Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.477
Filtrar
1.
Folia Biol (Praha) ; 66(3): 104-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069189

RESUMO

Cancer development is a highly complicated process in which tumour growth depends on the development of its vascularization system. To support their own growth, tumour cells significantly modify their microenvironment. One of such modifications inflicted by tumours is stimulation of endothelial cell migration and proliferation. There is accumulating evidence that extracellular vesicles (EVs) secreted by tumour cells (tumour-derived EVs, TEVs) may be regarded as "messengers" with the potential for affecting the biological activities of target cells. Interaction of TEVs with different cell types occurs in an auto- and paracrine manner and may lead to changes in the function of the latter, e.g., promoting motility, proliferation, etc. This study analysed the proangiogenic activity of EVs derived from human pancreatic adenocarcinoma cell line (HPC-4, TEVHPC) in vitro and their effect in vivo on Matrigel matrix vascularization in severe combined immunodeficient (SCID) mice. TEVHPC enhanced proliferation of HPC-4 cells and induced their motility. Moreover, TEVHPC stimulated human umbilical vein endothelial cell (HUVEC) proliferation and migration in vitro. Additionally, TEVHPC influenced secretion of proangiogenic factors (IL-8, VEGF) by HUVEC cells and supported Matrigel matrix haemoglobinization in vivo. These data show that TEVs may support tumour propagation in an autocrine manner and may support vascularization of the tumour. The presented data are in line with the theory that tumour cells themselves are able to modulate the microenvironment via TEVs to maximize their growth potential.


Assuntos
Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/patologia , Neoplasias Pancreáticas/patologia , Animais , Comunicação Autócrina , Divisão Celular , Linhagem Celular Tumoral , Quimiotaxia , Colágeno , Combinação de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Laminina , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neovascularização Patológica/etiologia , Proteoglicanas , RNA Mensageiro/biossíntese , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Medicine (Baltimore) ; 99(36): e21883, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899018

RESUMO

To investigate the expression and clinical significance of aquaporin-1 (AQP1), vascular endothelial growth factor (VEGF) and microvessel density (MVD) in gastric cancer.A total of 79 gastric cancer patients who were admitted into Beijing Chao-Yang Hospital from January, 2018 to December, 2019 were involved in this study. Tumor specimens and para-cancerous normal tissues (> 2 cm away from the tumor) of all the enrolled patients were collected. Immunohistochemistry were performed to identify the expression of AQP1, VEGF, and MVD and the correlation between AQP1, VEGF, MVD, and clinicopathological parameters was analyzed.The expression of AQP1, VEGF and MVD in gastric cancer tissue was increased significantly compared with those in para-cancerous tissue (P < .05). AQP1, VEGF, and MVD were closely correlated with gastric cancer differentiation, lymph node metastasis, vascular tumor thrombosis and clinical stage (P < .05). Spearman correlation analysis showed that AQP1 was positively associated with VEGF expression (r = 0.497, P < .05). MVD was enhanced in VEGF or AQP1 positive cancer tissues compared with that in VEGF or AQP1 negative tissue (P < .05).Synergistic effect among AQP1, VEGF, and MVD is involved in occurrence and development of gastric cancer.


Assuntos
Aquaporina 1/metabolismo , Microvasos/patologia , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(9): 1170-1176, 2020 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-32929912

RESUMO

Objective: To investigate the effects of three-dimensional (3D) printed Ti6Al4V-4Cu alloy on inflammation and osteogenic gene expression in mouse bone marrow mesenchymal stem cells (BMSCs) and mouse mononuclear macrophage line RAW264.7. Methods: Ti6Al4V and Ti6Al4V-4Cu alloys were prepared by selective laser melting, and the extracts of the two materials were prepared according to the biological evaluation standard of medical devices. The effects of two kinds of extracts on the proliferation of mouse BMSCs and mouse RAW264.7 cells were detected by cell counting kit 8 method. After co-cultured with mouse BMSCs for 3 days, the expression of osteogenesis- related genes [collagen type Ⅰ (Col-Ⅰ), alkaline phosphatase (ALP), Runx family transcription factor 2 (Runx-2), osteoprotegerin (OPG), and osteopontin (OPN)] were detected by real-time fluorescence quantitative PCR. After co-cultured with mouse RAW264.7 cells for 1 day, the expressions of inflammation-related genes [interleukin 4 (IL-4) and nitric oxide synthase 2 (iNOS)] were detected by real-time fluorescence quantitative PCR, and the supernatants of the two groups were collected to detect the secretion of vascular endothelial growth factor a (VEGF-a) and bone morphogenetic protein 2 (BMP-2) by ELISA. The osteogenic conditioned medium were prepared with the supernatants of the two groups and co-cultured with BMSCs for 3 days. The expressions of osteogenesis-related genes (Col-Ⅰ, ALP, Runx-2, OPG, and OPN) were detected by real-time fluorescence quantitative PCR. Results: Compared with Ti6Al4V alloy extract, Ti6Al4V-4Cu alloy extract had no obvious effect on the proliferation of BMSCs and RAW264.7 cells, but it could promote the expression of OPG mRNA in BMSCs, reduce the expression of iNOS mRNA in RAW264.7 cells, and promote the expression of IL-4 mRNA. It could also promote the secretions of VEGF-a and BMP-2 in RAW264.7 cells. Ti6Al4V-4Cu osteogenic conditioned medium could promote the expressions of Col-Ⅰ, ALP, Runx-2, OPG, and OPN mRNAs in BMSCs. The differences were all significant ( P<0.05). Conclusion: 3D printed Ti6Al4V-4Cu alloy can promote RAW264.7 cells to secret VEGF-a and BMP-2 by releasing copper ions, thus promoting osteogenesis through bone immune regulation, which lays a theoretical foundation for the application of metal prosthesis.


Assuntos
Ligas , Osteogênese , Animais , Células da Medula Óssea , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Titânio , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(9): 2293-2309, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757648

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) have the potential to act as intercellular communicators. The aims were to characterize circulating EVs in patients with pulmonary arterial hypertension (PAH) and to explore whether these EVs contribute to endothelial activation and angiogenesis. Approach and Results: Patients with PAH (n=70) and healthy controls (HC; n=20) were included in this cross-sectional study. EVs were characterized and human pulmonary endothelial cells (hPAECs) were incubated with purified EVs. Endothelial cell activity and proangiogenic markers were analyzed. Tube formation analysis was performed for hPAECs, and the involvement of PSGL-1 (P-selectin glycoprotein ligand 1) was evaluated. The numbers of CD62P+, CD144+, and CD235a EVs were higher in blood from PAH compared with HC. Thirteen proteins were differently expressed in PAH and HC EVs, where complement fragment C1q was the most significantly elevated protein (P=0.0009) in PAH EVs. Upon EVs-internalization in hPAECs, more PAH compared with HC EVs evaded lysosomes (P<0.01). As oppose to HC, PAH EVs stimulated hPAEC activation and induced transcription and translation of VEGF-A (vascular endothelial growth factor A; P<0.05) and FGF (fibroblast growth factor; P<0.005) which were released in the cell supernatant. These proangiogenic proteins were higher in patient with PAH plasma compered with HC. PAH EVs induced a complex network of angiotubes in vitro, which was abolished by inhibitory PSGL-1antibody. Anti-PSGL-1 also inhibited EV-induced endothelial cell activation and PAH EV dependent increase of VEGF-A. CONCLUSIONS: Patients with PAH have higher levels of EVs harboring increased amounts of angiogenic proteins, which induce activation of hPAECs and in vitro angiogenesis. These effects were partly because of platelet-derived EVs evasion of lysosomes upon internalization within hPAEC and through possible involvement of P-selectin-PSGL-1 pathway.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Neovascularização Fisiológica , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Idoso , Estudos de Casos e Controles , Células Cultivadas , Estudos Transversais , Células Endoteliais/ultraestrutura , Endotélio Vascular/fisiopatologia , Endotélio Vascular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Selectina-P/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/ultraestrutura , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(33): 20159-20170, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747553

RESUMO

Although immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, many patients do not respond or develop resistance to ICB. N6 -methylation of adenosine (m6A) in RNA regulates many pathophysiological processes. Here, we show that deletion of the m6A demethylase Alkbh5 sensitized tumors to cancer immunotherapy. Alkbh5 has effects on m6A density and splicing events in tumors during ICB. Alkbh5 modulates Mct4/Slc16a3 expression and lactate content of the tumor microenvironment and the composition of tumor-infiltrating Treg and myeloid-derived suppressor cells. Importantly, a small-molecule Alkbh5 inhibitor enhanced the efficacy of cancer immunotherapy. Notably, the ALKBH5 gene mutation and expression status of melanoma patients correlate with their response to immunotherapy. Our results suggest that m6A demethylases in tumor cells contribute to the efficacy of immunotherapy and identify ALKBH5 as a potential therapeutic target to enhance immunotherapy outcome in melanoma, colorectal, and potentially other cancers.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Vacinas Anticâncer/imunologia , Lactatos/metabolismo , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/fisiologia , Homólogo AlkB 5 da RNA Desmetilase/genética , Anticorpos , Citocinas/genética , Citocinas/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/terapia , Metiltransferases/genética , Metiltransferases/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células Supressoras Mieloides/fisiologia , Sítios de Splice de RNA , Processamento de RNA , Simportadores/genética , Simportadores/metabolismo , Transcriptoma , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
PLoS Pathog ; 16(8): e1008730, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776977

RESUMO

Kaposi's sarcoma (KS), caused by Kaposi's sarcoma-associated herpesvirus (KSHV), is a highly angioproliferative disseminated tumor of endothelial cells commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) mediates KSHV-induced cell motility (PLoS Pathog. 2019 Jan 30;15(1):e1007578). However, the role of vIRF1 in KSHV-induced cellular transformation and angiogenesis remains unknown. Here, we show that vIRF1 promotes angiogenesis by upregulating sperm associated antigen 9 (SPAG9) using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice. Mechanistically, vIRF1 interacts with transcription factor Lef1 to promote SPAG9 transcription. vIRF1-induced SPAG9 promotes the interaction of mitogen-activated protein kinase kinase 4 (MKK4) with JNK1/2 to increase their phosphorylation, resulting in enhanced VEGFA expression, angiogenesis, cell proliferation and migration. Finally, genetic deletion of ORF-K9 from KSHV genome abolishes KSHV-induced cellular transformation and impairs angiogenesis. Our results reveal that vIRF1 transcriptionally activates SPAG9 expression to promote angiogenesis and tumorigenesis via activating JNK/VEGFA signaling. These novel findings define the mechanism of KSHV induction of the SPAG9/JNK/VEGFA pathway and establish the scientific basis for targeting this pathway for treating KSHV-associated cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Herpesvirus Humano 8/metabolismo , Fatores Reguladores de Interferon/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Sarcoma de Kaposi/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transformação Celular Neoplásica , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/fisiopatologia , Sarcoma de Kaposi/virologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Virais/genética
7.
DNA Cell Biol ; 39(9): 1595-1605, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783661

RESUMO

Autophagy, a highly conserved cellular protein degradation process, has been involved in acute myeloid leukemia (AML). The present study aims to establish a novel, autophagy-related prognostic signature for prediction of AML prognosis. Differentially expressed autophagy-related genes in AML and healthy samples were screened using GSE1159. Univariate Cox regression analysis was applied to determine survival-associated autophagy-related genes in The Cancer Genome Atlas (TCGA) AML cohort. Lasso regression was performed to develop multiple-gene prognostic signatures. A novel six-gene signature (including CASP3, CHAF1B, KLHL24, OPTN, VEGFA, and VPS37C) DC was established for AML prognosis prediction. The Kaplan-Meier survival analysis revealed that patients in the high-risk score group had poorer overall survival (OS). The receiver operating characteristic (ROC) curve validated its good performance in survival prediction in TCGA AML cohort, and the area under the curve value was 0.817. Moreover, our signature could independently predict OS. A nomogram was constructed, including the six-gene signature and other clinical parameters, and predictive efficiency was confirmed using the ROC curve and calibration curve. Furthermore, gene set enrichment analyses identified several tumor-associated pathways that may contribute to explain the potential molecular mechanisms of our signature. Overall, we developed a new autophagy-associated gene signature and nomogram to predict OS of AML patients, which may help in clinical decision-making for AML treatment.


Assuntos
Autofagia , Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , Transcriptoma , Biomarcadores Tumorais/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(33): 19854-19865, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759214

RESUMO

The blood-retina barrier and blood-brain barrier (BRB/BBB) are selective and semipermeable and are critical for supporting and protecting central nervous system (CNS)-resident cells. Endothelial cells (ECs) within the BRB/BBB are tightly coupled, express high levels of Claudin-5 (CLDN5), a junctional protein that stabilizes ECs, and are important for proper neuronal function. To identify novel CLDN5 regulators (and ultimately EC stabilizers), we generated a CLDN5-P2A-GFP stable cell line from human pluripotent stem cells (hPSCs), directed their differentiation to ECs (CLDN5-GFP hPSC-ECs), and performed flow cytometry-based chemogenomic library screening to measure GFP expression as a surrogate reporter of barrier integrity. Using this approach, we identified 62 unique compounds that activated CLDN5-GFP. Among them were TGF-ß pathway inhibitors, including RepSox. When applied to hPSC-ECs, primary brain ECs, and retinal ECs, RepSox strongly elevated barrier resistance (transendothelial electrical resistance), reduced paracellular permeability (fluorescein isothiocyanate-dextran), and prevented vascular endothelial growth factor A (VEGFA)-induced barrier breakdown in vitro. RepSox also altered vascular patterning in the mouse retina during development when delivered exogenously. To determine the mechanism of action of RepSox, we performed kinome-, transcriptome-, and proteome-profiling and discovered that RepSox inhibited TGF-ß, VEGFA, and inflammatory gene networks. In addition, RepSox not only activated vascular-stabilizing and barrier-establishing Notch and Wnt pathways, but also induced expression of important tight junctions and transporters. Taken together, our data suggest that inhibiting multiple pathways by selected individual small molecules, such as RepSox, may be an effective strategy for the development of better BRB/BBB models and novel EC barrier-inducing therapeutics.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Claudina-5/genética , Claudina-5/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Edição de Genes , Genoma , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
PLoS One ; 15(7): e0236928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735610

RESUMO

The rabbit retinal vein occlusion (RVO) model is an experimental system that mimics retinal ischemic diseases in humans. The rabbit RVO model is widely used to assess the therapeutic efficacy of various experimental surgical procedures. In the present study, we measured temporal retinal expression of Vegfa, which is known as an ischemic response gene, in rabbit RVO. This analysis revealed that the retinal Vegfa transcriptional response began 7 days after generation of RVO, rather than immediately after induction of ischemia. Next, in order to analyze ischemia-induced changes in gene expression profiles, we performed microarray analysis of day 7 RVO retina versus control retina. The angiogenic regulators Dcn and Mmp1 and pro-inflammatory factors Mmp12 and Cxcl13 were significantly upregulated in RVO retinas. Further, we suggest that epigenetic regulation via the REST/cofactor-complex could contribute to RVO pathology. Among human homologous genes in rabbits, genes associated with hypoxia, angiogenesis, and inflammation were significantly upregulated in RVO retinas. Components of the Tumor necrosis factor-alpha (TNFα) and Nuclear factor-kappa B (NF-κB) pathways, which play regulatory roles in angiogenesis and inflammation, were significantly upregulated in RVO, and the expression levels of downstream factors, such as the transcription factor AP-1 and chemokines, were increased. Further, connectivity map analyses suggested that inhibitors of the NF-κB pathway are potential therapeutic agents for retinal ischemic disease. The present study revealed new insights into the pathology of retinal ischemia using the rabbit RVO model, which accurately recapitulates human disease.


Assuntos
Isquemia/metabolismo , Retina/patologia , Oclusão da Veia Retiniana , Indutores da Angiogênese/metabolismo , Animais , Quimiocinas/metabolismo , Conectoma , Modelos Animais de Doenças , Epigênese Genética , Angiofluoresceinografia , Regulação da Expressão Gênica , Hipóxia/metabolismo , Inflamação/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Análise em Microsséries , NF-kappa B/genética , NF-kappa B/metabolismo , Coelhos , Oclusão da Veia Retiniana/genética , Oclusão da Veia Retiniana/metabolismo , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Int J Nanomedicine ; 15: 4151-4169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606670

RESUMO

Purpose: Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods: PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results: The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion: The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.


Assuntos
Astrágalo (Planta)/química , Neoplasias da Mama/terapia , Ouro/química , Nanopartículas Multifuncionais/química , Nanotubos/química , Polissacarídeos/química , Terapia por Ultrassom , Animais , Antígenos CD/metabolismo , Apoptose , Morte Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoglobulina G/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Fagocitose , Técnicas Fotoacústicas , Poliésteres/síntese química , Poliésteres/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Coelhos , Nanomedicina Teranóstica , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Chem Biol Interact ; 329: 109202, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717189

RESUMO

Triple-negative breast cancer (TNBC) is highly metastatic and lacks effective therapeutic targets among several subtypes of breast cancer. Cancer metastasis promotes the malignancy of TNBC and is closely related to the poor prognosis of the TNBC patients. We aim to explore novel agents that effectively inhibit cancer metastasis to treat TNBC. In our study, 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ), a CA-4 analogue, could inhibit cell motility and invasion in MDA-MB-231 cells, and the mechanism is closely associated to the inhibition of epithelial-to-mesenchymal transition (EMT). Meanwhile, SQ significantly inhibited the expression and secretion of vascular endothelial growth factor (VEGF) in MDA-MB-231 cells. Moreover, the conditioned medium from SQ-treated MDA-MB-231 cells significantly inhibited the motility and invasion of human umbilical vein endothelial cells (HUVECs), which was correlated with the inhibition of EMT process in HUVECs. In addition, exogenous application of VEGF reversed the occurrence of EMT in HUVECs which stimulated by conditioned medium from SQ-treated cells. Furthermore, SQ inhibited vasculogenic mimicry (VM) formation in MDA-MB-231 cells, which was associated with VE-cadherin and EphA2 down-regulation. This study indicates that SQ inhibits MDA-MB-231 cell metastasis through suppressing EMT and VEGF, thereby implicating this compound might be a potential therapeutic agent against metastatic TNBC.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Fenóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Organosselênicos/química , Fenóis/química , Receptor EphA2/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator A de Crescimento do Endotélio Vascular/genética
12.
Nat Commun ; 11(1): 3704, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709869

RESUMO

FGF-2 displays multifarious functions in regulation of angiogenesis and vascular remodeling. However, effective drugs for treating FGF-2+ tumors are unavailable. Here we show that FGF-2 modulates tumor vessels by recruiting NG2+ pricytes onto tumor microvessels through a PDGFRß-dependent mechanism. FGF-2+ tumors are intrinsically resistant to clinically available drugs targeting VEGF and PDGF. Surprisingly, dual targeting the VEGF and PDGF signaling produces a superior antitumor effect in FGF-2+ breast cancer and fibrosarcoma models. Mechanistically, inhibition of PDGFRß ablates FGF-2-recruited perivascular coverage, exposing anti-VEGF agents to inhibit vascular sprouting. These findings show that the off-target FGF-2 is a resistant biomarker for anti-VEGF and anti-PDGF monotherapy, but a highly beneficial marker for combination therapy. Our data shed light on mechanistic interactions between various angiogenic and remodeling factors in tumor neovascularization. Optimization of antiangiogenic drugs with different principles could produce therapeutic benefits for treating their resistant off-target cancers.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator 2 de Crescimento de Fibroblastos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Pressão Sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Permeabilidade Capilar , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais/efeitos dos fármacos , Hipóxia Tumoral , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Toxicon ; 185: 76-90, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32649934

RESUMO

This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, ß-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, ß-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.


Assuntos
Picaduras de Aranhas , Venenos de Aranha/toxicidade , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Aranhas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Gene ; 759: 144994, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32721475

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that are involved in post-transcriptional regulation of various genes, and their deregulation can lead to tumorigenesis. They may play the role of oncogenes or tumor suppressors by regulating different genes involved in cellular processes. One of the genes regulated by the miRNAs is the vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis. Angiogenesis is the process of formation of new blood vessels from pre-existing ones. This process plays an important role in tumor development, since it is responsible for the transport of nutrients required for tumor growth. Several studies have shown an increased expression of VEGFA in various cancers. Another gene regulated by miRNAs, the nuclear factor erythroid 2-like-2 (NFE2L2/NRF2), has a cytoprotective function and regulates cellular defense against oxidative stress. The NFE2L2 is the major regulator of cytoprotective agents and their oxidative damage to cells, which is down-regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the post-transcriptional level. Regulation of the VEGFA and NFE2L2 by miRNAs has been observed in hepatocellular carcinoma and breast, lung, esophageal, endometrial, gastric, and ovarian cancer. This review highlights the role of miRNAs in the regulation of VEGFA and NFE2L2 and their relevance as therapeutic targets in various cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Humanos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
ACS Chem Neurosci ; 11(12): 1704-1705, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: covidwho-505550

RESUMO

The coronavirus disease 19 (COVID-19) pandemic has brought a great threat to global public health. Currently, mounting evidence has shown the occurrence of neurological symptoms in patients with COVID-19. However, the detailed mechanism by which the SARS-CoV-2 attacks the brain is not well characterized. Recent investigations have revealed that a cytokine storm contributes to brain inflammation and subsequently triggers neurological manifestations during the COVID-19 outbreak. Targeting brain inflammation may provide significant clues to the treatment of neurologic complications caused by SARS-CoV-2. Vascular growth factor (VEGF), which is widely distributed in the brain, probably plays a crucial role in brain inflammation via facilitating the recruitment of inflammatory cells and regulating the level of angiopoietins II (Ang II). Also, Ang II is considered as the products of SARS-CoV-2-attacking target, angiotensin-converting enzyme 2 (ACE2). Further investigation of the therapeutic potential and the underlying mechanisms of VEGF-targeted drugs on the neurological signs of COVID-19 are warranted. In any case, VEGF is deemed a promising therapeutic target in suppressing inflammation during SARS-CoV-2 infection with neurological symptoms.


Assuntos
Encéfalo/metabolismo , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Pneumonia Viral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Betacoronavirus/metabolismo , Barreira Hematoencefálica/metabolismo , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo
16.
Anticancer Res ; 40(6): 3191-3201, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487613

RESUMO

BACKGROUND/AIM: Although it has been accepted that the tandem repeat galectin-8 (Gal-8) is linked to angiogenesis, the underlying mechanisms in endothelial cells has remained poorly understood. In this study we aimed to investigate the effect of Gal-8 on selected biological processes linked to angiogenesis in in vitro and in vivo models. MATERIALS AND METHODS: In detail, we assessed how exogenously added human recombinant Gal-8 (with or without vascular endothelial growth factor - VEGF) affects selected steps involved in vessel formation in human umbilical vein endothelial cells (HUVECs) as well as using the chick chorioallantoic membrane (CAM) assay. Gene expression profiling of HUVECs was performed to extend the scope of our investigation. RESULTS: Our findings demonstrate that Gal-8 in combination with VEGF enhanced cell proliferation and migration, two cellular events linked to angiogenesis. However, Gal-8 alone did not exhibit any significant effects on cell proliferation or on cell migration. The molecular analysis revealed that Gal-8 in the presence of VEGF influenced cytokine-cytokine receptor interactions, HIF-1 and PI3K/AKT signaling pathways. Gal-8 alone also targeted cytokine-cytokine receptor interactions, but with a different expression profile as well as a modulated focal adhesion and TNF signaling. CONCLUSION: Gal-8 promotes a pro-angiogenic phenotype possibly in a synergistic manner with VEGF.


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Galectinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Galectinas/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Neovascularização Fisiológica/efeitos dos fármacos
17.
Nat Commun ; 11(1): 2810, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499572

RESUMO

The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica , Pericitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Aorta Torácica/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Adesão Celular , Proliferação de Células , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Linfocinas/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Am J Pathol ; 190(9): 1971-1981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590003

RESUMO

Leakage of retinal blood vessels, which is an essential element of diabetic retinopathy, is driven by chronic elevation of vascular endothelial growth factor (VEGF). VEGF quickly relaxes the endothelial cell barrier by triggering signaling events that post-translationally modify pre-existing components of intercellular junctions. VEGF also changes expression of genes that are known to regulate barrier function. Our goal was to identify effectors by which VEGF and anti-VEGF control the endothelial cell barrier in cells that were chronically exposed to VEGF (hours instead of minutes). The duration of VEGF exposure influenced both barrier relaxation and anti-VEGF-mediated closure. Most VEGF-induced changes in gene expression were not reversed by anti-VEGF. Those that were constitute VEGF effectors that are targets of anti-VEGF. Pursuit of such candidates revealed that VEGF used multiple, nonredundant effectors to relax the barrier in cells that were chronically exposed to VEGF. One such effector was angiotensin-converting enzyme, which is a member of the renin-angiotensin-aldosterone system (RAAS). Pharmacologically antagonizing either the angiotensin-converting enzyme or the receptor for angiotensin II attenuated VEGF-mediated relaxation of the barrier. Finally, activating the RAAS reduced the efficacy of anti-VEGF. These discoveries provide a plausible mechanistic explanation for the long-standing appreciation that RAAS inhibitors are beneficial for patients with diabetic retinopathy and suggest that antagonizing the RAAS improves patients' responsiveness to anti-VEGF.


Assuntos
Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Sistema Renina-Angiotensina/fisiologia , Retina/metabolismo , Vasos Retinianos/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Humanos , Vasos Retinianos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Vis Exp ; (160)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32568218

RESUMO

Pulmonary Hypertension (PH) is a pathophysiological condition, defined by a mean pulmonary arterial pressure exceeding 25 mm Hg at rest, as assessed by right heart catheterization. A broad spectrum of diseases can lead to PH, differing in their etiology, histopathology, clinical presentation, prognosis, and response to treatment. Despite significant progress in the last years, PH remains an uncured disease. Understanding the underlying mechanisms can pave the way for the development of new therapies. Animal models are important research tools to achieve this goal. Currently, there are several models available for recapitulating PH. This protocol describes a two-hit mouse PH model. The stimuli for PH development are hypoxia and the injection of SU5416, a vascular endothelial growth factor (VEGF) receptor antagonist. Three weeks after initiation of Hypoxia/SU5416, animals develop pulmonary vascular remodeling imitating the histopathological changes observed in human PH (predominantly Group 1). Vascular remodeling in the pulmonary circulation results in the remodeling of the right ventricle (RV). The procedures for measuring RV pressures (using the open chest method), the morphometrical analyses of the RV (by dissecting and weighing both cardiac ventricles) and the histological assessments of the remodeling (both pulmonary by assessing vascular remodeling and cardiac by assessing RV cardiomyocyte hypertrophy and fibrosis) are described in detail. The advantages of this protocol are the possibility of the application both in wild type and in genetically modified mice, the relatively easy and low-cost implementation, and the quick development of the disease of interest (3 weeks). Limitations of this method are that mice do not develop a severe phenotype and PH is reversible upon return to normoxia. Prevention, as well as therapy studies, can easily be implemented in this model, without the necessity of advanced skills (as opposed to surgical rodent models).


Assuntos
Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Pirróis/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Concentração de Íons de Hidrogênio , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/complicações , Masculino , Camundongos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
20.
Nutr Metab Cardiovasc Dis ; 30(7): 1216-1226, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32482454

RESUMO

BACKGROUND AND AIMS: Successful islet transplantation as a promising treatment of diabetes type 1 is threatened with the loss of islets during the pre-transplant culture due to hypoxia and oxidative stress-induced apoptosis. Therefore, optimization of culture in order to preserve the islets is a critical point. In this study, we investigated the effect of resveratrol, as a cytoprotective agent, on the cultured human islets. METHODS AND RESULTS: Isolated islets were treated with different concentrations of resveratrol for 24 and 72 h. Islets' viability, apoptosis, apoptosis markers, and insulin and C-peptide secretion, along with the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were investigated. Our findings showed that the islets were exposed to hypoxia and oxidative stress after isolation and during culture. This insult induced apoptosis and decreased viability during 72 h. The presence of resveratrol significantly attenuated HIF-1α and ROS production, reduced apoptosis, promoted the VEGF secretion, and increased the insulin and C-peptide secretion. In this regard, resveratrol improved the islet's survival and function in the culture period. CONCLUSIONS: Using resveratrol can attenuate the stressful condition for the islets in the pre-transplant culture and subsequently ameliorate their viability and functionality that lead to successful outcome after clinical transplantation.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Adulto , Idoso , Peptídeo C/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA