Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.885
Filtrar
1.
PLoS Pathog ; 16(9): e1008767, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32903273

RESUMO

Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Lyssavirus/imunologia , Infecções por Rhabdoviridae/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Virais/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-6/metabolismo , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/virologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Transativadores , Proteínas Virais/genética
2.
Georgian Med News ; (304-305): 100-103, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32965258

RESUMO

Dysregulation of the immune system occurs when the immune system cannot regulate normal control of inflammation, which leads to the most common severe inflammatory infections. Some of the manifestations of diseases of immune dysregulation are called diseases of increased function of STAT1 (GOF) and enhanced function of STAT3 (GOF). STAT stands for a kind of signal converter and transcription activator. To date, six STAT proteins have been identified. The following clinical case is interesting and relevant in that, despite an increase in the number of patients diagnosed with primary immunodeficiencies, it should be noted that this pathology is underdiagnosed, since in this case, before making the diagnosis, the child was hospitalized more than 20 times in various hospitals for more than 20 times. The patient was diagnosed with primary immunodeficiency, immune dysregulation diseases, STAT3 GOF, autoimmune lymphoproliferative syndrome.


Assuntos
Síndrome Linfoproliferativa Autoimune , Doenças do Sistema Imunitário , Síndrome Linfoproliferativa Autoimune/genética , Criança , Humanos , Fator de Transcrição STAT3/genética
3.
Nat Commun ; 11(1): 3816, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732870

RESUMO

Detection of microbial components such as lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on macrophages induces a robust pro-inflammatory response that is dependent on metabolic reprogramming. These innate metabolic changes have been compared to aerobic glycolysis in tumour cells. However, the mechanisms by which TLR4 activation leads to mitochondrial and glycolytic reprogramming are unknown. Here we show that TLR4 activation induces a signalling cascade recruiting TRAF6 and TBK-1, while TBK-1 phosphorylates STAT3 on S727. Using a genetically engineered mouse model incapable of undergoing STAT3 Ser727 phosphorylation, we show ex vivo and in vivo that STAT3 Ser727 phosphorylation is critical for LPS-induced glycolytic reprogramming, production of the central immune response metabolite succinate and inflammatory cytokine production in a model of LPS-induced inflammation. Our study identifies non-canonical STAT3 activation as the crucial signalling intermediary for TLR4-induced glycolysis, macrophage metabolic reprogramming and inflammation.


Assuntos
Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Expressão Gênica , Glicólise/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Serina/genética , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/genética
4.
Nat Commun ; 11(1): 4116, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807793

RESUMO

Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan.


Assuntos
Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Receptores de Oncostatina M/metabolismo , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos SCID , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Oncostatina M/metabolismo , Estresse Oxidativo/efeitos da radiação , Receptores de Oncostatina M/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos da radiação
5.
Nat Commun ; 11(1): 4115, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807795

RESUMO

The transcription factor STAT3 is frequently activated in human solid and hematological malignancies and remains a challenging therapeutic target with no approved drugs to date. Here, we develop synthetic antibody mimetics, termed monobodies, to interfere with STAT3 signaling. These monobodies are highly selective for STAT3 and bind with nanomolar affinity to the N-terminal and coiled-coil domains. Interactome analysis detects no significant binding to other STATs or additional off-target proteins, confirming their exquisite specificity. Intracellular expression of monobodies fused to VHL, an E3 ubiquitin ligase substrate receptor, results in degradation of endogenous STAT3. The crystal structure of STAT3 in complex with monobody MS3-6 reveals bending of the coiled-coil domain, resulting in diminished DNA binding and nuclear translocation. MS3-6 expression strongly inhibits STAT3-dependent transcriptional activation and disrupts STAT3 interaction with the IL-22 receptor. Therefore, our study establishes innovative tools to interfere with STAT3 signaling by different molecular mechanisms.


Assuntos
Anticorpos/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Anticorpos/genética , Western Blotting , Calorimetria , Cristalografia por Raios X , Citometria de Fluxo , Polarização de Fluorescência , Imunofluorescência , Humanos , Espectrometria de Massas , Ligação Proteica , Domínios Proteicos/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Biologia Sintética
6.
J Vis Exp ; (161)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32716374

RESUMO

Transgenic mouse models are powerful for understanding the critical genes controlling osteoclast differentiation and activity, and for studying mechanisms and pharmaceutical treatments of osteoporosis. Cathepsin K (Ctsk)-Cre mice have been widely used for functional studies of osteoclasts. The signal transducer and activator of transcription 3 (STAT3) is relevant in bone homeostasis, but its role in osteoclasts in vivo remains poorly defined. To provide the in vivo evidence that STAT3 participates in osteoclast differentiation and bone metabolism, we generated an osteoclast-specific Stat3 deletion mouse model (Stat3 fl/fl; Ctsk-Cre) and analyzed its skeletal phenotype. Micro-CT scanning and 3D reconstruction implied increased bone mass in the conditional knockout mice. H&E staining, calcein and alizarin red double staining, and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect bone metabolism. In short, this protocol describes some canonical methods and techniques to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.


Assuntos
Osteoclastos/metabolismo , Fator de Transcrição STAT3/genética , Animais , Osso e Ossos/metabolismo , Masculino , Camundongos Knockout , Fenótipo
7.
Gene ; 757: 144931, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640308

RESUMO

OBJECTIVE: The aim of this study is to investigate the role of close homolog of L1 (CHL1) on inflammatory bowel disease (IBD), and the correlation with the balance of Th17/Treg. METHODS: Dextran sodium sulfate (DSS)-induced IBD mice model was established. CHL1 knockout (KO) mice and CHL1 wild-type (WT) mice were subjected to DSS. CHL1 expression was detected using qRT-PCR. Weight was recorded daily, and disease activity index (DAI) score was assessed. The colon length and histological changes were measured. The number of neutrophils, macrophages and T cells was observed by immunohistochemistry. The expression of inflammatory cytokines and the proportion of Th17/Treg cells were detected by qRT-PCR and flow cytometry. The expression of RORγt, STAT3 and Foxp3 was detected by using immunohistochemistry and Western blot. RESULTS: CHL1 expression was upregulated in DSS-induced IBD mice. DSS-CHLl-KO mice exhibited less weight loss than the DSS-CHLl-WT mice. The DAI score and histological score were decreased in DSS-CHLl-KO mice compared with DSS-CHLl-WT mice, while colon length was increased. Number of neutrophils, macrophages and T cells, and expression of TNF-α, IL-6, IL-17A, IL-21 and IL-23 were decreased in DSS-CHLl-KO mice, while IL-10 expression was increased. Moreover, CHL1-deficient inhibited Th17 cells differentiation and promoted Treg cells differentiation in IBD mice. CHL1-deficient also inhibited the expression of RORγt and STAT3, and promoted the expression of Foxp3 in IBD mice. CONCLUSION: CHL1-deficient reduces the inflammatory response by regulating the balance of Th17/Treg in mice with IBD. CHL1 is expected to be a new target for the treatment of IBD.


Assuntos
Moléculas de Adesão Celular/genética , Doenças Inflamatórias Intestinais/genética , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Moléculas de Adesão Celular/deficiência , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/imunologia , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/citologia , Células Th17/citologia
8.
Anticancer Res ; 40(7): 3801-3809, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620619

RESUMO

AIM: Cancer stem-like cell (CSC) markers and the role of CSCs derived from papillary thyroid carcinoma (PTC) in pathogenesis are unclear. This study aimed to investigate CSC properties using tumor spheres from passaged PTC cells but without sorting CSCs. MATERIALS AND METHODS: To identify the properties of CSCs derived from PTC, the expression of SRY-box transcription factor 2(SOX2), octamer-binding transcription factor 4 (OCT4), Nanog homeobox (NANOG), thyroglobulin (TG), thyroid-stimulating hormone receptor (TSHR), E-cadherin, YES-associated protein 1 (YAP1), and signal transducer and activator of transcription 3 (STAT3) was investigated in tumor spheres serially passaged without sorting CSCs. RESULTS: The cultured tumor spheres had cancer stemness; high expression of OCT4, SOX2, NANOG, and YAP1; low expression of E-cadherin; and varied expression of TG, TSHR, and STAT3. PTC tumor spheres transfected with small interfering RNA targeting YAP1 had fewer CSC properties than the non-transfected tumor spheres did. CONCLUSION: Tumor spheres derived from PTC cells by passaging without sorting CSCs have more stem-like cell properties, and less differentiation potential. Thus, this simple and cost-effective method can be used for the enrichment of PTC stemness for employment in cell-based models, reducing the need for use of animal models.


Assuntos
Células-Tronco Neoplásicas/patologia , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD/biossíntese , Antígenos CD/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Caderinas/biossíntese , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Esferoides Celulares , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
9.
DNA Cell Biol ; 39(9): 1649-1656, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32552056

RESUMO

Annexin A4 (encoded by the ANXA4 gene) is a calcium ion (Ca2+)- and phospholipid-binding protein of the Annexin family. In this study, we checked the expression profile of ANXA4 in basal-like breast cancer (BLBC) and its association with survival outcomes using pan-cancer data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Then, using MDA-MB-231 and MDA-MB-468 cells, we explored the functional role of ANXA4 in regulating a cancer-related signaling pathway and identified potential partners of ANXA4. The results showed that expression of total ANXA4 and the two dominant ANXA4 protein-coding transcripts (ENST00000409920.5 and ENST00000394295.4) was consistently upregulated in tumor tissues compared with normal breast tissues. BLBC patients with high ANXA4 expression had significantly worse overall survival, progression-free survival, and disease-free survival than those with low ANXA4 expression. ANXA4 could positively modulate cyclin D1 expression and G1/S progression in the two cell lines. An in vivo tumor model showed that ANXA4 inhibition significantly slowed the growth of tumors derived from the two BLBC cell lines. ANXA4 could increase JAK1 expression and STAT3 phosphorylation (Y705). ANXA4 colocalized with ANXA1 in some MDA-MB-231 cells. A co-immunoprecipitation assay confirmed direct binding between ANXA4 and ANXA1. Knockdown of ANXA1 reduced JAK1 expression and STAT3 phosphorylation and impaired ANXA4-induced upregulation of JAK1 and p-STAT3. In conclusion, this study revealed that aberrant ANXA4 upregulation is associated with poor survival in BLBC. ANXA4 could activate JAK-STAT3 signaling by elevating the expression of JAK1 and p-STAT3, which was mediated by direct interaction with ANXA1.


Assuntos
Anexina A1/metabolismo , Anexina A4/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Transdução de Sinais , Animais , Anexina A1/genética , Anexina A4/genética , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(27): 15935-15946, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571912

RESUMO

Excessive tumor necrosis factor (TNF) is known to cause significant pathology. Paradoxically, deficiency in TNF (TNF-/-) also caused substantial pathology during respiratory ectromelia virus (ECTV) infection, a surrogate model for smallpox. TNF-/- mice succumbed to fulminant disease whereas wild-type mice, and those engineered to express only transmembrane TNF (mTNF), fully recovered. TNF deficiency did not affect viral load or leukocyte recruitment but caused severe lung pathology and excessive production of the cytokines interleukin (IL)-6, IL-10, transforming growth factor beta (TGF-ß), and interferon gamma (IFN-γ). Short-term blockade of these cytokines significantly reduced lung pathology in TNF-/- mice concomitant with induction of protein inhibitor of activated STAT3 (PIAS3) and/or suppressor of cytokine signaling 3 (SOCS3), factors that inhibit STAT3 activation. Consequently, inhibition of STAT3 activation with an inhibitor reduced lung pathology. Long-term neutralization of IL-6 or TGF-ß protected TNF-/- mice from an otherwise lethal infection. Thus, mTNF alone is necessary and sufficient to regulate lung inflammation but it has no direct antiviral activity against ECTV. The data indicate that targeting specific cytokines or cytokine-signaling pathways to reduce or ameliorate lung inflammation during respiratory viral infections is possible but that the timing and duration of the interventive measure are critical.


Assuntos
Citocinas/metabolismo , Infecções por Poxviridae/virologia , Poxviridae/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poxviridae/imunologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/patologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(26): 15047-15054, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32532922

RESUMO

Tamoxifen, a widely used modulator of the estrogen receptor (ER), targets ER-positive breast cancer preferentially. We used a powerful validation-based insertion mutagenesis method to find that expression of a dominant-negative, truncated form of the histone deacetylase ZIP led to resistance to tamoxifen. Consistently, increased expression of full-length ZIP gives the opposite phenotype, inhibiting the expression of genes whose products mediate resistance. An important example is JAK2 By binding to two specific sequences in the promoter, ZIP suppresses JAK2 expression. Increased expression and activation of JAK2 when ZIP is inhibited lead to increased STAT3 phosphorylation and increased resistance to tamoxifen, both in cell culture experiments and in a mouse xenograft model. Furthermore, data from human tumors are consistent with the conclusion that decreased expression of ZIP leads to resistance to tamoxifen in ER-positive breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Tamoxifeno/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/genética , Feminino , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos SCID , Receptores Estrogênicos/genética , Receptores Estrogênicos/metabolismo , Fator de Transcrição STAT3/genética
12.
Immunol Med ; 43(3): 121-129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32546118

RESUMO

The roles of interleukin-22 (IL-22) in carcinogenesis have been proposed in various neoplasms. Increased expression of IL-22 has been observed in oral squamous cell carcinoma (OSCC) lesions as well as in other cancers. OSCC is still associated with poor prognosis and a high mortality rate because of its invasiveness and frequent lymph node metastasis. In the present study, we investigated the effects of IL-22 on OSCC cells. The human OSCC cell lines Ca9-22 and SAS were stimulated with IL-22 (1-10 ng/mL), and their migration abilities were examined using a cell scratch assay. A Matrigel invasion assay was performed to evaluate the invasion abilities of OSCC cells. Signal transducer and activator of transcription 3 (STAT3) phosphorylation, matrix metalloproteinase (MMP) and epithelial-mesenchymal transition (EMT)-related genes and proteins were also examined. IL-22 treatment promoted the migration and invasion abilities of OSCC cells without increasing their viability. IL-22 stimulation also induced STAT3 phosphorylation, MMP-9 activity and EMT-related genes and proteins. Our findings suggest that IL-22 has possible roles in the development of OSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular/efeitos dos fármacos , Interleucinas/efeitos adversos , Interleucinas/fisiologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Invasividade Neoplásica/genética , Fosforilação/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
13.
BMC Infect Dis ; 20(1): 394, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493232

RESUMO

BACKGROUND: Talaromyces marneffei is a highly pathogenic fungus that can cause life-threatening fatal systemic mycosis. Disseminated Talaromycosis marneffei affects multiple organs, including the lungs, skin, and reticuloendothelial system. However, T. marneffei infection has rarely been reported in human immunodeficiency virus (HIV)-negative infants with multiple intestinal perforations and diffuse hepatic granulomatous inflammation. CASE PRESENTATION: We present the case of an HIV-negative 37-month-old boy who has had recurrent pneumonia since infancy and was infected with disseminated Talaromycosis. Contrast-enhanced computed tomography of the whole abdomen showed hepatomegaly and intestinal wall thickening in the ascending colon and cecum with mesenteric lymphadenopathy. Colonoscopy showed a cobblestone pattern with erosion, ulcer, polypoid lesions, and lumen deformation ranging from the colon to the cecum. T. marneffei was isolated from the mucous membrane of the colon, liver, and bone marrow. After antifungal treatment and surgery, his clinical symptoms significantly improved. Whole-exome sequencing using the peripheral blood of the patient and his parents' revealed a heterozygous missense mutation in exon 17 of the STAT3 gene (c.1673G>A, p.G558D). CONCLUSIONS: In T. marneffei infection-endemic areas, endoscopic examination, culture, or histopathology from the intestine tissue should be performed in disseminated Talaromycosis patients with gastrointestinal symptoms. Timely and systemic antifungal therapy could improve the prognosis. Immunodeficiency typically should be considered in HIV-negative infants with opportunistic infections.


Assuntos
Hepatopatias/diagnóstico , Micoses/diagnóstico , Fator de Transcrição STAT3/genética , Talaromyces/isolamento & purificação , Antifúngicos/uso terapêutico , Pré-Escolar , Colonoscopia , Diagnóstico Diferencial , Humanos , Mucosa Intestinal/microbiologia , Perfuração Intestinal , Hepatopatias/tratamento farmacológico , Hepatopatias/microbiologia , Masculino , Mutação de Sentido Incorreto , Micoses/tratamento farmacológico , Micoses/microbiologia , Tomografia Computadorizada por Raios X
14.
Science ; 368(6490)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355002

RESUMO

Repeated bouts of exercise condition muscle mitochondria to meet increased energy demand-an adaptive response associated with improved metabolic fitness. We found that the type 2 cytokine interleukin-13 (IL-13) is induced in exercising muscle, where it orchestrates metabolic reprogramming that preserves glycogen in favor of fatty acid oxidation and mitochondrial respiration. Exercise training-mediated mitochondrial biogenesis, running endurance, and beneficial glycemic effects were lost in Il13-/- mice. By contrast, enhanced muscle IL-13 signaling was sufficient to increase running distance, glucose tolerance, and mitochondrial activity similar to the effects of exercise training. In muscle, IL-13 acts through both its receptor IL-13Rα1 and the transcription factor Stat3. The genetic ablation of either of these downstream effectors reduced running capacity in mice. Thus, coordinated immunological and physiological responses mediate exercise-elicited metabolic adaptations that maximize muscle fuel economy.


Assuntos
Adaptação Fisiológica/imunologia , Glicogênio/metabolismo , Interleucina-13/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Resistência Física/imunologia , Animais , Glicemia/metabolismo , Linhagem Celular , Ácidos Graxos/metabolismo , Feminino , Humanos , Interleucina-13/sangue , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Oxirredução , Condicionamento Físico Animal , Corrida , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32233952

RESUMO

The role of cellular senescence induced by radiation in bone loss has attracted much attention. As one of the common complications of anticancer radiotherapy, irradiation-induced bone deterioration is common and clinically significant, but the pathological mechanism has not been elucidated. This study was performed to explore the cellular senescence and senescence-associated secretory phenotype (SASP) induction of bone marrow-derived mesenchymal stem cells (BMSCs) by irradiation and its role in osteogenic differentiation dysfunction. It was observed that irradiated BMSCs lost typical fibroblast-like morphology, exhibited suppressed viability and differentiation potential accompanied with senescence phenotypes, including an increase in senescence-associated ß-galactosidase (SA-ß-gal) staining-positive cells, and upregulated senescence-related genes p53/p21, whereas no changes happened to p16. Additionally, DNA damage γ-H2AX foci, G0/G1 phase of cell cycle arrest, and cellular and mitochondrial reactive oxygen species (ROS) increased in an irradiation dose-dependent manner. Meanwhile, the JAK1/STAT3 pathway was activated and accompanied by an increase in SASP secretion, such as IL-6, IL-8, and matrix metalloproteinase-9 (MMP9), whereas 0.8 µM JAK1 inhibitor (JAKi) treatment effectively inhibited the JAK pathway and SASP production. Furthermore, conditioned medium (CM) from irradiation-induced senescent (IRIS) BMSCs exhibited a markedly reduced ability in osteogenic differentiation and marker gene expression of osteoblasts, whereas CM with JAKi intervention may effectively improve these deterioration effects. In conclusion, irradiation could provoke BMSC senescence and SASP secretion and further aggravate osteogenic differentiation dysfunction via paracrine signaling, whereas SASP targeting may be a possible intervention strategy for alleviating irradiation-induced bone loss.


Assuntos
Diferenciação Celular/genética , Senescência Celular/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Reabsorção Óssea/genética , Reabsorção Óssea/terapia , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Senescência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Histonas/genética , Humanos , Janus Quinase 1/genética , Células-Tronco Mesenquimais/efeitos da radiação , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Comunicação Parácrina/genética , Radiação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos da radiação
16.
Arterioscler Thromb Vasc Biol ; 40(6): e153-e165, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32295422

RESUMO

OBJECTIVE: Macrophages have been described in calcific aortic valve disease, but it is unclear if they promote or counteract calcification. We aimed to determine how macrophages are involved in calcification using the Notch1+/- model of calcific aortic valve disease. Approach and Results: Macrophages in wild-type and Notch1+/- murine aortic valves were characterized by flow cytometry. Macrophages in Notch1+/- aortic valves had increased expression of MHCII (major histocompatibility complex II). We then used bone marrow transplants to test if differences in Notch1+/- macrophages drive disease. Notch1+/- mice had increased valve thickness, macrophage infiltration, and proinflammatory macrophage maturation regardless of transplanted bone marrow genotype. In vitro approaches confirm that Notch1+/- aortic valve cells promote macrophage invasion as quantified by migration index and proinflammatory phenotypes as quantified by Ly6C and CCR2 positivity independent of macrophage genotype. Finally, we found that macrophage interaction with aortic valve cells promotes osteogenic, but not dystrophic, calcification and decreases abundance of the STAT3ß isoform. CONCLUSIONS: This study reveals that Notch1+/- aortic valve disease involves increased macrophage recruitment and maturation driven by altered aortic valve cell secretion, and that increased macrophage recruitment promotes osteogenic calcification and alters STAT3 splicing. Further investigation of STAT3 and macrophage-driven inflammation as therapeutic targets in calcific aortic valve disease is warranted.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Calcinose/patologia , Macrófagos/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Valva Aórtica/imunologia , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/imunologia , Estenose da Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Calcinose/imunologia , Calcinose/fisiopatologia , Movimento Celular , Óxidos S-Cíclicos/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Genótipo , Humanos , Inflamação/patologia , Macrófagos/química , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Receptor Notch1/análise , Receptor Notch1/genética , Receptor Notch1/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
17.
Scand J Immunol ; 91(6): e12885, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248557

RESUMO

Autosomal dominant hyper IgE syndrome (AD-HIES) caused by STAT3 gene mutation is a rare primary immunodeficiency disease. To better understand the disease, we described the clinical characteristics of 20 AD-HIES patients in Chongqing, China and explored the effect of mutations in different domains of STAT3 gene on the function of STAT3 protein by Western blot and confocal microscopy. The mean age at onset was 0.12 years. The mean age at diagnosis was 5.31 years. The most common presentation was eczema, pneumonia, skin abscesses and chronic mucocutaneous candidiasis. Seven patients suffered from BCG complications. R382W/Q were identified in 12 patients, V637M mutation in three patients. Three patients have died. The phosphorylated STAT3 was expressed more in wild-type(WT) and R382W mutant STAT3 in the cytoplasm of COS7 cells with epidermal growth factor(EGF) stimulation, less in the V637M mutation and T620S mutation. Dynamic observation showed that STAT3 cytoplasmic accumulation and nuclear translocation occurred rapidly after EGF stimulation in WT-STAT3-GFP, the time of accumulation and nuclear translocation was later and the expression was less in R382W-STAT3-GFP compared with WT-STAT3-GFP, followed by V637M and T620S mutation. These results suggested that our patients had earlier onset, diagnostic age and higher rate of BCG complications. However, our patients had higher incidence of mortality though the earlier diagnostic age. We did not find a significant genotype/phenotype correlation, but Src homology 2 domain mutations (V637M and T620S) had a greater effect on STAT3 phosphorylation and nuclear translocation than DNA-binding domain mutation (R382W) in vitro.


Assuntos
Genótipo , Síndrome de Job/diagnóstico , Mutação/genética , Fator de Transcrição STAT3/genética , Candidíase Cutânea , Criança , Pré-Escolar , China , Análise Mutacional de DNA , Eczema , Fator de Crescimento Epidérmico/metabolismo , Estudos de Associação Genética , Humanos , Imunoglobulina E/genética , Imunoglobulina E/metabolismo , Lactente , Síndrome de Job/mortalidade , Masculino , Pneumonia , Análise de Sobrevida
18.
Cell Prolif ; 53(5): e12814, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32346990

RESUMO

OBJECTIVES: Increasing evidences suggest that inducing mesenchymal stem cells to differentiate into osteoblasts has been as an especially important component in the prevention and therapy for degenerative bone disease. Here, we identify a novel lncRNA, linc02349, which increases significantly during osteogenic differentiation. MATERIALS AND METHODS: Human umbilical cord-derived stem cells (hUC-MSCs) and dental pulp mesenchymal stem cells were used. Overexpression and knockdown of linc02349 in cell lines were generated using lentiviral-mediated gene delivery method. Bioinformatics prediction, Ago2-RIP assay and dual-luciferase reporter system were employed to examine miRNA which interacts with linc02349. The RNA FISH assay was performed to identify the subcelluar location of linc02349. Alizarin Red S staining, ALP staining and qPCR were applied to identify the osteogenic differentiation. The potential linc02349-regulated genes, miR-25-3p and miR-33b-5p, were explored by ChIP, RIP and Western blotting assays. Micro-CT was used to measure the osteogenic content in bone formation assay in vivo. RESULTS: Linc02349 overexpression improves osteogenic differentiation by in vitro and in vivo analysis. Mechanistically, linc02349 acts as a molecular sponge for miR-25-3p and miR-33b-5p to control expression abundance of SMAD5 and Wnt10b, respectively, which eventually activated Dlx5/OSX pathway and hence promoted osteogenic differentiation. In addition, we revealed that STAT3 interacts with linc02349 promoter region and positively regulates the linc02349 transcriptional activity. CONCLUSION: These findings identify that linc02349 modulates the osteogenic differentiation through acting as a sponge RNA of miR-25-3p and miR-33b-5p and regulating SMAD5 and Wnt10b, and proposed a new interaction between STAT3 and linc02349, which could be a potential target in the process the osteogenesis of hUC-MSCs for future clinical application.


Assuntos
Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética , Cordão Umbilical/patologia , Diferenciação Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Osteoblastos/patologia , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética , Transcrição Genética/genética
19.
PLoS One ; 15(3): e0230819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231398

RESUMO

STAT3 mediates signalling downstream of cytokine and growth factor receptors where it acts as a transcription factor for its target genes, including oncogenes and cell survival regulating genes. STAT3 has been found to be persistently activated in many types of cancers, primarily through its tyrosine phosphorylation (Y705). Here, we show that constitutive STAT3 activation protects cells from cytotoxic drug responses of several drug classes. To find novel and potentially targetable STAT3 regulators we performed a kinase and phosphatase siRNA screen with cells expressing either a hyperactive STAT3 mutant or IL6-induced wild type STAT3. The screen identified cell division cycle 7-related protein kinase (CDC7), casein kinase 2, alpha 1 (CSNK2), discoidin domain-containing receptor 2 (DDR2), cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 4-kinase 2-alpha (PI4KII), C-terminal Src kinase (CSK) and receptor-type tyrosine-protein phosphatase H (PTPRH) as potential STAT3 regulators. Using small molecule inhibitors targeting these proteins, we confirmed dose and time dependent inhibition of STAT3-mediated transcription, suggesting that inhibition of these kinases may provide strategies for dampening STAT3 activity in cancers.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional , Fator de Transcrição STAT3/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Fatores de Tempo
20.
PLoS One ; 15(4): e0230427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240179

RESUMO

Macrophage cells form part of our first line defense against pathogens. Macrophages become activated by microbial products such as lipopolysaccharide (LPS) to produce inflammatory mediators, such as TNFα and other cytokines, which orchestrate the host defense against the pathogen. Once the pathogen has been eradicated, the activated macrophage must be appropriately deactivated or inflammatory diseases result. Interleukin-10 (IL10) is a key anti-inflammatory cytokine which deactivates the activated macrophage. The IL10 receptor (IL10R) signals through the Jak1/Tyk2 tyrosine kinases, STAT3 transcription factor and the SHIP1 inositol phosphatase. However, IL10 has also been described to induce the activation of the cyclic adenosine monophosphate (cAMP) regulated protein kinase A (PKA). We now report that IL10R signalling leads to STAT3/SHIP1 dependent expression of the EP4 receptor for prostaglandin E2 (PGE2). In macrophages, EP4 is a Gαs-protein coupled receptor that stimulates adenylate cyclase (AC) production of cAMP, leading to downstream activation of protein kinase A (PKA) and phosphorylation of the CREB transcription factor. IL10 induction of phospho-CREB and inhibition of LPS-induced phosphorylation of p85 PI3K and p70 S6 kinase required the presence of EP4. These data suggest that IL10R activation of STAT3/SHIP1 enhances EP4 expression, and that it is EP4 which activates cAMP-dependent signalling. The coordination between IL10R and EP4 signalling also provides an explanation for why cAMP elevating agents synergize with IL10 to elicit anti-inflammatory responses.


Assuntos
Dinoprostona/metabolismo , Interleucina-10/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ocitócicos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Células RAW 264.7 , Receptores de Prostaglandina E Subtipo EP4/genética , Fator de Transcrição STAT3/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA