Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.097
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361000

RESUMO

The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.


Assuntos
Microfluídica/métodos , Linfócitos T/fisiologia , Migração Transendotelial e Transepitelial , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL12/metabolismo , Endotélio Vascular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361003

RESUMO

Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Benzilisoquinolinas/farmacologia , Dermatite Atópica/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Benzilisoquinolinas/uso terapêutico , Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Células HaCaT/efeitos dos fármacos , Células HaCaT/metabolismo , Humanos , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Ecotoxicol Environ Saf ; 223: 112571, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352584

RESUMO

The present study investigates whether paraquat (PQ) regulates polarization of alveolar macrophages through glycolysis and promotes the occurrence of acute lung injury in rats. In vivo, the PQ intraperitoneal injection was used to construct a model of acute lung injury in rats. In vitro, the study measured the effect of different concentrations of PQ on the viability of the alveolar macrophages, and explored the polarization and glycolysis metabolism of alveolar macrophages at different time points after PQ intervention. Compared with the normal control (NC) group, the lung pathological damage in rats increased gradually after PQ poisoning, reaching a significant degree at 48 h after poisoning. The PQ-poisoned rat serum showed increased expressions of interleukin-6 (IL-6), tumor necrosis factor- α (TNF-α), and M1 macrophage marker, iNOS, while the expression of interleukin-10 (IL-10) and M2 macrophage marker, Arg1, decreased. The toxic effect of PQ on alveolar macrophages was dose- and time-dependent. Compared with the NC group, IL-6 and TNF-α in the cell supernatant gradually increased after PQ intervention, while the IL-10 content gradually decreased. The PQ intervention in alveolar macrophages increased the expression of intracellular glycolysis rate-limiting enzyme pyruvate kinase isozymes M1/M2 (PKM1/M2), lactate, lactate/pyruvate ratio, and the polarization of alveolar macrophage towards M1. Inhibition of cellular glycolysis significantly reduced the PQ-induced alveolar macrophage polarization to M1 type. Thus, PQ induced increased polarization of lung macrophages toward M1 and decreased polarization toward M2, promoting acute lung injury. Therefore, it can be concluded that PQ regulates the polarization of alveolar macrophages through glycolysis.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Glicólise , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Paraquat/toxicidade , Ratos , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445397

RESUMO

Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.


Assuntos
Regulação para Baixo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/genética , Fator de Necrose Tumoral alfa/genética , Proteína ADAM17/genética , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
J Immunol ; 207(5): 1333-1343, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408012

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.


Assuntos
Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Doença Aguda , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Gravidez , Receptores KIR3DL1/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443321

RESUMO

Berberine (BBR), a plant alkaloid, is known for its therapeutic properties of anticancer, cardioprotective, antidiabetic, hypolipidemic, neuroprotective, and hepatoprotective activities. The present study was to determine the molecular mechanism of BBR's pharmacological activity in human monocytic (THP-1) cells induced by arachidonic acid (AA) or lipopolysaccharide (LPS). The effect of BBR on AA/LPS activated proinflammatory markers including TNF-α, MCP-1, IL-8 and COX-2 was measured by ELISA or quantitative real-time PCR. Furthermore, the effect of BBR on LPS-induced NF-κB translocation was determined by immunoblotting and confocal microscopy. AA/ LPS-induced TNF-α, MCP-1, IL-6, IL-8, and COX-2 markers were markedly attenuated by BBR treatment in THP-1 cells by inhibiting NF-κB translocation into the nucleus. Molecular modeling studies suggested the direct interaction of BBR to IKKα at its ligand binding site, which led to the inhibition of the LPS-induced NF-κB translocation to the nucleus. Thus, the present study demonstrated the anti-inflammatory potential of BBR via NF-κB in activated monocytes, whose interplay is key in health and in the pathophysiology of atherosclerotic development in blood vessel walls. The present study findings suggest that BBR has the potential for treating various chronic inflammatory disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Quinase I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-8/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
FASEB J ; 35(9): e21797, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383981

RESUMO

Pseudomonas aeruginosa is a frequent cause of hospital-acquired lung infections characterized by hyperinflammation, antibiotic resistance, and high morbidity/mortality. Here, we show that the genetic ablation of one cAMP-phosphodiesterase 4 subtype, PDE4B, is sufficient to protect mice from acute lung injury induced by P aeruginosa infection as it reduces pulmonary and systemic levels of pro-inflammatory cytokines, as well as pulmonary vascular leakage and mortality. Surprisingly, despite dampening immune responses, bacterial clearance in the lungs of PDE4B-KO mice is significantly improved compared to WT controls. In wildtypes, P aeruginosa-infection produces high systemic levels of several cytokines, including TNF-α, IL-1ß, and IL-6, that act as cryogens and render the animals hypothermic. This, in turn, diminishes their ability to clear the bacteria. Ablation of PDE4B curbs both the initial production of acute response cytokines, including TNF-α and IL-1ß, as well as their downstream signaling, specifically the induction of the secondary-response cytokine IL-6. This synergistic action protects PDE4B-KO mice from the deleterious effects of the P aeruginosa-induced cytostorm, while concurrently improving bacterial clearance, rather than being immunosuppressive. These benefits of PDE4B ablation are in contrast to the effects resulting from treatment with PAN-PDE4 inhibitors, which have been shown to increase bacterial burden and dissemination. Thus, PDE4B represents a promising therapeutic target in settings of P aeruginosa lung infections.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipotermia/metabolismo , Hipotermia/microbiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Citocinas/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Fosfodiesterase 4/farmacologia , Infecções por Pseudomonas/microbiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Nature ; 596(7871): 262-267, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349263

RESUMO

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Assuntos
Apoptose , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Intestinos/citologia , Intestinos/microbiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Doenças Transmitidas por Alimentos/microbiologia , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Masculino , Camundongos , Mucosite/induzido quimicamente , Salmonella/enzimologia , Salmonella/genética , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Transcriptoma , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Immunol ; 12: 716075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394120

RESUMO

The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.


Assuntos
Doenças Assintomáticas , COVID-19/imunologia , Portador Sadio/imunologia , Leucócitos Mononucleares/imunologia , SARS-CoV-2/imunologia , Transcriptoma/genética , Adulto , Portador Sadio/virologia , Ativação do Complemento/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Influenza Humana/complicações , Interferons/sangue , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
10.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445509

RESUMO

Ischemia-like conditions reflect almost the entire spectrum of events that occur during cerebral ischemia, including the induction of oxidative stress, Ca2+ overload, glutamate excitotoxicity, and activation of necrosis and apoptosis in brain cells. Mechanisms for the protective effects of the antioxidant enzyme peroxiredoxin-6 (Prx-6) on hippocampal cells during oxygen-glucose deprivation/reoxygenation (OGD/R) were investigated. Using the methods of fluorescence microscopy, inhibitory analysis, vitality tests and PCR, it was shown that 24-h incubation of mixed hippocampal cell cultures with Prx-6 does not affect the generation of a reversible phase of a OGD-induced rise in Ca2+ ions in cytosol ([Ca2+]i), but inhibits a global increase in [Ca2+]i in astrocytes completely and in neurons by 70%. In addition, after 40 min of OGD, cell necrosis is suppressed, especially in the astrocyte population. This effect is associated with the complex action of Prx-6 on neuroglial networks. As an antioxidant, Prx-6 has a more pronounced and astrocyte-directed effect, compared to the exogenous antioxidant vitamin E (Vit E). Prx-6 inhibits ROS production in mitochondria by increasing the antioxidant capacity of cells and altering the expression of genes encoding redox status proteins. Due to the close bond between [Ca2+]i and intracellular ROS, this effect of Prx-6 is one of its protective mechanisms. Moreover, Prx-6 effectively suppresses not only necrosis, but also apoptosis during OGD and reoxygenation. Incubation with Prx-6 leads to activation of the basic expression of genes encoding protective kinases-PI3K, CaMKII, PKC, anti-apoptotic proteins-Stat3 and Bcl-2, while inhibiting the expression of signaling kinases and factors involved in apoptosis activation-Ikk, Src, NF-κb, Caspase-3, p53, Fas, etc. This effect on the basic expression of the genome leads to the cell preconditions, which is expressed in the inhibition of caspase-3 during OGD/reoxygenation. A significant effect of Prx-6 is directed on suppression of the level of pro-inflammatory cytokine IL-1ß and factor TNFα, as well as genes encoding NMDA- and kainate receptor subunits, which was established for the first time for this antioxidant enzyme. The protective effect of Prx-6 is due to its antioxidant properties, since mutant Prx-6 (mutPrx-6, Prx6-C47S) leads to polar opposite effects, contributing to oxidative stress, activation of apoptosis and cell death through receptor action on TLR4.


Assuntos
Astrócitos/citologia , Hipocampo/citologia , Peroxirredoxina VI/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Citosol/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Microscopia de Fluorescência , Peroxirredoxina VI/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Vet Microbiol ; 261: 109189, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375914

RESUMO

Transmissible gastroenteritis (TGE) is an acute viral disease and characterized as severe acute inflammation response that leads to diarrhea, vomiting, and high lethality of piglets. Transmissible gastroenteritis virus (TGEV), a member of coronavirus, is the pathogen of TGE. We previously found NF-κB pathway was activated and 65 miRNAs were changed in response to inflammation caused by TGEV in cell line porcine intestinal epithelial cells-jejunum 2 (IPEC-J2). Bioinformatics results showed that these altered miRNAs were relevant to inflammation. In this study, the candidate targets of differentially expressed (DE) miRNAs were predicted and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Based on the results of KEGG analysis, miR-885-3p might participate in regulating activation of NF-κB pathway and TNF pathway. To study the function of miR-885-3p, miR-885-3p mimics and inhibitors were artificially synthesized and respectively used for overexpression and silence of miR-885-3p in cells. Our results showed that miR-885-3p inhibited NF-κB signaling pathway and tumor necrosis factor-α (TNF-α) production. B-cell CLL/lymphoma 10 (Bcl-10) was identified as the target of miR-885-3p, and promoted NF-κB pathway activation and TNF-α production. It was found that TGEV open reading frame 3b (TGEV-ORF3b) suppressed Bcl-10 expression, activation of NF-κB pathway, and TNF-α production by uniquely up-regulated miR-885-3p expression. Overall, the results indicated that TGEV-ORF3b counteracted NF-κB pathway and TNF-α via regulating miR-885-3p and Bcl-10.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Gastroenterite Suína Transmissível/virologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Vírus da Gastroenterite Transmissível/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína 10 de Linfoma CCL de Células B/genética , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , MicroRNAs/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Suínos , Regulação para Cima , Proteínas Virais
13.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445767

RESUMO

The c-Jun N-terminal kinases (JNKs) are implicated in many neuropathological conditions, including neurodegenerative diseases. To explore potential JNK3 inhibitors from the U.S. Food and Drug Administration-approved drug library, we performed structure-based virtual screening and identified azelastine (Aze) as one of the candidates. NMR spectroscopy indicated its direct binding to the ATP-binding site of JNK3, validating our observations. Although the antihistamine effect of Aze is well documented, the involvement of the JNK pathway in its action remains to be elucidated. This study investigated the effects of Aze on lipopolysaccharide (LPS)-induced JNK phosphorylation, pro-inflammatory mediators, and cell migration in BV2 microglial cells. Aze was found to inhibit the LPS-induced phosphorylation of JNK and c-Jun. It also inhibited the LPS-induced production of pro-inflammatory mediators, including interleukin-6, tumor necrosis factor-α, and nitric oxide. Wound healing and transwell migration assays indicated that Aze attenuated LPS-induced BV2 cell migration. Furthermore, Aze inhibited LPS-induced IκB phosphorylation, thereby suppressing nuclear translocation of NF-κB. Collectively, our data demonstrate that Aze exerts anti-inflammatory and anti-migratory effects through inhibition of the JNK/NF-κB pathway in BV2 cells. Based on our findings, Aze may be a potential candidate for drug repurposing to mitigate neuroinflammation in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Ftalazinas/farmacologia , Animais , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
14.
Gene ; 805: 145909, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419568

RESUMO

BACKGROUND: Adenosine deaminase acting on RNA 3 (ADAR3) was known as a prognosis factor in gliomas, while its function on neuropathic pain (NP) is barely investigated. Therefore, our present study concentrated on the potential role of ADAR3 in NP. METHODS: The chronic constriction injury (CCI) mouse model was established to induce NP in vivo. Behavioral experiments were carried out to analyze mechanical allodynia and thermal hyperalgesia. RT-qPCR and western blotting assays were used to detect the mRNA and protein expressions. The ADAR3-overexpressed adenovirus was injected into the CCI mice through an intrathecal catheter. ELISA was used to detect the contents of IL (interleukin)-6, IL-10, TNF (tumor necrosis factor)-α, IL-1ß and IL-18. NLR Family Pyrin Domain Containing 3 (NLRP3) was predicted to be the target gene of ADAR3 using Starbase. The interaction between ADAR3 and NLRP3 was verified via RNA pull-down, RNA immunoprecipitation and Pearson's correlation coefficient assays. Immunohistochemical staining assay visualized the expressions of NLRP3 and caspase1. RESULTS: Allodynia and hyperalgesia were exacerbated in the CCI mice, which implied a successful establishment of the NP model, while ADAR3 expression level was suppressed. After injecting ADAR3-overexpressed adenovirus into the CCI mice, allodynia, hyperalgesia and inflammation were all restrained. Moreover, NLRP3 was verified to negatively correlated with ADAR3. Additionally, the pyroptosis-related protein NLRP3, ASC, caspase1, IL-1ß, IL-18 and GSDMD expressions were all decreased by ADAR3. CONCLUSION: In conclusion, ADAR3 alleviated inflammation and pyroptosis of NP through targeting NLRP3, which suggested a therapeutical target for NP.


Assuntos
Adenosina Desaminase/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/genética , Adenosina Desaminase/metabolismo , Animais , Constrição Patológica/fisiopatologia , Hiperalgesia/genética , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuralgia/metabolismo , Piroptose/genética , Piroptose/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445126

RESUMO

Experimental and clinical studies have suggested that several neurological disorders are associated with the occurrence of central nervous system neuroinflammation. Metaxalone is an FDA-approved muscle relaxant that has been reported to inhibit monoamine oxidase A (MAO-A). The aim of this study was to investigate whether metaxalone might exert antioxidant and anti-inflammatory effects in HMC3 microglial cells. An inflammatory phenotype was induced in HMC3 microglial cells through stimulation with interleukin-1ß (IL-1ß). Control cells and IL-1ß-stimulated cells were subsequently treated with metaxalone (10, 20, and 40 µM) for six hours. IL-1ß stimulated the release of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), but reduced the anti-inflammatory cytokine interleukin-13 (IL-13). The upstream signal consisted of an increased priming of nuclear factor-kB (NF-kB), blunted peroxisome proliferator-activated receptor gamma (PPARγ), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression. IL-1ß also augmented MAO-A expression/activity and malondialdehyde levels and decreased Nrf2 mRNA expression and protein levels. Metaxalone decreased MAO-A activity and expression, reduced NF-kB, TNF-α, and IL-6, enhanced IL-13, and also increased PPARγ, PGC-1α, and Nrf2 expression. The present experimental study suggests that metaxalone has potential for the treatment of several neurological disorders associated with neuroinflammation.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Microglia/efeitos dos fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Oxazolidinonas/farmacologia , Anti-Inflamatórios , Linhagem Celular , Humanos , Inflamação/metabolismo , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , PPAR gama/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
J Transl Med ; 19(1): 340, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372885

RESUMO

BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 1029539. RESULTS: Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, protein content, TNF-ɑ, IL-1ß and PGE2 levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated mice. Notably, prostacyclin (PGI2) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood leukocytes from healthy volunteers. CONCLUSIONS: BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced and sepsis-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II , Prostaglandina-E Sintases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Nutrients ; 13(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371939

RESUMO

A high-fat diet (HFD) and obesity are risk factors for many diseases including breast cancer. This is particularly important with close to 40% of the current adult population being overweight or obese. Previous studies have implicated that Mediterranean diets (MDs) partially protect against breast cancer. However, to date, the links between diet and breast cancer progression are not well defined. Therefore, to begin to define and assess this, we used an isocaloric control diet (CD) and two HFDs enriched with either olive oil (OOBD, high in oleate, and unsaturated fatty acid in MDs) or a milk fat-based diet (MFBD, high in palmitate and myristate, saturated fatty acids in Western diets) in a mammary polyomavirus middle T antigen mouse model (MMTV-PyMT) of breast cancer. Our data demonstrate that neither MFBD or OOBD altered the growth of primary tumors in the MMTV-PyMT mice. The examination of lung metastases revealed that OOBD mice exhibited fewer surface nodules and smaller metastases when compared to MFBD and CD mice. These data suggest that different fatty acids found in different sources of HFDs may alter breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/toxicidade , Ácidos Graxos/toxicidade , Neoplasias Pulmonares/secundário , Leite/toxicidade , Ração Animal , Animais , Antígenos Transformantes de Poliomavirus , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Azeite de Oliva/toxicidade , Medição de Risco , Fatores de Risco , Carga Tumoral , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207810

RESUMO

Excess lipid droplets are frequently observed in arterial endothelial cells at sites of advanced atherosclerotic plaques. Here, the role of tumor necrosis factor alpha (TNFα) in modulating the low-density lipoprotein (LDL) content in confluent primary human aortic endothelial cells (pHAECs) was investigated. TNFα promoted an up to 2 folds increase in cellular cholesterol, which was resistant to ACAT inhibition. The cholesterol increase was associated with increased 125I-LDL surface binding. Using the non-hydrolysable label, Dil, TNFα could induce a massive increase in Dil-LDL by over 200 folds. The elevated intracellular Dil-LDL was blocked with excess unlabeled LDL and PCSK9, but not oxidized LDL (oxLDL), or apolipoprotein (apoE) depletion. Moreover, the TNFα-induced increase of LDL-derived lipids was elevated through lysosome inhibition. Using specific LDLR antibody, the Dil-LDL accumulation was reduced by over 99%. The effects of TNFα included an LDLR cell surface increase of 138%, and very large increases in ICAM-1 total and surface proteins, respectively. In contrast, that of scavenger receptor B1 (SR-B1) was reduced. Additionally, LDLR antibody bound rapidly in TNFα-treated cells by about 30 folds, inducing a migrating shift in the LDLR protein. The effect of TNFα on Dil-LDL accumulation was inhibited by the antioxidant tetramethythiourea (TMTU) dose-dependently, but not by inhibitors against NF-κB, stress kinases, ASK1, JNK, p38, or apoptosis caspases. Grown on Transwell inserts, TNFα did not enhance apical to basolateral LDL cholesterol or Dil release. It is concluded that TNFα promotes LDLR functions through combined increase at the cell surface and SR-B1 downregulation.


Assuntos
Artérias/metabolismo , LDL-Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores de LDL/biossíntese , Receptores Depuradores Classe B/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Artérias/patologia , Células Endoteliais/patologia , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Fator de Necrose Tumoral alfa/metabolismo
19.
AAPS PharmSciTech ; 22(5): 200, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212283

RESUMO

Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1ß content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.


Assuntos
Lipossomos/química , Melatonina/administração & dosagem , Mucosite/tratamento farmacológico , Administração Oral , Animais , Fluoruracila/toxicidade , Interleucina-1beta/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Melatonina/química , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Mucosite/induzido quimicamente , Mucosite/patologia , Tamanho da Partícula , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203170

RESUMO

Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1ß, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.


Assuntos
Comamonadaceae/química , Flagelina/farmacologia , Imunidade Inata/fisiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imunidade Inata/genética , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...