Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.018
Filtrar
1.
FASEB J ; 35(9): e21667, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405442

RESUMO

Long noncoding RNAs (lncRNAs) are central regulators of the inflammatory response and play an important role in inflammatory diseases. PINT has been reported to be involved in embryonic development and tumorigenesis. However, the potential functions of PINT in the innate immune system are largely unknown. Here, we revealed the transcriptional regulation of inflammatory genes by PINT, whose expression is primarily dependent on the NF-κB signaling pathway in human and mouse macrophage and intestinal epithelial cell lines. Functionally, PINT selectively regulates the expression of TNF-α in basal and LPS-stimulated cells. Mechanistically, PINT acts as a modular scaffold of p65 and EZH2 to coordinate their localization and specify their binding to the target genes. Further, a high expression level of PINT was detected in intestinal mucosal tissues from patients with ulcerative colitis (UC). Together, these findings demonstrate that PINT acts as an activator of inflammatory responses, highlighting the importance of this lncRNA as a potential therapeutic target in infectious diseases and inflammatory diseases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Fator de Transcrição RelA/metabolismo , Transcrição Genética , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Citocinas/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transcrição Genética/genética
2.
Sci Rep ; 11(1): 17351, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34456333

RESUMO

Coronavirus disease 2019 (COVID-19) is raging worldwide. This potentially fatal infectious disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the complete mechanism of COVID-19 is not well understood. Therefore, we analyzed gene expression profiles of COVID-19 patients to identify disease-related genes through an innovative machine learning method that enables a data-driven strategy for gene selection from a data set with a small number of samples and many candidates. Principal-component-analysis-based unsupervised feature extraction (PCAUFE) was applied to the RNA expression profiles of 16 COVID-19 patients and 18 healthy control subjects. The results identified 123 genes as critical for COVID-19 progression from 60,683 candidate probes, including immune-related genes. The 123 genes were enriched in binding sites for transcription factors NFKB1 and RELA, which are involved in various biological phenomena such as immune response and cell survival: the primary mediator of canonical nuclear factor-kappa B (NF-κB) activity is the heterodimer RelA-p50. The genes were also enriched in histone modification H3K36me3, and they largely overlapped the target genes of NFKB1 and RELA. We found that the overlapping genes were downregulated in COVID-19 patients. These results suggest that canonical NF-κB activity was suppressed by H3K36me3 in COVID-19 patient blood.


Assuntos
COVID-19/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Histonas/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Sítios de Ligação , COVID-19/metabolismo , Estudos de Casos e Controles , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Aprendizado de Máquina , Transdução de Sinais
3.
Life Sci ; 283: 119849, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343539

RESUMO

AIMS: Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS: Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS: Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE: In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Miocárdio/metabolismo , Fator de Transcrição RelA/metabolismo , Trifluoperazina/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxinas/farmacologia , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Masculino , Camundongos , Miocárdio/patologia
4.
Nat Commun ; 12(1): 4917, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389714

RESUMO

APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.


Assuntos
Citidina Desaminase/genética , Dano ao DNA , Regulação da Expressão Gênica , Imunidade/genética , Proteínas/genética , Transdução de Sinais/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citidina Desaminase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células THP-1 , Fator de Transcrição RelA/metabolismo , Regulação para Cima , Vírus/crescimento & desenvolvimento
5.
Cell Prolif ; 54(8): e13093, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231932

RESUMO

OBJECTIVES: The study aimed to determine whether dental pulp stem cell-derived exosomes (DPSC-Exos) exert protective effects against cerebral ischaemia-reperfusion (I/R) injury and explore its underlying mechanism. MATERIALS AND METHODS: Exosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC-Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen-glucose deprivation-reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC-Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF-κB p65, HMGB1, IL-6, IL-1ß and TNF-α were determined by western blot or enzyme-linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining. RESULTS: DPSC-Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC-Exos inhibited the I/R-mediated expression of TLR4, MyD88 and NF-κB significantly. DPSC-Exos also reduced the protein expression of IL-6, IL-1ß and TNF-α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC-Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage. CONCLUSIONS: DPSC-Exos can ameliorate I/R-induced cerebral injury in mice. Its anti-inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF-κB pathway.


Assuntos
Citocinas/metabolismo , Exossomos/transplante , Traumatismo por Reperfusão/terapia , Animais , Sobrevivência Celular , Citoplasma/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Inflamação/terapia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
6.
Biomaterials ; 276: 121013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252802

RESUMO

The transcription factor NF-κB and its signaling cascade both play key roles in all inflammatory processes. The most critical member of the NF-κB transcription factor family is p65. We investigated the role of cationic silica-coated calcium phosphate nanoparticles (spherical, diameter by SEM 50-60 nm; zeta potential about +26 mV; stabilized by polyethyleneimine) carrying encapsulated siRNA against NF-κB p65 and their influence on inflamed cells. The nanoparticles were taken up by cells of the blood compartment involved in the inflammatory response, particularly by monocytes, and to a lesser extent by endothelial cells and B-cells, but not by T-cells. The particles were found in endolysosomes where they were dissolved at low pH and released the siRNA into the cytoplasm. This was confirmed by dissolution experiments of model nanoparticles in simulated endolysosomal medium (pH 4.7) and by intracellular co-localization studies of double-labeled nanoparticles (using a negatively charged model peptide for siRNA). The encapsulated functional siRNA reverted the p65 gene and protein expression in inflamed monocytes, the main cells in immune response and surveillance, almost back to the non-inflammatory condition. Additionally, the nanoparticles suppressed the pro-inflammatory cytokine expression profiles (TNF-α, IL-6, IFN-ß) in inflamed J774A.1 monocytes. Taken together, such nanoparticles can be applied for the treatment of inflammatory diseases.


Assuntos
NF-kappa B , Nanopartículas , Fosfatos de Cálcio , Células Endoteliais/metabolismo , Inativação Gênica , Humanos , Inflamação , NF-kappa B/metabolismo , RNA Interferente Pequeno , Dióxido de Silício , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
7.
Toxicol Lett ; 349: 155-164, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171359

RESUMO

Cytochrome P450 1A1 (CYP1A1) is a member of a subfamily of enzymes involved in the metabolism of both endogenous and exogenous substrates and the chemical activation of xenobiotics to carcinogenic derivatives. Here, the effects of nicotine, a major psychoactive compound present in cigarette smoke, on CYP1A1 expression and human hepatocellular carcinoma (HepG2) cell proliferation were investigated. Nicotine stimulated CYP1A1 expression via the transcription factors, activator protein 1, nuclear factor-kappa B, and the aryl hydrocarbon receptor (AhR) signaling pathway. Pharmacological inhibition and mutagenesis studies indicated that p38 mitogen-activated protein kinase, as well as RelA (or p65), mediated the upregulation of CYP1A1 of nicotine in HepG2 cells. The antioxidant compound, N-acetyl-cysteine, abrogated nicotine-activated production of reactive oxygen species and inhibited CYP1A1 expression by nicotine. Furthermore, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was inhibited by diphenyleneiodonium (an NADPH oxidase inhibitor). Thus, these results demonstrated that AhR played an important role in nicotine-induced CYP1A1 expression. Additionally, liver hepatocellular carcinoma HepG2 cells treated with nicotine exhibited markedly enhanced proliferation via CYP1A1 expression and Akt activation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Hepatocelular/enzimologia , Citocromo P-450 CYP1A1/biossíntese , Neoplasias Hepáticas/enzimologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Indução Enzimática , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Med Chem ; 64(12): 8423-8436, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34076416

RESUMO

Protein-protein modulation has emerged as a proven approach to drug discovery. While significant progress has been gained in developing protein-protein interaction (PPI) inhibitors, the orthogonal approach of PPI stabilization lacks established methodologies for drug design. Here, we report the systematic ″bottom-up″ development of a reversible covalent PPI stabilizer. An imine bond was employed to anchor the stabilizer at the interface of the 14-3-3/p65 complex, leading to a molecular glue that elicited an 81-fold increase in complex stabilization. Utilizing protein crystallography and biophysical assays, we deconvoluted how chemical properties of a stabilizer translate to structural changes in the ternary 14-3-3/p65/molecular glue complex. Furthermore, we explore how this leads to high cooperativity and increased stability of the complex.


Assuntos
Proteínas 14-3-3/metabolismo , Benzaldeídos/química , Proteínas de Escherichia coli/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Fator de Transcrição RelA/metabolismo , Desenho de Fármacos , Escherichia coli , Estrutura Molecular , Relação Estrutura-Atividade
9.
Science ; 372(6548): 1349-1353, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140389

RESUMO

The epigenome of macrophages can be reprogrammed by extracellular cues, but the extent to which different stimuli achieve this is unclear. Nuclear factor κB (NF-κB) is a transcription factor that is activated by all pathogen-associated stimuli and can reprogram the epigenome by activating latent enhancers. However, we show that NF-κB does so only in response to a subset of stimuli. This stimulus specificity depends on the temporal dynamics of NF-κB activity, in particular whether it is oscillatory or non-oscillatory. Non-oscillatory NF-κB opens chromatin by sustained disruption of nucleosomal histone-DNA interactions, enabling activation of latent enhancers that modulate expression of immune response genes. Thus, temporal dynamics can determine a transcription factor's capacity to reprogram the epigenome in a stimulus-specific manner.


Assuntos
Epigenoma , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Histonas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Nucleossomos/metabolismo , Transdução de Sinais , Transcrição Genética
10.
J Physiol Biochem ; 77(3): 443-450, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129225

RESUMO

Metformin has been successfully used as an anti-aging agent but exact molecular mechanisms of metformin in anti-aging remain unknown. Hyperglycemia during skin aging not only causes oxidative damage to cellular macromolecules, like dermal collagen, but also modulates the activation of transcription factor nuclear factor kappa B (NF-kB). We aimed to investigate in vitro effects of high glucose (HG) and metformin treatment on proliferation and apoptosis of human primary dermal fibroblasts (HDFs), and the expression of COL1A1, COL3A1, and RELA/p65 genes. Effects of normal glucose (5.5 mM) and HG concentration (50 mM HG) on HDFs, with two doses of metformin (50 µM and 500 µM), were investigated by immunostaining. Apoptotic levels were analyzed by flow cytometry. Expression of COL1A1, COL3A1, and RELA/p65 genes was measured by quantitative real-time PCR. The proliferation of HDFs was decreased significantly (P < 0.01) and expression of COL1A1 was downregulated by HG without metformin, whereas proliferation was elevated and expression was upregulated with 500 µM metformin + HG compared to 5.5 mM glucose (P < 0.05). The expression of COL3A1 and RELA/p65 were upregulated (P < 0.01 for COL3A1), and percentage of late apoptotic cells increased significantly by HG without metformin (P < 0.001) while it decreased in two concentrations of metformin dramatically compared with 5.5 mM glucose (P < 0.01 for expressions and < 0.001 for apoptosis). Metformin not only significantly downregulated RELA/p65 expression, but also inhibited the apoptosis of HDFs from aged human skin at toxic glucose concentrations which could be inversely mediated via COL1A1 and COL3A1 expression.


Assuntos
Metformina/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Apoptose , Células Cultivadas , Regulação para Baixo , Feminino , Fibroblastos/efeitos dos fármacos , Glucose/efeitos adversos , Humanos , Pessoa de Meia-Idade , Cultura Primária de Células , Pele/citologia
11.
Front Immunol ; 12: 530488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936025

RESUMO

Background: CRSwNP is an inflammatory disease but the mechanism is not yet fully understood. MiR-21, a member of miRNAs, has been reported to play roles in mediating inflammation. However, the expression of miR-21 and its role in patients with CRSwNP remain elusive. Methods: Turbinates from control subjects, uncinate processes from CRSsNP, polyp tissues from CRSwNP, and nasal epithelial cells brushed from nasal mucosa were collected. The expression of miR-21 and cytokines in nasal tissues and epithelial cells were detected by qPCR. The localization of miR-21 was detected by ISH, and its target was identified by bioinformation analysis, qPCR, IHC, WB, and luciferase reporter system. The protein and mRNA of PDCD4 and NF-κB P65 were determined by WB and qPCR after miR-21 transfection in HNEpC. The role of miR-21 on cytokines was analyzed in HNEpC and nasal polyp explants. Results: MiR-21 was upregulated in CRSwNP relative to control subjects by qPCR, which was determined mainly in nasal epithelial cells of CRSwNP by ISH. Both pro-inflammation cytokines (IL-1ß, IL-6, IL-8, IL-25, and TSLP) and a suppressive cytokine (IL-10) were overexpressed in the epithelial cells of CRSwNP. The expression of miR-21 was positively correlated with IL-10 and negatively correlated with IL-6, IL-8, IL-33, and TSLP in the epithelial cells of CRSwNP. As a potential target of miR-21, the expression of PDCD4 was negatively correlated with miR-21 in CRSwNP. In HNEpC, miR-21 could reduce the expression of PDCD4 at both mRNA and protein levels, and bioinformation analysis and luciferase reporter system confirmed PDCD4 as one target of miR-21. Furthermore, miR-21 could decrease the activation of NF-κB and increase IL-10 mRNA. Both SEB and LPS could elevate miR-21, with IL-25, IL-33, TSLP induced by SEB and IL-1ß, IL-6, IL-8 induced by LPS, while the miR-21 could regulate the expression of IL-33, TSLP, IL-1ß, IL- 6 and IL-8 in vitro and ex vivo. Clinically, miR-21 expression was inversely correlated with the Lund-Mackay CT scores and the Lund-Kennedy scores in CRSwNP. Conclusion: MiR-21 could be a prominent negative feedback factor in the inflammation process to attenuate the expression of pro-inflammatory cytokines, thereby playing an anti-inflammation role in CRSwNP.


Assuntos
Inflamação/genética , MicroRNAs/genética , Pólipos Nasais/genética , Rinite/genética , Sinusite/genética , Adolescente , Adulto , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Adulto Jovem
12.
Arch Biochem Biophys ; 706: 108918, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33992596

RESUMO

Tripartite motif-containing 21 (TRIM21) has been confirmed to mediate the production of inflammatory mediators via NF-κB signaling. However, the function of TRIM21 in microglia-mediated neuroinflammation remains unclear. This study aimed to explore the effect of TRIM21 on LPS-activated BV2 microglia and its underlying mechanism. BV2 cells exposed to lipopolysaccharide (LPS) were used to simulated neuroinflammation in vitro. Loss-of-function and gain-of-function of TRIM21 in BV2 cells were used to assess the effect of TRIM21 on LPS-induced neuroinflammation. BV2 microglia and HT22 cells co-culture system were used to investigate whether TRIM21 regulated neuronal inflammation-mediated neuronal death. TRIM21 knockdown triggered the polarization of BV2 cells from M1 to M2 phenotype. Knockdown of TRIM21 reduced the secretion of TNF-α, IL-6, and IL-1ß, while increased the content of IL-4 in LPS-treated cells. Knockdown of TRIM21 inhibited the expression of p65 and the binding activity of NF-κB-DNA. Additionally, TRIM21 siRNA eliminated the increase in NLRP3 and cleaved caspase-1 proteins expression and caspase-1 activity induced by LPS. TRIM21 knockdown could resist cytotoxicity induced by activated microglia, including increasing the viability of co-cultured HT22 cells and reducing the emancipation of LDH. Moreover, the increased apoptosis and caspase-3 activity of HT22 neurons induced by activated BV2 cells were blocked by TRIM21 siRNA. Blocking of NF-κB abolished the effect of TRIM21 in promoting the expression of M1 phenotype marker genes. Similarly, the blockade of NF-κB pathway eliminated the promotion of TRIM21 on neurotoxicity induced by neuroinflammation. TRIM21 knockdown suppressed the M1 phenotype polarization of microglia and neuroinflammation-mediated neuronal damage via NF-κB/NLRP3 inflammasome pathway, which suggested that TRIM21 might be a potential therapeutic target for the therapy of central nervous system diseases.


Assuntos
Inflamassomos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neurônios/efeitos dos fármacos , Ribonucleoproteínas/genética , Fator de Transcrição RelA/genética , Animais , Caspase 1/genética , Caspase 1/metabolismo , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Cultura em Câmaras de Difusão , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia/citologia , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/citologia , Neurônios/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Nanomedicine ; 16: 3173-3183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007172

RESUMO

Aim: Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. Methods: This study investigated anti-inflammatory effects of triblock copolymer nanomicelles loaded with curcumin (abbreviated as NC) in the brain of rats following transient cerebral ischemia/reperfusion (I/R) injury in stroke. After preparation of NC, their protective effects against bilateral common carotid artery occlusion (BCCAO) were explored by different techniques. Concentrations of free curcumin (C) and NC in liver, kidney, brain, and heart organs, as well as in plasma, were measured using a spectrofluorometer. Western blot analysis was then used to measure NF-κB-p65 protein expression levels. Also, ELISA assay was used to examine the level of cytokines IL-1ß, IL-6, and TNF-α. Lipid peroxidation levels were assessed using MDA assay and H&E staining was used for histopathological examination of the hippocampus tissue sections. Results: The results showed a higher level of NC compared to C in plasma and organs including the brain, heart, and kidneys. Significant upregulation of NF-κB, IL-1ß, IL-6, and TNF-α expressions compared to control was observed in rats after induction of I/R, which leads to an increase in inflammation. However, NC was able to downregulate significantly the level of these inflammatory cytokines compared to C. Also, the level of lipid peroxidation in pre-treated rats with 80mg/kg NC was significantly reduced. Conclusion: Our findings in the current study demonstrate a therapeutic effect of NC in an animal model of cerebral ischemia/reperfusion (I/R) injury in stroke through the downregulation of NF-κB-p65 protein and inflammatory cytokines.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Micelas , NF-kappa B/metabolismo , Nanopartículas/química , Polímeros/química , Transdução de Sinais , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/patologia , Isquemia Encefálica/sangue , Isquemia Encefálica/complicações , Curcumina/farmacologia , Citocinas/sangue , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Inflamação/complicações , Inflamação/patologia , Lactatos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Nanopartículas/ultraestrutura , Fosforilação/efeitos dos fármacos , Polietilenoglicóis/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
14.
Life Sci ; 277: 119567, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965378

RESUMO

AIM: This study aimed to evaluate the effects of Asiatic acid (AA), a naturally occurring compound of pentacyclic triterpenoid, on the pathological processes of diabetic retinopathy (DR). METHODS: SD rats were induced to develop early DR by intraperitoneal injection of STZ (60 mg/kg). Four weeks after injection, the diabetic rats were orally administrated with 37.5 mg/kg or 75 mg/kg AA every day for four weeks. The integrity of blood-retinal barrier (BRB) was measured by Evans blue staining. The polarization of microglia was determined by real-time PCR, western blot, and ELISA assays. The inner BRB (iBRB) or outer BRB (oBRB) breakdown was induced in human retinal endothelial cells or APRE19 cells through co-culture with high glucose and LPS-stimulated microglia BV2 cells. The damage to the iBRB and oBRB was measured using transendothelial/transepithelial electrical resistance (TEER/TER) and FITC-conjugated dextran cell permeability assays. KEY FINDINGS: Results demonstrated that AA alleviated BRB breakdown, as evidenced by decreased protein expression of occludin, claudin-5, and ZO-1. Furthermore, AA treatment suppressed inflammation and M1 polarization, while it increased M2 polarization in the retina of DR rats. In vitro, the iBRB or oBRB breakdown was alleviated by AA. LPS-induced M1-polarization of BV2 cells under high glucose condition was also repressed through AA administration. Finally, we demonstrated that AA weakened the TLR4/MyD88/NF-κB p65 signaling pathway both in vivo and in vitro. SIGNIFICANCE: AA ameliorated early DR by regulating microglia polarization via the TLR4/MyD88/NF-κB p65 pathway. These data indicate that AA is a potential candidate for DR treatment.


Assuntos
Retinopatia Diabética/metabolismo , Triterpenos Pentacíclicos/farmacologia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Polaridade Celular/fisiologia , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/tratamento farmacológico , Inflamação/patologia , Masculino , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Triterpenos Pentacíclicos/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
15.
Food Funct ; 12(9): 3898-3918, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977953

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease. Dietary supplementation has become a promising strategy for managing NAFLD. Hesperetin, a citrus flavonoid, is mainly found in citrus fruits (oranges, grapefruit, and lemons) and possesses multiple pharmacological properties, including anti-cancer, anti-Alzheimer and anti-diabetic effects. However, the anti-NAFLD effect and mechanisms of hesperetin remain unclear. In this study, we investigated the therapeutic effect of hesperetin against NAFLD and the underlying mechanism in vitro and in vivo. In oleic acid (OA)-induced HepG2 cells, hesperetin upregulated antioxidant levels (SOD/GPx/GR/GCLC/HO-1) by triggering the PI3 K/AKT-Nrf2 pathway, alleviating OA-induced reactive oxygen species (ROS) overproduction and hepatotoxicity. Furthermore, hesperetin suppressed NF-κB activation and reduced inflammatory cytokine secretion (TNF-α and IL-6). More importantly, we revealed that this anti-inflammatory effect is attributed to reduced ROS overproduction by the Nrf2 pathway, as pre-treatment with Nrf2 siRNA or an inhibitor of superoxide dismutase (SOD) or/and glutathione peroxidase (GPx) abolished hesperetin-induced NF-κB inactivation and reductions in inflammatory cytokine secretion. In a rat model of high-fat diet (HFD)-induced NAFLD, we confirmed that hesperetin relieved hepatic steatosis, oxidative stress, inflammatory cell infiltration and fibrosis. Moreover, hesperetin activated the PI3 K/AKT-Nrf2 pathway in the liver, increasing antioxidant expression and inhibiting NF-κB activation and inflammatory cytokine secretion. In summary, our results demonstrate that hesperetin ameliorates hepatic oxidative stress through the PI3 K/AKT-Nrf2 pathway and that this antioxidative effect further suppresses NF-κB-mediated inflammation during NAFLD progression. Thus, our study suggests that hesperetin may be an effective dietary supplement for improving NAFLD by suppressing hepatic oxidative stress and inflammation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/efeitos dos fármacos , Hesperidina/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Elementos de Resposta Antioxidante , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Oleico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805981

RESUMO

Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Fator de Transcrição RelA/metabolismo , Adolescente , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/farmacologia , Dano ao DNA , Feminino , Humanos , Inflamação , Leupeptinas/farmacologia , Nanopartículas , Comunicação Parácrina/efeitos dos fármacos , Fenótipo , Fenilenodiaminas/farmacologia , Cordão Umbilical/citologia
17.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864663

RESUMO

Parkinson's disease (PD) is one of the most disabling diseases of the central nervous system, seriously affecting health and quality of life for the elderly. The present study aimed to explore the effects of nuclear receptor subfamily 4 group A member 2 (Nurr1) and nuclear factor­κB (NF­κB) on the progression of Parkinson's disease (PD). Pheochromocytoma (PC12) cells were pretreated with the NF­κB inhibitor quinazoline (QNZ) or transfected with small interfering (si)RNA­NF­κB, followed by the addition of lipopolysaccharide (LPS). After culturing for 24 h, Cell Counting Kit­8 (CCK­8) was utilized to measure cell viability. Next, the expression levels of interleukin (IL)­1ß, IL­6 and tumor necrosis factor (TNF)­α were determined using the relevant Enzyme­linked immunosorbent assay kits. Expression levels of p65, tyrosine hydroxylase (TH), α­Synuclein (A­SYN) and Nurr1 were examined by immunofluorescence and western blotting. CCK­8 results showed that the cell viability was significantly reduced in the LPS group than in the control group (P<0.05), whereas QNZ and si­NF­κB demonstrated significantly enhanced viability induced by LPS (P<0.05). After LPS induction, the levels of IL­1ß, IL­6 and TNF­α were significantly elevated when compared with those in the control group (P<0.05), whereas QNZ and NF­κB interference partially restored their levels. Additionally, after LPS induction, the expression of p65 and A­SYN was higher, while the expression of TH and Nurr1 was lower. However, QNZ and NF­κB treatment significantly reversed the expression levels induced by LPS (P<0.05). Finally, it was observed that NF­κB may be negatively associated with Nurr1. In conclusion, inhibition of NF­κB may reduce the production of inflammatory factors by upregulating Nurr1 and TH and downregulating A­SYN, thus relieving the inflammatory response in PD.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células PC12 , Quinazolinas/farmacologia , Ratos , Sinucleínas/genética , Sinucleínas/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
18.
PLoS Negl Trop Dis ; 15(4): e0009339, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857149

RESUMO

BACKGROUND: Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKß-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. PRINCIPAL FINDINGS: Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen's ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. CONCLUSIONS: O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection.


Assuntos
Proteínas de Bactérias/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Orientia tsutsugamushi/metabolismo , Orientia tsutsugamushi/patogenicidade , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Orientia tsutsugamushi/imunologia , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo , Virulência/genética , Virulência/imunologia , Virulência/fisiologia
19.
Biochem Biophys Res Commun ; 557: 159-165, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33865224

RESUMO

Studies have shown that the specific entry of peripheral cells into the brain parenchyma caused by BBB injury and the imbalance of the immune microenvironment in the brain are closely related to the pathogenesis of Alzheimer's disease (AD). Because of the difficulty of obtaining data inside the brain, it is urgent to find out the relationship between the peripheral and intracerebral data and their influence on the development of AD by machine learning methods. However, in the actual algorithm design, it is still a challenge to extract relevant information from a variety of data to establish a complete and accurate regulatory network. In order to overcome the above difficulties, we presented a method based on a message passing model (Passing Attributes between Networks for Data Assimilation, PANDA) to discover the correlation between internal and external brain by the BBB injury-related genes, and further explore their regulatory mechanism of the brain immune environment for AD pathology. The Biological analysis of the results showed that pathways such as immune response pathway, inflammatory response pathway and chemokine signaling pathway are closely related to the pathogenesis of AD. Especially, some significant genes such as RELA, LAMA4, PPBP were found play certain roles in the injury of BBB and the change of permeability in AD patients, thus leading to the change of immune microenvironment in AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Microambiente Celular/genética , Regulação da Expressão Gênica/genética , Algoritmos , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Microambiente Celular/imunologia , Quimiocinas/metabolismo , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Humanos , Inflamação/metabolismo , Laminina/genética , Laminina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
20.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800699

RESUMO

Rheumatoid arthritis (RA) is a complex systemic autoimmune disorder that primarily involves joints, further affects the life quality of patients, and has increased mortality. The pathogenesis of RA involves multiple pathways, resulting in some patients showing resistance to the existing drugs. Salubrinal is a small molecule compound that has recently been shown to exert multiple beneficial effects on bone tissue. However, the effect of Salubrinal in RA has not been clearly confirmed. Hence, we induced collagen-induced arthritis (CIA) in DBA/1J mice and found that Salubrinal treatment decreased the clinical score of CIA mice, inhibiting joint damage and bone destruction. Furthermore, Salubrinal treatment downregulated osteoclast number in knee joint of CIA in mice, and suppressed bone marrow-derived osteoclast formation and function, downregulated osteoclast-related gene expression. Moreover, Salubrinal treatment inhibited RANKL-induced NF-κB signaling pathway, and promoted P65 degradation through the ubiquitin-proteasome system, further restrained RANKL-induced osteoclastogenesis. This study explains the mechanism by which Salubrinal ameliorates arthritis of CIA in mice, indicating that Salubrinal may be a potential drug for RA, and expands the potential uses of Salubrinal in the treatment of bone destruction-related diseases.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Cinamatos/farmacologia , Osteoclastos/metabolismo , Osteogênese , Tioureia/análogos & derivados , Fator de Transcrição RelA/metabolismo , Animais , Células da Medula Óssea/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Complexo de Endopeptidases do Proteassoma/química , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais , Frações Subcelulares/metabolismo , Tioureia/farmacologia , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...