-related diseases.


Assuntos
Alcaloides/farmacologia , Fritillaria/química , Estresse Oxidativo/efeitos dos fármacos , Fumaça/efeitos adversos , Alcaloides/isolamento & purificação , Animais , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Produtos do Tabaco
9.
Toxicol Lett ; 319: 49-57, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693926

RESUMO

Blast lung injury is associated with high morbidity and mortality. Vaporized perfluorocarbon (PFC) inhalation has been reported to attenuate acute respiratory distress syndrome in humans and animal models. However, the effect of vaporized PFC on blast lung injury is still unknown. In this study, we investigated the protective effects and potential underlying mechanisms of action of vaporized PFC on blast lung injury in a canine model. This was a prospective, controlled, animal study in adult male hybrid dogs randomized to sham, blast (B), blast plus mechanical ventilation (B + M), and blast plus PFC (B + P) groups. All groups except for the sham were exposed to blast wave. The B + P group was treated with vaporized PFC for 1.5 h followed by 5.5 h mechanical ventilation. B + M group received 7.5 h mechanical ventilation and B group was observed for 7.5 h. Blast lung injury was induced using a shock tube. Blood gas, inflammatory cytokines, and oxidative stress were measured. Expression of nuclear factor (NF)-κB activation, mitogen-activated protein kinase (MAPK) and nuclear factor, erythroid 2 like 2 (Nrf2) were measured using western blot. Lung injury observed after blast exposure was marked by increased histopathological scores, ratio of lung wet to dry weight. PFC treatment attenuated blast lung injury as indicated by histopathological scores and ratio of lung wet to dry weight. PFC treatment downregulated interleukin (IL)-6, tumor necrosis factor (TNF)-α, and malondialdehyde (MDA), and upregulated superoxide dismutase (SOD) activity. PFC also suppressed expression of MAPK/NF-κB and Nrf2 protein levels. Our results suggest that PFC attenuated blast-induced acute lung injury by inhibiting MAPK/NF-κB activation and inducing Nrf2 expression in dogs.


Assuntos
Traumatismos por Explosões/tratamento farmacológico , Fluorcarbonetos/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Administração por Inalação , Animais , Traumatismos por Explosões/patologia , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Cães , Fluorcarbonetos/administração & dosagem , Pulmão/patologia , Lesão Pulmonar/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos
10.
Toxicol Lett ; 319: 66-73, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726083

RESUMO

Thallium ion (Tl+) and its neurotoxic products are widely known to cause severe neurological complications. However, the exact mechanism of action remains unknown, with limited therapeutic options available. This study aims to examine the toxic effects of Thallium (I) Nitrate (TlNO3) on primary hippocampal neurons of E17-E18 Wistar rat embryos, and the potential neuroprotective role of Nrf2- Keap1 signaling pathway against thallium-induced oxidative stress and mitochondrial dysfunction. TlNO3 induces a significant increase in reactive oxygen species levels and mitochondrial dysfunction in primary hippocampal neurons. Furthermore, the Nrf2-Keap1 signaling pathway played a protective role against TlNO3-induced hippocampal neuronal cytotoxicity. Moreover, mitochondrial fusion protein Mitofusin 2 (Mfn2) levels significantly decreased in hippocampal neurons when exposed to TlNO3, indicating that Mfn2 protein levels are linked to TlNO3-induced neurotoxicity. t-BHQ, a Nrf2 and phase II detoxification enzyme inducer, counteracted the oxidative damage in hippocampal neurons by activating the Nrf2-Keap1 signaling pathway after TlNO3 exposure; the activated Nrf2-Keap1 pathway could then maintain Mfn2 function by regulating Mfn2 protein expression. Thus, Nrf2-Keap1 pathway activation plays a protective role in Tl+-induced brain damage, and specific agonists have been identified to have great potential for treating thallium poisoning.


Assuntos
Hipocampo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tálio/toxicidade , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Feminino , Hipocampo/citologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Cancer Sci ; 111(1): 6-14, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31742837

RESUMO

Accumulating evidence has revealed that human cancers develop by sequentially mutating pivotal genes, including driver genes, and acquiring cancer hallmarks. For instance, cancer cells are addicted to the transcription factor NRF2 (NFE2L2), which is a driver gene that utilizes the cellular cytoprotection system against oxidative stress and metabolic pathway reprogramming for sustaining high growth. Our group has recently discovered a new addiction to the NRF2-related factor NRF3 (NFE2L3) in cancer. For many years, the physiological function of NRF3 remained obscure, in part because Nrf3-deficient mice do not show apparent abnormalities. Nevertheless, human cancer genome databases suggest critical roles of NRF3 in cancer because of high NRF3 mRNA induction in several cancer types, such as colorectal cancer and pancreatic adenocarcinoma, with a poor prognosis. We found that NRF3 promotes tumor growth and malignancy by activating ubiquitin-independent 20S proteasome assembly through inducing the expression of the proteasome maturation protein (POMP) chaperone and thereby degrading the tumor suppressors p53 and Rb. The NRF3-POMP-20S proteasome axis has an entirely different effect on cancer than NRF2. In this review, we describe recent research advances regarding the new cancer effector NRF3, including unclarified ubiquitin-independent proteolysis by the NRF3-POMP-20S proteasome axis. The expected development of cancer therapeutic interventions for this axis is also discussed.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Proteólise
12.
J Photochem Photobiol B ; 202: 111704, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743829

RESUMO

Ultraviolet B (UVB) induces inflammation and causes skin aging. The signs of skin aging, such as wrinkles, discolored spots, loss of skin moisture, and disruption of the skin barrier, are mostly caused by inflammatory signaling among various skin layers. The cells on the outermost surface of the skin are keratinocytes; these cells protect the skin against environmental stress and play an important role in immunomodulation by secreting cytokines in response to environmental stress. In the present study, we found that UVB activates STAT1 to mediate inflammatory signaling, yet STAT1 (S272) and STAT (Y702) shows different responses against UVB exposure. Anhua drak tea is a post-fermented dark tea produced in Anhua and Xinhua country in Hunan province of China. Treatment with 2S,3R-6-methoxycarbonylgallocatechin (MCGE), an epigallocatechin gallate derivative isolated from black tea (Anhua dark tea), effectively suppresses STAT1 activation and inflammatory cytokines, and activates Nrf2 pathway to protect cells from reactive oxygen species production in UVB exposed keratinocyte cells (HaCaT). Interestingly, the effects of MCGE were independent on MAPK signaling pathway. Moreover, MCGE regulates inflammatory cytokines in monocyte-keratinocyte (THP-1, HaCaT) co-culture and macrophage differentiation models. These results suggest that MCGE potentially can be used as a photoprotective agent against UVB-induced inflammatory responses.


Assuntos
Catequina/farmacologia , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Chá/química , Raios Ultravioleta , Sítios de Ligação , Catequina/análogos & derivados , Catequina/química , Catequina/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estrutura Terciária de Proteína , Protetores contra Radiação/química , Protetores contra Radiação/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos da radiação , Chá/metabolismo
13.
Food Chem Toxicol ; 135: 110932, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31682935

RESUMO

Immunomodulatory peptides with the sequences TSeMMM and SeMDPGQQ from selenium (Se)-enriched rice protein hydrolysates (SPHs) were identified in our previous study. We synthesized these two peptides to study whether they have neuroprotective effects on Pb2+-induced oxidative stress in mouse hippocampal HT22 cells, SPHs and a purified SPH fraction (SPHs-2) were used to compare the effects. Peptides pretreatments significantly suppressed Pb2+-induced cytotoxicity by increasing cell viability and decreasing cell apoptosis. TSeMMM and SeMDPGQQ reduced nitric oxide (NO) levels by 37.47% and 14.72% of Pb2+ group, as well as lactate dehydrogenase (LDH) release by 12.98% and 6.32% of Pb2+ group. TSeMMM and SeMDPGQQ could increase the activities of antioxidant enzymes; for example, the activity of superoxide dismutase (SOD) increased by 47.79% and 13.93%, respectively, and that of glutathione peroxidase (GSH-Px) increased by 94.7% and 78.73% of Pb2+ group. Additionally, nuclear factor erythroid 2-related factor (Nrf2) nuclear translocation and heme oxygenase 1 (HO-1) expression were triggered. These results suggest that TSeMMM and SeMDPGQQ can suppress oxidative damage caused by Pb2+; moreover, TSeMMM showed better neuroprotective potential than SeMDPGQQ.


Assuntos
Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Selenoproteínas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chumbo/toxicidade , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oryza/química , Oxirredutases/metabolismo , Proteínas de Plantas/química , Hidrolisados de Proteína/química
14.
J Agric Food Chem ; 68(3): 907-917, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31842537

RESUMO

Bee pollen (BP) shows profound gut-protecting potentials. BP lipids (BPLs) mainly composed by phospholipids and polyunsaturated fatty acids might be one of the important contributors, while how BPL exerts gut-protecting effects and is transported through intestinal cell monolayers need to be investigated. Here, we exploited a strategy that combines an UPLC-Q-exactive orbitrap/MS-based lipidomics approach with a human intestinal cell (Caco-2) monolayer transport model, to determine the transepithelial transportation of BPL from Camellia sinensis L. (BPL-Cs), in pathological conditions. The results showed that BPL-Cs protected Caco-2 cells against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction by improving cell viability, maintaining membrane integrity, increasing tight junctions (ZO-1 and Claudin-1), and eliciting the expressions of antioxidative-related genes (NQO1, Nrf2, Txnrd1, and GSTA1). Lipidomics analysis revealed that DSS suppressed the transport and uptake of most of BPL-Cs including glycerophospholipids, sphingomyelins, and glycosylsphingolipids. Pretreatment with BPL-Cs significantly regulated glycerophospholipid and sphingolipid metabolisms, potentially involved in building permeability barriers and alleviating intestinal oxidative stress. Finally, eight classes of lipids were identified as the potential biomarkers for evaluating DSS-induced Caco-2 cell dysfunctions and BPL-intervened modulation. These findings shed light on the development of BPL as gastrointestinal protective food supplements in the future.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Pólen/metabolismo , Animais , Abelhas , Transporte Biológico , Células CACO-2 , Camellia sinensis/química , Claudina-1/genética , Claudina-1/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Lipídeos/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pólen/química
15.
Eur J Med Chem ; 185: 111777, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670201

RESUMO

Alzheimer's disease is a common neurodegenerative disease characterized by progressive degeneration and neuronal cell death, resulting in neural network dysfunction. As the underlying mechanisms, oxidative damage and neuroinflammation have been reported to contribute to the onset and deterioration of Alzheimer's disease. The nuclear factor E2-related factor 2-antioxidant responsive element signaling pathway is a pivotal cellular defense mechanism against oxidative stress. Nrf2, a transcription factor, regulates the cellular redox balance and is primarily involved in anti-inflammatory responses. In this study, we synthesized novel chalcone derivatives and found a highly potent Nrf2 activator, compound 20a. Compound 20a confirmed to activate Nrf2 and induce expression of the Nrf2-dependent enzymes HO-1 and GCLC at both mRNA and protein levels. It also suppressed the production of nitric oxide and downregulated inflammatory mediators in BV-2 microglial cells. We found that compound 20a effectively increased the expression level and the activity of superoxide dismutase in both BV-2 microglial cells and brain hippocampus region of the scopolamine-induced mouse model. In addition, compound 20a effectively recovered the learning and memory impairment in a scopolamine-induced mouse model.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Chalcona/farmacologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Escopolamina , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 185: 111862, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735576

RESUMO

Neurodegenerative diseases are a variety of debilitating and fatal disorder in central nervous system (CNS). Besides targeting neuronal activity by influencing neurotransmitters or their corresponding receptors, modulating the underlying processes that lead to cell death, such as oxidative stress and mitochondrial dysfunction, should also be emphasized as an assistant strategy for neurodegeneration therapy. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been closely verified to be related to anti-inflammation and oxidative stress, rationally regulating its belonging pathway and activating Nrf2 is emphasized to be a potential treatment approach. There have existed multiple Nrf2 activators with different mechanisms and diverse structures, but those applied for neuro-disorders are still limited. On the basis of research arrangement and compound summary, we put forward the limitations of existing Nrf2 activators for neurodegenerative diseases and their future developing directions in enhancing the blood-brain barrier permeability to make Nrf2 activators function in CNS and designing Nrf2-based multi-target-directed ligands to affect multiple nodes in pathology of neurodegenerative diseases.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Humanos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/química , Estresse Oxidativo
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(10): 878-885, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31814563

RESUMO

Objective To investigate the effect of Legionella pneumophila (LP) on the autophagy flux of RAW264.7 macrophages and explore the molecular mechanism of the expression changes of autophagy-related factors. Methods Live LP and inactivated LP (MOI=10, 50, 100) were separately used to affect RAW264.7 for 1, 2 and 3 hours so as to screen the optimum condition of LP infection. The optimal condition for LP infection was MOI=50 and the infection time was 2 hours. After affected by rapamycin (RAPA) for 12 hours, RAW264.7 cells were then treated by live and inactivated LP for another 2 hours. Normal control group, RAPA group, live LP group, inactivated LP group, RAPA-treated live LP group, RAPA-treated inactivated LP group were designed. The pmCherry-C1-EGFP-LC3B double fluorescent labeling protein method was used to monitor the changes of autophagy flux. The relevant factor CLN3, histone deacetylase 6 (HDAC6), regulator of G protein signaling 19 (RGS19), tumor necrosis factor (TNF), cathepsin B (CTSB), GABA type A receptor associated protein like 2 (GABARAPL2), P62, microtubule-related protein 1 light chain 3 (LC3) were screened by gene array analysis. In order to validate the results of gene array, real-time quantitative PCR (RT-qPCR) was used to detect the mRNA levels of nuclear factor erythroid derived 2 like 2 (Nrf2), beclin1 and kelch like ECH associated protein 1 (Keap1); Western blot analysis was performed to measure the protein levels of Nrf2, beclin1 and Keap1. Results Both the live LP group and the inactivated LP group inhibited the autophagy flux compared with the normal control group and the RAPA group. Gene array analysis showed that in the live LP and inactivated LP groups, LC3 expression was down-regulated and P62 expression was up-regulated. The results of RT-qPCR and Western blot analysis were consistent with the gene array. The mRNA and protein levels of Keap1, beclin1, and Nrf2 significantly decreased, while the mRNA and protein levels of Nrf2 significantly increased. Conclusion LP can inhibit the autophagy of macrophage via activating Nrf2-Keap1 signaling pathway.


Assuntos
Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Legionella pneumophila , Macrófagos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Camundongos , Células RAW 264.7 , Transdução de Sinais
18.
Life Sci ; 239: 117014, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678278

RESUMO

AIMS: Previous studies have demonstrated that epigallocatechin gallate (EGCG) had certain protective effects on myocardial and renal ischemia reperfusion (I/R) injury. We aimed to research the special effects and underling mechanisms of EGCG on skeletal muscle I/R injury. MAIN METHOD: We established an experimental rat model of I/R skeletal muscle injury and treated with different doses of EGCG. Hematoxylin eosin staining, TUNEL assay, ELISA, qRT-PCR and Western blotting were used to evaluate the effects of EGCG. KEY FINDINDS: EGCG significantly improved skeletal muscle function of I/R injury rats. Moreover, EGCG had positive effects on decreasing apoptosis of skeletal muscle tissues, alleviating oxidative stress damage and suppressing the production of inflammatory cytokines. Further, EGCG had positive effects on activating Nrf2/HO-1 signaling pathway. SIGNIFICANCE: EGCG might be a powerful candidate compound for alleviating I/R injury in rat skeletal muscle.


Assuntos
Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Heme Oxigenase (Desciclizante)/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Ativação Metabólica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Catequina/uso terapêutico , Citocinas/biossíntese , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
Life Sci ; 239: 116986, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678283

RESUMO

Cancer stem cells (CSCs) are subpopulation of tumor mass with exclusive abilities in self-renewing, stemness maintaining, and differentiation into the various non-stem cancer cells to provoke tumorigenesis, metastasis dissemination, drug-resistant, and cancer recurrence. Reactive oxygen species (ROS) impair cellular function by oxidizing cell components containing proteins, lipids, and DNA. Tumor oxidant status is elevated due to high metabolic activity under influence of abnormal growth factors, cytokines and function ROS-producing enzymes, including nitric oxide synthases, cyclooxygenases, and lipoxygenases. Nuclear factor-erythroid 2-related factor 2 (NRF2) is a transcriptional master regulator element which is believed to recognize cellular oxidative stress followed by binding to promoter of cyto-protective and anti-oxidative genes to maintain cellular redox status through promoting antioxidant response participants (glutathione peroxidase, glutathione reductase, thioredoxin reductase, ferritin, NADPH: quinone oxidoreductase 1). However, Nrf2 signaling protects malignant cells from ROS damage against tumor growth and chemoresistance. In addition, Nrf2 is able to participate in differentiation of certain stem cells by modulating autophagy procedure, also NRF2 provokes DNA damage response and facilitates drug metabolism and drug resistance by controlling of downstream enzyme and transporter members. In this review, we discuss the role of NRF2 in stemness, self-renewal ability, tumorigenesis and chemoresistance of CSCs.


Assuntos
Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator 2 Relacionado a NF-E2/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Humanos
20.
J Environ Pathol Toxicol Oncol ; 38(2): 143-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679277

RESUMO

The current study evaluated the cardioprotective activity of genistein in cases of doxorubicin-(Dox) induced cardiac toxicity and a probable mechanism underlying this protection, such as an antioxidant pathway in cardiac tissues. Animals used in this study were categorized into four groups. The first group was treated with sodium carboxymethylcellulose (0.3%; CMC-Na) solution. The second group received Dox (3.0 mg/kg, i.p.) on days 6, 12, 18, and 24. The third and fourth groups received Dox (3 mg/kg, i.p.) on days 6, 12, 18, and 24 and received protective doses of genistein (100 [group 3] and 200 [group 4] mg/kg/day, p.o.) for 30 days. Treatment with genistein significantly improved the altered cardiac function markers and oxidative stress markers. This was coupled with significant improvement in cardiac histopathological features. Genistein enhanced the Nrf2 and HO-1 expression, which showed protection against oxidative insult induced by Dox. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed substantial inhibition of apoptosis by genistein in myocardia. The study showed that genistein has a strong reactive oxygen species scavenging property and potentially (P ≤ .001) decreases the lipid peroxidation as well as inhibits DNA damage in cardiac toxicity induced by Dox. In conclusion, the potential antioxidant effect of genistein may be because of its modulatory effect on Nrf2/HO-1 signalling pathway and by this means exhibits cardioprotective effects from Dox-induced oxidative injury.


Assuntos
Cardiotônicos/farmacologia , Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , Genisteína/farmacologia , Heme Oxigenase-1/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Cardiotoxicidade/etiologia , Heme Oxigenase-1/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA