Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.265
Filtrar
1.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206048

RESUMO

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


Assuntos
Inflamação/genética , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Síndromes Neurotóxicas/genética , Sulfóxidos/farmacologia , Acrilamida/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/genética , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299054

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription regulator that plays a pivotal role in coordinating the cellular response to oxidative stress. Through interactions with other proteins, such as Kelch-like ECH-associated protein 1 (Keap1), CREB-binding protein (CBP), and retinoid X receptor alpha (RXRα), Nrf2 mediates the transcription of cytoprotective genes critical for removing toxicants and preventing DNA damage, thereby playing a significant role in chemoprevention. Dysregulation of Nrf2 is linked to tumorigenesis and chemoresistance, making Nrf2 a promising target for anticancer therapeutics. However, despite the physiological importance of Nrf2, the molecular details of this protein and its interactions with most of its targets remain unknown, hindering the rational design of Nrf2-targeted therapeutics. With this in mind, we used a combined bioinformatics and experimental approach to characterize the structure of full-length Nrf2 and its interaction with Keap1. Our results show that Nrf2 is partially disordered, with transiently structured elements in its Neh2, Neh7, and Neh1 domains. Moreover, interaction with the Kelch domain of Keap1 leads to protection of the binding motifs in the Neh2 domain of Nrf2, while the rest of the protein remains highly dynamic. This work represents the first detailed structural characterization of full-length Nrf2 and provides valuable insights into the molecular basis of Nrf2 activity modulation in oxidative stress response.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Sítios de Ligação , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Modelos Moleculares , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína
3.
Pestic Biochem Physiol ; 177: 104898, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301360

RESUMO

Cypermethrin, a type II pyrethroid pesticide, is one of the most widely used pesticides in agricultural and in household settings. The toxic effects of cypermethrin are a matter of concern, as humans are almost inevitably exposed to it in daily life. It is an urgent problem to seek natural substances from plants that can eliminate or relieve the effects of pesticide residues on human health. Proanthocyanidins are the most potent antioxidants and free radical scavengers in natural plants, and are widely available in fruits, vegetables, and seeds. We found that proanthocyanidins (1, 2.5, and 5 µg/mL) can decrease ROS generation, relieve mitochondrial membrane potential loss, repair nuclear morphology, reduce cell apoptosis, and protect neurons from cypermethrin-induced oxidative insult. The protective mechanism exerted by proanthocyanidins against cypermethrin-induced neurotoxicity is negatively regulate rather than activate the Nrf2/ARE signaling pathway to maintain intracellular homeostasis.


Assuntos
Proantocianidinas , Piretrinas , Antioxidantes , Apoptose , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Proantocianidinas/farmacologia , Piretrinas/toxicidade , Transdução de Sinais
4.
Front Cell Infect Microbiol ; 11: 636808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249773

RESUMO

The frequency of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in male mice is higher than that in female mice. Previous studies have reported that 17ß-estradiol inhibits tumorigenesis in males by modulating nuclear factor-erythroid 2-related factor 2 (Nrf2). This study aimed to investigate the changes in mouse gut microbiome composition based on sex, AOM/DSS-induced colorectal cancer (CRC), and Nrf2 genotype. The gut microbiome composition was determined by 16S rRNA gene sequencing fecal samples obtained at week 16 post-AOM administration. In terms of sex differences, our results showed that the wild-type (WT) male control mice had higher alpha diversity (i.e. Chao1, Shannon, and Simpson) than the WT female control mice. The linear discriminant analysis effect size (LEfSe) results revealed that the abundances of Akkermansia muciniphila and Lactobacillus murinus were higher in WT male control mice than in WT female controls. In terms of colon tumorigenesis, the alpha diversity of the male CRC group was lower than that of the male controls in both WT and Nrf2 KO, but did not show such changes in females. Furthermore, the abundance of A. muciniphila was higher in male CRC groups than in male controls in both WT and Nrf2 KO. The abundance of Bacteroides vulgatus was higher in WT CRC groups than in WT controls in both males and females. However, the abundance of L. murinus was lower in WT female CRC and Nrf2 KO male CRC groups than in its controls. The abundance of A. muciniphila was not altered by Nrf2 KO. In contrast, the abundances of L. murinus and B. vulgatus were changed differently by Nrf2 KO depending on sex and CRC. Interestingly, L. murinus showed negative correlation with tumor numbers in the whole colon. In addition, B. vulgatus showed positive correlation with inflammatory markers (i.e. myeloperoxidase and IL-1ß levels), tumor numbers, and high-grade adenoma, especially, developed mucosal and submucosal invasive adenocarcinoma at the distal part of the colon. In conclusion, Nrf2 differentially alters the gut microbiota composition depending on sex and CRC induction.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Bacteroides , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/genética , Lactobacillus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , RNA Ribossômico 16S/genética
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200377

RESUMO

High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 µg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.


Assuntos
Aldosterona/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Mineralocorticoides/química , Doenças Vasculares/patologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/metabolismo
6.
J Agric Food Chem ; 69(26): 7334-7343, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170670

RESUMO

The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is limited due to its cardiotoxicity. The aim of this study was to assess the possible cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced chronic cardiotoxicity and the underlying molecular mechanisms. DOX (2.5 mg/kg) was injected intraperitoneally once in a week for 5 weeks to induce chronic cardiotoxicity in male albino Wistar rats. The rats were treated with NERO (50 mg/kg, orally) 6 days a week for a duration of 5 weeks. DOX-injected rats showed a significant decline in cardiac function, elevated levels of serum cardiac marker enzymes, and enhanced oxidative stress markers along with altered PI3K/Akt and Nrf2/Keap1/HO-1 signaling pathways. DOX also triggered the activation of NF-κB/MAPK signaling and increased the levels/expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß) and expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX activated NLRP3 inflammasome-mediated pyroptotic cell death along with fibrosis, mitochondrial dysfunction, DNA damage, and apoptosis in the myocardium. Additionally, histological studies, TUNEL staining, and myocardial lesions revealed structural alterations of the myocardium. NERO treatment showed considerable protective effects on the biochemical and molecular parameters studied. The findings demonstrate that NERO protects against DOX-induced chronic cardiotoxicity and the observed cardioprotective effects are attributed to its potent antioxidant and free radical scavenging properties.


Assuntos
Óleos Voláteis , Sesquiterpenos , Animais , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/toxicidade , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óleos Voláteis/farmacologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar , Sesquiterpenos/metabolismo
7.
Stem Cell Res Ther ; 12(1): 368, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187557

RESUMO

BACKGROUND: The activation of T cells and imbalanced redox metabolism enhances the development of graft-versus-host disease (GVHD). Human placenta-derived mesenchymal stromal cells (hPMSCs) can improve GVHD through regulating T cell responses. However, whether hPMSCs balance the redox metabolism of CD4+IL-10+ T cells and liver tissue and alleviate GVHD remains unclear. This study aimed to investigate the effect of hPMSC-mediated treatment of GVHD associated with CD4+IL-10+ T cell generation via control of redox metabolism and PD-1 expression and whether the Nrf2 and NF-κB signaling pathways were both involved in the process. METHODS: A GVHD mouse model was induced using 6-8-week-old C57BL/6 and Balb/c mice, which were treated with hPMSCs. In order to observe whether hPMSCs affect the generation of CD4+IL-10+ T cells via control of redox metabolism and PD-1 expression, a CD4+IL-10+ T cell culture system was induced using human naive CD4+ T cells. The percentage of CD4+IL-10+ T cells and their PD-1 expression levels were determined in vivo and in vitro using flow cytometry, and Nrf2, HO-1, NQO1, GCLC, GCLM, and NF-κB levels were determined by western blotting, qRT-PCR, and immunofluorescence, respectively. Hematoxylin-eosin, Masson's trichrome, and periodic acid-Schiff staining methods were employed to analyze the changes in hepatic tissue. RESULTS: A decreased activity of superoxide dismutase (SOD) and a proportion of CD4+IL-10+ T cells with increased PD-1 expression were observed in GVHD patients and the mouse model. Treatment with hPMSCs increased SOD activity and GCL and GSH levels in the GVHD mouse model. The percentage of CD4+IL-10+ T cells with decreased PD-1 expression, as well as Nrf2, HO-1, NQO1, GCLC, and GCLM levels, both in the GVHD mouse model and in the process of CD4+IL-10+ T cell generation, were also increased, but NF-κB phosphorylation and nuclear translocation were inhibited after treatment with hPMSCs, which was accompanied by improvement of hepatic histopathological changes. CONCLUSIONS: The findings suggested that hPMSC-mediated redox metabolism balance and decreased PD-1 expression in CD4+IL-10+ T cells were achieved by controlling the crosstalk between Nrf2 and NF-κB, which further provided evidence for the application of hPMSC-mediated treatment of GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Animais , Feminino , Doença Enxerto-Hospedeiro/terapia , Humanos , Interleucina-10 , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Placenta , Gravidez , Receptor de Morte Celular Programada 1/genética , Transdução de Sinais , Linfócitos T
8.
J Food Biochem ; 45(7): e13806, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080212

RESUMO

Investigation on potentiation of existing drugs with natural compounds to enhance efficacy and reduce toxic effect of the drugs has been increasing in recent years. This paper reports cytotoxic effect (apoptosis-related and oxidative stress-related effect) of cyanidin-3-O-glucoside (C3G), cisplatin (DDP), and their combination (C3G-DDP) on cervical cancer HeLa cells. Concentration of intracellular reactive oxygen species (ROS) was determined by employing fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate. On the other hand, malondialdehyde (MDA) and glutathione (GSH) concentration, and activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were quantitated by commercially available assay kits. C3G-DDP significantly inhibited the activity of SOD, CAT, and GSH-Px. Simultaneously, C3G-DDP reduced GSH concentration while increased the concentration of ROS and MDA. Moreover, Western blot analysis suggested that C3G-DDP significantly reduced the expression of nuclear factor erythroid 2-related factor-2 (Nrf2) and Nrf2 target proteins: heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). In contrast, C3G-DDP increased the expression of Keap1. Furthermore, C3G-DDP significantly upregulated and downregulated the mRNA expressions of bax and bcl-2, respectively, thereby increasing bax/bcl-2 mRNA expression ratio. Overall, our findings propose that potentiation of DDP with C3G improves cancer cell susceptibility, specifically cervical cancer cells, to DDP. PRACTICAL APPLICATIONS: Cisplatin is recommended by most medical oncologists worldwide to treat cancer. Despite its neoplastic efficacy, it has undesirable side effects including nausea, vomiting, nephrotoxicity, and hepatotoxicity. Natural biologically active food ingredients are suggested to be used as antioxidants along with DDP therapy to prevent cisplatin-induced toxicity. C3G-DDP protected HeLa cells from oxidative stress by reducing NQO1 and HO-1 levels and regulated the Nrf2 signaling pathway. In addition, C3G-DDP protected HeLa cells from oxidative stress-induced apoptosis by increasing bcl-2 levels and decreasing bax levels. These results expanded our understanding of the role of C3G in a cervical cancer cell model, and provided a potential new treatment strategy for this cancer, as well as a theoretical basis for the development of new drugs in the future.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Antocianinas , Antioxidantes/farmacologia , Apoptose , Cisplatino , Glucosídeos/farmacologia , Células HeLa , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , Proteína X Associada a bcl-2/genética
9.
Sci Total Environ ; 789: 148029, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082215

RESUMO

Dibutyl phthalate (DBP)-an organic pollutant-is ubiquitous in the environment. DBP as an immune adjuvant is related to the development of multiple allergic diseases. However, the current research involving DBP-induced pulmonary toxicity remains poorly understood. Therefore, this research aimed to explore the adverse effect and potential mechanism of DBP exposure on the lungs in rats. In our study, ovalbumin was used to build a rat model of allergic airway inflammation to study any harmful effect of DBP exposure on lung tissues. Rats were treated by intragastric administration of DBP (500 mg kg-1 or 750 mg kg-1) and/or subcutaneous injection of SFN (4 mg kg-1). The results of histopathological analysis, cell count, and myeloperoxidase showed that DBP promoted the inflammatory damage of lungs. In the lung tissues, the detection of terminal deoxynucleotidyl transferase dUNT nick end labeling and oxidative stress indices showed that DBP significantly increased the level of apoptosis and oxidative stress. Western blot analysis indicated that DBP raised the expression level of thymic stromal lymphopoietin and reduced the nuclear expression level of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was further verified by quantitative real-time PCR. Meanwhile, DBP treatment markedly up-regulated the inflammatory cytokines such as IL-4 and IL-13, and rat mast cell protease-2, a marker secreted by mast cells (MCs). Conversely, sulforaphane, a Nrf2 inducer, ameliorated the pulmonary damage induced by DBP in the above. Altogether, our data provides a new insight into the impacts of the activation of MCs on the DBP-induced pulmonary toxicity as well as the safety evaluation of DBP.


Assuntos
Dibutilftalato , Fator 2 Relacionado a NF-E2 , Animais , Contagem de Células , Dibutilftalato/toxicidade , Inflamação/induzido quimicamente , Mastócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos
10.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070944

RESUMO

Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melatonina/uso terapêutico , Ovário/metabolismo , Placenta/metabolismo , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Infertilidade Feminina/prevenção & controle , Melatonina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ovário/crescimento & desenvolvimento , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , Gravidez , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069882

RESUMO

Geographically, East Asia had the highest liver cancer burden in 2017. Besides this, liver cancer-related deaths were high in Japan, accounting for 3.90% of total deaths. The development of liver cancer is influenced by several factors, and genetic alteration is one of the critical factors among them. Therefore, the detailed mechanism driving the oncogenic transformation of liver cells needs to be elucidated. Recently, many researchers have focused on investigating the liver cancer genome and identified somatic mutations (MTs) of several transcription factors. In this line, next-generation sequencing of the cancer genome identified that oxidative stress-related transcription factor NRF2 (NFE2L2) is mutated in different cancers, including hepatocellular carcinoma (HCC). Here, we demonstrated that NRF2 DLG motif mutations (NRF2 D29A and L30F), found in Japanese liver cancer patients, upregulate the transcriptional activity of NRF2 in HCC cell lines. Moreover, the transcriptional activity of NRF2 mutations is not suppressed by KEAP1, presumably because NRF2 MTs disturb proper NRF2-KEAP1 binding and block KEAP1-mediated degradation of NRF2. Additionally, we showed that both MTs upregulate the transcriptional activity of NRF2 on the MMP9 promoter in Hepa1-6 and Huh7 cells, suggesting that MT derived gain-of-function of NRF2 may be important for liver tumor progression. We also found that ectopic overexpression of oncogenic BRAF WT and V600E increases the transcriptional activity of NRF2 WT on both the 3xARE reporter and MMP9 promoter. Interestingly, NRF2 D29A and L30F MTs with oncogenic BRAF V600E MT synergistically upregulate the transcription activity of NRF2 on the 3xARE reporter and MMP9 promoter in Hepa1-6 and Huh7 cells. In summary, our findings suggest that MTs in NRF2 have pathogenic effects, and that NRF2 MTs together with oncogenic BRAF V600E MT synergistically cause more aberrant transcriptional activity. The high activity of NRF2 MTs in HCC with BRAF MT warrants further exploration of the potential diagnostic, prognostic, and therapeutic utility of this pathway in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Fator 2 Relacionado a NF-E2/genética , Motivos de Aminoácidos/genética , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Japão , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Prognóstico , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(5): 679-686, 2021 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-34134954

RESUMO

OBJECTIVE: To investigate the antioxidant effect of DJ-1 (Park7) in rats with cerebral ischemia/reperfusion (IR) injury and its potential mechanism. OBJECTIVE: A total of 108 SD rats were randomly divided into sham-operated group, middle cerebral artery occlusion (MCAO) group, Scramble group, DJ-1 siRNA group, negative control (NC) group and DJ-1 overexpression group. Except for those in the sham group, all the rats were subjected to MCAO to establish models of cerebral IR injury. In DJ-1 siRNA and DJ-1 overexpression group, a DJ-1 siRNA and an adeno-associated virus vector carrying DJ-1 gene was injected into the lateral ventricle of the rats, respectively. In each group, neurological scores and brain water content were determined after the operation, and pathological changes of the brain tissue and neuronal injury in the cortical infarction area were assessed using HE and Nissl staining. Oxidative stress in the brain tissues was analyzed by detecting superoxide dismutase (SOD) and malondialdehyde (MDA). The expression levels of DJ-1, Nrf2, Ho-1 and NQO1 in the brain tissue were detected with Western blotting, and the expression and nucleation of Nrf2 was determined by immunofluorescence staining. OBJECTIVE: Compared with those in MCAO group, the neurological scores (P < 0.001) and brain water content (P < 0.001) were significantly increased in DJ-1 siRNA group. Intracerebral injection of DJ-1 siRNA following MCAO obviously aggravated neuron injury in cerebral ischemia region, further reduced SOD activity and increased MDA content (P < 0.001), and significantly lowered the expression levels of Nrf2 and its downstream proteins HO-1 and NQO1 (P < 0.001). Intracerebral injection of the adenoviral vector for DJ-1 (P=0.003) overexpression significantly upregulated the levels of Nrf2 (P=0.006) and its downstream proteins HO-1 (P=0.004) and NQO1 (P=0.014). OBJECTIVE: As an important neuroprotective factor, DJ-1 alleviates oxidative stress induced by cerebral IR injury in rats by activating the Nrf2 pathway.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
13.
Redox Biol ; 45: 102030, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147842

RESUMO

Potassium channels are important regulators of cellular homeostasis and targeting these proteins pharmacologically is unveiling important mechanisms in cancer cell biology. Here we demonstrate that pharmacological stimulation of the Kv11.1 potassium channel activity results in mitochondrial reactive oxygen species (ROS) production and fragmentation in breast cancer cell lines and patient-derived organoids independent of breast cancer subtype. mRNA expression profiling revealed that Kv11.1 activity significantly altered expression of genes controlling the production of ROS and endoplasmic-reticulum (ER) stress. Characterization of the transcriptional signature of breast cancer cells treated with Kv11.1 potassium channel activators strikingly revealed an adaptive response to the potentially lethal augmentation of ROS by increasing Nrf2-dependent transcription of antioxidant genes. Nrf2 in this context was shown to promote survival in breast cancer, whereas knockdown of Nrf2 lead to Kv11.1-induced cell death. In conclusion, we found that the Kv11.1 channel activity promotes oxidative stress in breast cancer cells and that suppression of the Nrf2-mediated anti-oxidant survival mechanism strongly sensitized breast cancer cells to a lethal effect of pharmacological activation of Kv11.1.


Assuntos
Antioxidantes , Neoplasias da Mama , Antioxidantes/farmacologia , Neoplasias da Mama/genética , Estresse do Retículo Endoplasmático , Feminino , Humanos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio
14.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068193

RESUMO

In this study, we investigate the immunomodulatory effects of a novel antimicrobial peptide, YD1, isolated from Kimchi, in both in vitro and in vivo models. We establish that YD1 exerts its anti-inflammatory effects via up-regulation of the Nrf2 pathway, resulting in the production of HO-1, which suppresses activation of the NF-κB pathway, including the subsequent proinflammatory cytokines IL-1ß, IL-6, and TNF-α. We also found that YD1 robustly suppresses nitric oxide (NO) and prostaglandin E2 (PGE2) production by down-regulating the expression of the upstream genes, iNOS and COX-2, acting as a strong antioxidant. Collectively, YD1 exhibits vigorous anti-inflammatory and antioxidant activity, presenting it as an interesting potential therapeutic agent.


Assuntos
Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Inflamação/prevenção & controle , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Edema/prevenção & controle , Heme Oxigenase-1/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Proteínas de Membrana/genética , Camundongos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
15.
Sci Total Environ ; 783: 146898, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088152

RESUMO

Di-n-butylphthalate (DBP) has been listed as an environmental priority pollutant in China due to its distinct biotoxicity. Epidemiological studies have shown that exposure to DBP is closely related to a series of congenital and acquired defects in the male reproductive system. The oxidative stress injury caused by DBP plays an important role in these defects. Previous studies have demonstrated that the Keap1/Nrf2 antioxidative pathway plays a protective role in DBP-induced oxidative stress injury. However, the further molecular regulation mechanism of the activation of Nrf2 pathway remains unclear. Here, we demonstrate that DBP caused testicular oxidative stress injury and Nrf2 pathway was activated in response to the injury in vivo and in vitro. Moreover, we validated that reduced level of USP15 attenuates DBP-induced oxidative stress injury through restraining the ubiquitylation and degradation of Nrf2. Notably, USP15 is confirmed as a target of miR-135b-5p and miR-135b-5p mediated inhibition of USP15 is involved in the DBP-induced oxidative stress injury. Collectively, these findings indicated that decreased level of USP15 functions a significant protective effect on the oxidative stress injury of testis caused by DBP via regulating the Keap1/Nrf2 signaling pathway.


Assuntos
Endopeptidases/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Testículo , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Testículo/metabolismo , Testículo/patologia
16.
Stem Cell Res Ther ; 12(1): 264, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941256

RESUMO

BACKGROUND: Endothelial progenitor cell (EPC) dysfunction contributes to vascular disease in diabetes mellitus. However, the molecular mechanism underlying EPC dysfunction and its contribution to delayed reendothelialization in diabetes mellitus remain unclear. Our study aimed to illustrate the potential molecular mechanism underlying diabetic EPC dysfunction in vivo and in vitro. Furthermore, we assessed the effect of EPC transplantation on endothelial regeneration in diabetic rats. METHODS: Late outgrowth EPCs were isolated from the bone marrow of rats for in vivo and in vitro studies. In vitro functional assays and Western blotting were conducted to reveal the association between C-X-C chemokine receptor type 7 (CXCR7) expression and diabetic EPC dysfunction. To confirm the association between cellular CXCR7 levels and EPC function, CXCR7 expression in EPCs was upregulated and downregulated via lentiviral transduction and RNA interference, respectively. Western blotting was used to reveal the potential molecular mechanism by which the Stromal-Derived Factor-1 (SDF-1)/CXCR7 axis regulates EPC function. To elucidate the role of the SDF-1/CXCR7 axis in EPC-mediated endothelial regeneration, a carotid artery injury model was established in diabetic rats. After the model was established, saline-treated, diabetic, normal, or CXCR7-primed EPCs were injected via the tail vein. RESULTS: Diabetic EPC dysfunction was associated with decreased CXCR7 expression. Furthermore, EPC dysfunction was mimicked by knockdown of CXCR7 in normal EPCs. However, upregulating CXCR7 expression reversed the dysfunction of diabetic EPCs. The SDF-1/CXCR7 axis positively regulated EPC function by activating the AKT-associated Kelch-like ECH-associated protein 1 (keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis, which was reversed by blockade of AKT and Nrf2. Transplantation of CXCR7-EPCs accelerated endothelial repair and attenuated neointimal hyperplasia in diabetes mellitus more significantly than transplantation of diabetic or normal EPCs. However, the therapeutic effect of CXCR7-EPC transplantation on endothelial regeneration was reversed by knockdown of Nrf2 expression. CONCLUSIONS: Dysfunction of diabetic EPCs is associated with decreased CXCR7 expression. Furthermore, the SDF-1/CXCR7 axis positively regulates EPC function by activating the AKT/keap-1/Nrf2 axis. CXCR7-primed EPCs might be useful for endothelial regeneration in diabetes-associated vascular disease.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Animais , Células Progenitoras Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores CXCR , Transdução de Sinais
17.
Free Radic Biol Med ; 171: 365-378, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000381

RESUMO

Overactive osteoclastogenesis is involved in the inflammatory bone loss and could be target for therapy. Here, we applied transcription factor enrichment analysis using public inflammatory osteolysis datasets and identified Nrf2 as the potential therapeutic target. Additionally, in-silico screening was performed to dig out Nrf2-Keap1 PPI inhibitor and Forsythoside-ß was found to be the best-performing PHG compound. We firstly tested the effect of Forsythoside-ß in inflammatory osteoporosis models and found it was able to attenuate the bone loss by inhibiting osteoclastogenesis and activating Nrf2-signaling in vivo. Forsythoside-ß was capable to suppress the differentiation of osteoclast in time and dose-dependent manners in vitro. Further, Forsythoside-ß could inhibit the production of reactive oxygen species and induce Nrf2 nuclear-translocation by interrupting Nrf2-Keap1 PPI. Recently, Nrf2 was identified as the epigenetic regulator modulating levels of miRNA in various diseases. We discovered that Forsythoside-ß could suppress the expression of mir-214-3p, one of most variable miRNAs during osteoclastogenesis. To clarify the undermining mechanism, by utilizing chip-seq dataset, we found that Nrf2 could bind to promoter of mir-214-3p and further regulate this miRNA. Collectively, Forsythoside-ß was able to prevent bone loss through Nrf2-mir-214-3p-Traf3 axis, which could be a promising candidate for treating inflammatory bone loss in the future.


Assuntos
MicroRNAs , Osteoporose , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/genética , Fator 3 Associado a Receptor de TNF
18.
Toxicology ; 457: 152820, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023435

RESUMO

Prolonged exposure to therapeutic hyperoxia can induce severe side effects on intestinal epithelial cells. Meanwhile, interleukin (IL)-17D secreted by intestinal epithelial cells, plays an important role in the mucosal immune system. Therefore, this study aimed to investigate the changes of IL-17D, IL-4 and IL-6 and the regulatory effect of nuclear factor erythroid 2-related factor 2 (Nrf2) on IL-17D, IL-4 and IL-6 under hyperoxia in human intestinal epithelial cells. To achieve this, NCM460 cells were exposed to an atmosphere containing 85 % oxygen (hyperoxia) for 24 h, 48 h, or 72 h; tert-butylhydroquinone (tBHQ) and ML385 were used as an Nrf2 activator and inhibitor, respectively. Immunohistochemical staining, western blot, and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of IL-17D, Nrf2, Kelch-like ECH-associated protein 1 (Keap1), IL-6, and IL-4 in NCM460 cells. Results showed that hyperoxia significantly increased the expression of IL-17D, Nrf2, IL-6, and IL-4, while decreasing that of Keap1. tBHQ further activated Nrf2 and promoted the expression of IL-17D, IL-6, and IL-4. Additionally, tBHQ aggravated hyperoxia-induced inflammation caused by hyperoxia. In contrast, ML385 completely inhibited the expression of Nrf2 and IL-17D, transiently inhibited IL-6 and IL-4 expression, and did not influence Keap1 expression. These results cumulatively demonstrate that hyperoxia aggravates the inflammatory response in intestinal epithelial cells by activating the Nrf2/IL-17D axis.


Assuntos
Citocinas/biossíntese , Hiperóxia/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-17/biossíntese , Mucosa Intestinal/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Linhagem Celular , Citocinas/genética , Expressão Gênica , Humanos , Hiperóxia/patologia , Interleucina-17/genética , Mucosa Intestinal/patologia , Fator 2 Relacionado a NF-E2/genética
19.
Oxid Med Cell Longev ; 2021: 6617969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953831

RESUMO

Deleterious effects of SNPs found in genes encoding transcriptional factors, as well as antioxidant and detoxification enzymes, are disputable; however, their functional significance seems to modify the risk for clear cell renal cell carcinoma (ccRCC) development and progression. We investigated the effect of specific Nrf2, SOD2, GPX1 gene variants and GSTP1ABCD haplotype on ccRCC risk and prognosis and evaluated the association between GSTP1 and regulatory (JNK1/2) and executor (caspase-3) apoptotic molecule expression in ccRCC tissue samples and the presence of GSTP1 : JNK1/2 protein : protein interactions. Genotyping was performed in 223 ccRCC patients and 336 matched controls by PCR-CTTP and qPCR. Protein expression was analyzed using immunoblot, while the existence of GSTP1 : JNK1 protein : protein interactions was investigated by immunoprecipitation experiments. An increased risk of ccRCC development was found among carriers of variant genotypes of both SOD2 rs4880 and GSTP1 rs1695 polymorphisms. Nrf2 rs6721961 genetic polymorphism in combination with both rs4880 and rs1695 showed higher ccRCC risk as well. Haplotype analysis revealed significant risk of ccRCC development in carriers of the GSTP1C haplotype. Furthermore, GSTP1 variant forms seem to affect the overall survival in ccRCC patients, and the proposed molecular mechanism underlying the GSTP1 prognostic role might be the presence of GSTP1 : JNK1/2 protein : protein interactions.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Fator 2 Relacionado a NF-E2/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Estudos de Casos e Controles , Progressão da Doença , Predisposição Genética para Doença , Genótipo , Homeostase , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Prognóstico
20.
Phytomedicine ; 87: 153577, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33994055

RESUMO

BACKGROUND: When redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis. PURPOSE: The present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro. METHODS: SH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry. RESULTS: The results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways. CONCLUSION: These results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Glucosídeos Iridoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Genes bcl-2/genética , Genes bcl-2/fisiologia , Heme Oxigenase-1/genética , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Neuroblastoma , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...