Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.783
Filtrar
1.
Nat Commun ; 12(1): 5183, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465776

RESUMO

Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients.


Assuntos
Linfoma Plasmablástico/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Amplificação de Genes , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Linfoma Plasmablástico/metabolismo , Linfoma Plasmablástico/mortalidade , Linfoma Plasmablástico/terapia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Translocação Genética , Sequenciamento Completo do Exoma , Adulto Jovem
2.
J Transl Med ; 19(1): 379, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488791

RESUMO

BACKGROUND: Since interferon regulatory factor (IRF) family functions in immune response to viral infection, its role in colorectal cancer (CRC) has not been inspected before. This study tries to investigate members of IRF family using bioinformatics approaches in aspect of differential expressions, biological function, tumor immune infiltration and clinical prognostic value for patients with CRC. METHODS: Transcriptome profiles data, somatic mutations and clinical information of CRC were obtained from COAD/READ dataset of The Cancer Genome Atlas (TCGA) as a training set. Gene expression data (GSE17536 and GSE39582) were downloaded from the Gene Expression Omnibus as a validating set. A random forest algorithm was used to score the risk for every case. Analyzing gene and function enrichment, constructing protein-protein interaction and noncoding RNA network, identifying hub-gene, characterizing tumor immune infiltration, evaluating differences in tumor mutational burden (TMB) and sensitivity to chemotherapeutics or immunotherapy were performed by a series of online tools and R packages. Immunohistochemical (IHC) examinations were carried out validation in tissue samples. RESULTS: Principal-component analysis (PCA) suggested that the transcript expression levels of nine members of IRF family differed between normal colorectum and CRC. The risk score constructed by IRF family not only acted as an independent factor for predicting survival in CRC patients with different biological processes, signaling pathways and TMB, but also indicated different immunotherapy response with diverse immune and stromal cells infiltration. IRF3 and IRF7 were upregulated in CRC and suggested a shorter survival time in patients with CRC. Differentially expressed members of IRF family exhibited varying degrees of immune cell infiltration. IHC analysis showed a positive association between IRF3 and IRF7 expression and tumor-infiltrating immune cells, including CD4+ T cell and CD68+ macrophages. CONCLUSIONS: On account of differential expression, IRF family members can help to predict both response to immunotherapy and clinical prognosis of patients with CRC. Our bioinformatic investigation not only gives a preliminary picture of the genetic features as well as tumor microenvironment, but it may provide a clue for further experimental exploration and verification on IRF family members in CRC.


Assuntos
Neoplasias Colorretais , Fatores Reguladores de Interferon , Biomarcadores Tumorais , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Prognóstico , Microambiente Tumoral
3.
J Clin Rheumatol ; 27(6S): S193-S197, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525002

RESUMO

INTRODUCTION: Jaccoud arthropathy (JA) is a nonerosive and deforming arthropathy experienced frequently by patients with systemic lupus erythematosus (SLE). Although genetic polymorphisms are associated with SLE development, the association between genetic polymorphisms and JA has not been studied to date. The main objective of this study was to evaluate an association between HLA, STAT4, IRF5, and BLK polymorphisms and the presence of JA in Brazilian individuals with SLE. METHODS: Patients were selected from a cohort of individuals with SLE followed at 2 rheumatology reference centers in Salvador, Bahia, Brazil. The JA diagnosis was based on clinical and radiological criteria. The participants were genotyped for rs9271100, rs7574865, rs10488631, and rs13277113 polymorphisms in the HLA, STAT4, IRF5, and BLK genes, respectively, using real-time polymerase chain reaction. The presence of JA was correlated with allele frequencies, and clinical and laboratory data. RESULTS: One hundred forty-four individuals with SLE (38 with JA and 106 with SLE without JA) were studied. The mean age of the patients was 45 ± 12 years; the majority were women and had brown skin. Patients with JA had a longer disease duration than patients without JA. Serositis and neuropsychiatric manifestations were more frequent in the JA population. The A allele of rs13277113 in the BLK gene was associated with the presence of JA. CONCLUSIONS: The rs13277113 polymorphism in the BLK gene was found to be a possible genetic risk for JA development. However, further studies in larger populations should be performed to confirm this finding.


Assuntos
Artropatias , Lúpus Eritematoso Sistêmico , Adulto , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Fatores Reguladores de Interferon , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Polimorfismo de Nucleotídeo Único
4.
J Immunol ; 207(7): 1798-1811, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470852

RESUMO

Cell division is an essential component of B cell differentiation to Ab-secreting plasma cells, with critical reprogramming occurring during the initial stages of B cell activation. However, a complete understanding of the factors that coordinate early reprogramming events in vivo remain to be determined. In this study, we examined the initial reprogramming by IRF4 in activated B cells using an adoptive transfer system and mice with a B cell-specific deletion of IRF4. IRF4-deficient B cells responding to influenza, 4-hydroxy-3-nitrophenylacetyl-Ficoll, and LPS divided but stalled during the proliferative response. Gene expression profiling of IRF4-deficient B cells at discrete divisions revealed IRF4 was critical for inducing MYC target genes, oxidative phosphorylation, and glycolysis. Moreover, IRF4-deficient B cells maintained an inflammatory gene expression signature. Complementary chromatin accessibility analyses established a hierarchy of IRF4 activity and identified networks of dysregulated transcription factor families in IRF4-deficient B cells, including E-box binding bHLH family members. Indeed, B cells lacking IRF4 failed to fully induce Myc after stimulation and displayed aberrant cell cycle distribution. Furthermore, IRF4-deficient B cells showed reduced mTORC1 activity and failed to initiate the B cell activation unfolded protein response and grow in cell size. Myc overexpression in IRF4-deficient cells was sufficient to overcome the cell growth defect. Together, these data reveal an IRF4-MYC-mTORC1 relationship critical for controlling cell growth and the proliferative response during B cell differentiation.


Assuntos
Linfócitos B , Fatores Reguladores de Interferon , Animais , Linfócitos B/metabolismo , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
5.
Mol Cell ; 81(17): 3445-3446, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478652

RESUMO

In this issue of Molecular Cell, Cao et al. (2021) report that AML cells are specifically addicted to an IRF8-MEF2D gene expression network. Furthermore, they identify a chromatin reader, ZMYND8, as the upstream regulator of the IRF8-MEF2D program whose activity is critical for AML cell survival.


Assuntos
Leucemia Mieloide Aguda , Proteínas Supressoras de Tumor , Cromatina , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Supressoras de Tumor/genética
6.
J Transl Med ; 19(1): 362, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419106

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease with a complicated pathogenesis, and its aetiology has not been clearly unveiled. The lack of effective diagnosis and treatment methods makes it necessary to explore the molecular mechanism of SLE. We aimed to identify some critical signalling pathways and key competing endogenous RNAs (ceRNAs) underlying the molecular mechanism of SLE and to map out the systematic signalling networks by integrating the data on different kinds of RNAs. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from both SLE patients and healthy subjects, RNA was extracted from the PBMCs, and RNA libraries including ribosomal RNA-depleted strand-specific libraries and small RNA libraries were built for deep RNA sequencing (RNA-seq). RNA-seq yielded differential expression profiles of lncRNAs/circRNAs/miRNAs/mRNAs related to SLE. The DAVID database (v. 6.8) was employed for Gene Ontology (GO) and KEGG pathway analysis. ceRNA networks (circRNA/lncRNA-miRNA-mRNA) were constructed and visualized using Cytoscape software (v. 3.5.0). The TargetScan and miRanda databases were used to predict target relationships in ceRNA networks. qRT-PCR was used to verify our data. RESULTS: Differential expression of ceRNAs related to SLE was detected in SLE patients' PBMCs: 644 mRNAs (384 upregulated, 260 downregulated), 326 miRNAs (223 upregulated, 103 downregulated), 221 lncRNAs (79 upregulated, 142 downregulated), and 31 circRNAs (21 upregulated, 10 downregulated). We drew ceRNA signalling networks made up of the differentially expressed mRNAs/miRNAs/lncRNAs/circRNAs mentioned above, and the hub genes included IRF5, IFNAR2, TLR7, IRAK4, STAT1, STAT2, C2, and Tyk2. These hub genes were involved in ceRNA signalling pathways, such as the IL-17 signalling pathway and type I interferon signalling pathway. CONCLUSIONS: We explored the differential expression profiles of various kinds of ceRNAs and integrated signalling networks constructed by ceRNAs. Our findings offer new insights into the pathogenesis of SLE and hint at therapeutic strategies.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , RNA Longo não Codificante , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
7.
J Immunol ; 207(5): 1298-1309, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362833

RESUMO

Intralesional therapy is a promising approach for remodeling the immunosuppressive tumor microenvironment while minimizing systemic toxicities. A combinatorial in situ immunomodulation (ISIM) regimen with intratumoral administration of Fms-like tyrosine kinase 3 ligand (Flt3L), local irradiation, and TLR3/CD40 stimulation induces and activates conventional type 1 dendritic cells in the tumor microenvironment and elicits de novo adaptive T cell immunity in poorly T cell-inflamed tumors. However, the impact of ISIM on myeloid-derived suppressor cells (MDSCs), which may promote treatment resistance, remains unknown. In this study, we examined changes in the frequencies and heterogeneity of CD11b+Ly-6CloLy-6G+ polymorphonuclear (PMN)-MDSCs and CD11b+Ly-6ChiLy-6G- monocytic (M)-MDSCs in ISIM-treated tumors using mouse models of triple-negative breast cancer. We found that ISIM treatment decreased intratumoral PMN-MDSCs, but not M-MDSCs. Although the frequency of M-MDSCs remained unchanged, ISIM caused a substantial reduction of CX3CR1+ M-MDSCs that express F4/80. Importantly, these ISIM-induced changes in tumor-residing MDSCs were not observed in Batf3-/- mice. ISIM upregulated PD-L1 expression in both M-MDSCs and PMN-MDSCs and synergized with anti-PD-L1 therapy. Furthermore, ISIM increased the expression of IFN regulatory factor 8 (IRF8) in myeloid cells, a known negative regulator of MDSCs, indicating a potential mechanism by which ISIM decreases PMN-MDSC levels. Accordingly, ISIM-mediated reduction of PMN-MDSCs was not observed in mice with conditional deletion of IRF8 in myeloid cells. Altogether, these findings suggest that ISIM holds promise as a multimodal intralesional therapy to alter both lymphoid and myeloid compartments of highly aggressive poorly T cell-inflamed, myeloid-enriched tumors resistant to anti-PD-L1 therapy.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Fatores Reguladores de Interferon/metabolismo , Neoplasias Mamárias Animais/terapia , Proteínas de Membrana/uso terapêutico , Células Supressoras Mieloides/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1 , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Resistência a Medicamentos , Regulação da Expressão Gênica , Humanos , Injeções Intralesionais , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Radioterapia , Proteínas Repressoras/genética , Receptor 3 Toll-Like/metabolismo , Microambiente Tumoral
8.
Fish Shellfish Immunol ; 117: 240-247, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418555

RESUMO

The cytosolic DNA-sensing immune response is essential for recognizing and establishing an effective host immune response to pathogens. However, the importance of the cytosolic signalling molecules responsible for facilitating an appropriate immune response following infection with a DNA virus in shrimps remains unknown. Here, we report the discovery of the Penaeus monodon stimulator of interferon gene (PmSTING) and interferon regulatory factor (PmIRF) genes and their important roles in the host defense against viral infection. High expression levels of PmSTING transcripts were detected in the midgut, hepatopancreas, and hindgut, with lower levels in foregut, while PmIRF was highly expressed in the hindgut, foregut, and hepatopancreas of P. monodon. The mRNA expression level of both PmSTING and PmIRF was up-regulated in the foregut in response to white spot syndrome virus (WSSV; dsDNA virus) infection. RNA-interference-mediated gene silencing of PmSTING and PmIRF rendered shrimps to be more susceptible to WSSV infection; suppression of PmIRF decreased the mRNA transcript level of PmSTING; and silencing of the cytosolic sensor PmDDX41 suppressed both PmSTING and PmIRF gene transcript levels. Thus, PmSTING and PmIRF are likely to be important for the antiviral innate response against the dsDNA WSSV pathogen and may mediate the antiviral immune defenses via PmDDX41/PmSTING/PmIRF signaling cascade in P. monodon.


Assuntos
Proteínas de Artrópodes/imunologia , Infecções por Vírus de DNA/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas de Membrana/imunologia , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/veterinária , Fatores Reguladores de Interferon/genética , Proteínas de Membrana/genética , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia
9.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439814

RESUMO

Vitamin C is well documented to have antiviral functions; however, there is limited information about its effect on airway epithelial cells-the first cells to encounter infections. Here, we examined the effect of vitamin C on human bronchial epithelium transformed with Ad12-SV40 2B (BEAS-2B) cells, and observed that sodium-dependent vitamin C transporter 2 (SVCT2) was the primary vitamin C transporter. Transcriptomic analysis revealed that treating BEAS-2B cells with vitamin C led to a significant upregulation of several metabolic pathways and interferon-stimulated genes (ISGs) along with a downregulation of pathways involved in lung injury and inflammation. Remarkably, vitamin C also enhanced the expression of the viral-sensing receptors retinoic acid-inducible gene 1 (RIG-1) and melanoma differentiation-associated protein 5 (MDA-5), which was confirmed at the protein and functional levels. In addition, the lungs of l-gulono-γ-lactone oxidase knockout (GULO-KO) mice also displayed a marked decrease in these genes compared to wild-type controls. Collectively, our findings indicate that vitamin C acts at multiple levels to exert its antiviral and protective functions in the lungs.


Assuntos
Antivirais/farmacologia , Ácido Ascórbico/farmacologia , Células Epiteliais/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/genética , Receptores do Ácido Retinoico/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Animais , Transporte Biológico , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular Transformada , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , L-Gulonolactona Oxidase/deficiência , L-Gulonolactona Oxidase/genética , Camundongos , Camundongos Knockout , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Poli I-C/antagonistas & inibidores , Poli I-C/farmacologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Transcriptoma
10.
Oncoimmunology ; 10(1): 1939601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249474

RESUMO

Although pharmacological stimulation of TLRs has anti-tumor effects, it has not been determined whether endogenous stimulation of TLRs can lead to tumor rejection. Herein, we demonstrate the existence of an innate anti-glioma NK-mediated circuit initiated by glioma-released miR-1983 within exosomes, and which is under the regulation of galectin-1 (Gal-1). We demonstrate that miR-1983 is an endogenous TLR7 ligand that activates TLR7 in pDCs and cDCs through a 5'-UGUUU-3' motif at its 3' end. TLR7 activation and downstream signaling through MyD88-IRF5/IRF7 stimulates secretion of IFN-ß. IFN-ß then stimulates NK cells resulting in the eradication of gliomas. We propose that successful immunotherapy for glioma could exploit this endogenous innate immune circuit to activate TLR7 signaling and stimulate powerful anti-glioma NK activity, at least 10-14 days before the activation of anti-tumor adaptive immunity.


Assuntos
Galectina 1 , Glioma , Receptor 7 Toll-Like , Galectina 1/genética , Glioma/genética , Humanos , Fatores Reguladores de Interferon , Interferon beta , Células Matadoras Naturais/metabolismo , Licenciamento , MicroRNAs , Receptor 7 Toll-Like/genética
11.
J Agric Food Chem ; 69(28): 7898-7909, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34227806

RESUMO

Tea polyphenol of epigallocatechin-3-gallate (EGCG) has been verified to possess multiple biological activities. Interleukin-23 (IL-23) is a heterodimeric cytokine consisting of two subunits of IL-23p19 and IL-12p40, with the functionality in regulating the production of cytokines under physiological or pathological conditions. By serendipity, the raised expression of IL-23 was observed after treating cells with EGCG, whereas the detailed mechanism remains poorly understood. This study was proposed to investigate the signaling related to EGCG-induced IL-23. The raised expression of IL-23 was confirmed primarily by intraperitoneally injecting with different concentrations of EGCG (0, 20, 50, 80 mg/kg) into BALB/c mice, and the raised expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results from enzyme-linked immunosorbent assay (ELISA) revealed the increase of IL-23 in serum from 116.09 to 153.90 pg/mL after treating with EGCG. The same results were also observed in RAW264.7 and peritoneal macrophages after treating with EGCG (0, 1, 5, 10, 25 µM) with the increased tendency of IL-23 in cultural medium (7.98 to 25.38 pg/mL for RAW264.7; 3.64 to 260.93 pg/mL for peritoneal macrophages). After preliminary exploration of the signaling related to the increased IL-23, the classical signaling pathways and key transcription factors, such as nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathways, and interferon regulatory factor 5 (IRF5), were demonstrated with no relevant contribution. A further study revealed the involvement of the key transcription factor of BATF2, which could antagonistically modulate the transcription and translation of IL-23. The signaling of STAT3-BATF2-c-JUN/ATF2-IL-23 has been further verified in RAW264.7 macrophages using the STAT3 inhibitor of AG490 and the activator of Colivelin TFA. The results indicated that EGCG inhibits the phosphorylation of STAT3 to facilitate the decreased level of BATF2, which contributed to the increased level of IL-23 by the enhancing heterodimerization of c-JUN and ATF2.


Assuntos
Catequina , Interleucina-23 , Fator 2 Ativador da Transcrição , Animais , Fatores de Transcrição de Zíper de Leucina Básica , Catequina/análogos & derivados , Fatores Reguladores de Interferon , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun , Fator de Transcrição STAT3
12.
Nat Commun ; 12(1): 4379, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282144

RESUMO

The transcription factor IRF5 has been implicated as a therapeutic target for the autoimmune disease systemic lupus erythematosus (SLE). However, IRF5 activation status during the disease course and the effects of IRF5 inhibition after disease onset are unclear. Here, we show that SLE patients in both the active and remission phase have aberrant activation of IRF5 and interferon-stimulated genes. Partial inhibition of IRF5 is superior to full inhibition of type I interferon signaling in suppressing disease in a mouse model of SLE, possibly due to the function of IRF5 in oxidative phosphorylation. We further demonstrate that inhibition of IRF5 via conditional Irf5 deletion and a newly developed small-molecule inhibitor of IRF5 after disease onset suppresses disease progression and is effective for maintenance of remission in mice. These results suggest that IRF5 inhibition might overcome the limitations of current SLE therapies, thus promoting drug discovery research on IRF5 inhibitors.


Assuntos
Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Autoanticorpos/imunologia , Doenças Autoimunes , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Imunoglobulina G , Fatores Reguladores de Interferon/efeitos dos fármacos , Rim/patologia , Lúpus Eritematoso Sistêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta , Transdução de Sinais , Fatores de Transcrição , Quinases da Família src
13.
Nat Immunol ; 22(9): 1093-1106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282331

RESUMO

Neutrophils display distinct gene expression patters depending on their developmental stage, activation state and tissue microenvironment. To determine the transcription factor networks that shape these responses in a mouse model, we integrated transcriptional and chromatin analyses of neutrophils during acute inflammation. We showed active chromatin remodeling at two transition stages: bone marrow-to-blood and blood-to-tissue. Analysis of differentially accessible regions revealed distinct sets of putative transcription factors associated with control of neutrophil inflammatory responses. Using ex vivo and in vivo approaches, we confirmed that RUNX1 and KLF6 modulate neutrophil maturation, whereas RELB, IRF5 and JUNB drive neutrophil effector responses and RFX2 and RELB promote survival. Interfering with neutrophil activation by targeting one of these factors, JUNB, reduced pathological inflammation in a mouse model of myocardial infarction. Therefore, our study represents a blueprint for transcriptional control of neutrophil responses in acute inflammation and opens possibilities for stage-specific therapeutic modulation of neutrophil function in disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Inflamação/imunologia , Neutrófilos/imunologia , Ativação Transcricional/genética , Animais , Células CHO , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cricetulus , Feminino , Fatores Reguladores de Interferon/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Fatores de Transcrição de Fator Regulador X/metabolismo , Fator de Transcrição RelB/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética/genética
14.
Cancer Sci ; 112(10): 3995-4004, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310776

RESUMO

Multiple myeloma (MM) is a refractory plasma cell tumor. In myeloma cells, the transcription factor IRF4, the master regulator of plasma cells, is aberrantly upregulated and plays an essential role in oncogenesis. IRF4 forms a positive feedback loop with MYC, leading to additional tumorigenic properties. In recent years, molecular targeted therapies have contributed to a significant improvement in the prognosis of MM. Nevertheless, almost all patients experience disease progression, which is thought to be a result of treatment resistance induced by various elements of the bone marrow microenvironment. Among these, the hypoxic response, one of the key processes for cellular homeostasis, induces hypoxia-adapted traits such as undifferentiation, altered metabolism, and dissemination, leading to drug resistance. These inductions are caused by ectopic gene expression changes mediated by the activation of hypoxia-inducible factors (HIFs). By contrast, the expression levels of IRF4 and MYC are markedly reduced by hypoxic stress. Notably, an anti-apoptotic capability is usually acquired under both normoxic and hypoxic conditions, but the mechanism is distinct. This fact strongly suggests that myeloma cells may survive by switching their dependent regulatory factors from IRF4 and MYC (normoxic bone marrow region) to HIF (hypoxic bone marrow microenvironment). Therefore, to achieve deep remission, combination therapeutic agents, which are complementarily effective against both IRF4-MYC-dominant and HIF-dominated fractions, may become an important therapeutic strategy for MM.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Hipóxia Tumoral/fisiologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/fisiologia , Desdiferenciação Celular , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Microambiente Celular/fisiologia , MicroRNA Circulante/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/fisiologia , Retroalimentação Fisiológica , Glicólise/fisiologia , Hexoquinase/metabolismo , Homeostase , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores Imunológicos/uso terapêutico , Fatores Reguladores de Interferon/genética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular/métodos , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Oxigênio , Pressão Parcial , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/antagonistas & inibidores , Regulação para Cima
15.
Mol Immunol ; 137: 202-211, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280770

RESUMO

Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a negative regulatory factor of interferon (IFN) and plays an important role in cell differentiation and innate immunity in mammals. In recent years, some irf8 homologous genes have been cloned and confirmed to take part in innate immune response in fish, but the mechanism still remains unclear. In this paper, a grass carp (Ctenopharyngodon idella) irf8 gene (Ciirf8) was cloned and characterized. The deduced protein (CiIRF8) possesses a highly conserved N-terminal DNA binding domain but a less well-conserved C-terminal IRF association domain (IAD). Ciirf8 was widely expressed in all tested tissues of grass carp and up-regulated following poly(I:C) stimulation. Ciirf8 expression was also up-regulated in CIK cells upon treatment with poly(I:C). To explore the molecular mechanism of how fish IRF8 regulates ifn1 expression, the similarities and differences of grass carp IRF8 and IRF2 were compared and contrasted. Subcellular localization analysis showed that CiIRF8 is located both in the cytoplasm and nucleus; however, CiIRF2 is only located in the nucleus. The nuclear-cytoplasmic translocation of CiIRF8 was observed in CIK cells under stimulation with poly(I:C). The interaction of CiIRF8 and CiIRF2 was further confirmed by a co-immunoprecipitation assay in the nucleus. Dual-luciferase reporter assays showed that the promoter activity of Ciifn1 was significantly inhibited by co-transfection with CiIRF2 and CiIRF8. The transcription inhibition of Ciifn1 was alleviated by competitive binding of CiIRF2 and CiIRF8 to CiIRF1. In conclusion, CiIRF8 down-regulates Ciifn1 expression via interaction with CiIRF2 in cells.


Assuntos
Carpas/genética , Regulação para Baixo/genética , Proteínas de Peixes/genética , Fator Regulador 2 de Interferon/genética , Fatores Reguladores de Interferon/genética , Interferons/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Imunidade Inata/genética , Poli I-C/genética , Regiões Promotoras Genéticas/genética , Transcrição Genética/genética , Regulação para Cima/genética
16.
Am J Hum Genet ; 108(9): 1631-1646, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293285

RESUMO

Although expression quantitative trait loci (eQTLs) have been powerful in identifying susceptibility genes from genome-wide association study (GWAS) findings, most trait-associated loci are not explained by eQTLs alone. Alternative QTLs, including DNA methylation QTLs (meQTLs), are emerging, but cell-type-specific meQTLs using cells of disease origin have been lacking. Here, we established an meQTL dataset by using primary melanocytes from 106 individuals and identified 1,497,502 significant cis-meQTLs. Multi-QTL colocalization with meQTLs, eQTLs, and mRNA splice-junction QTLs from the same individuals together with imputed methylome-wide and transcriptome-wide association studies identified candidate susceptibility genes at 63% of melanoma GWAS loci. Among the three molecular QTLs, meQTLs were the single largest contributor. To compare melanocyte meQTLs with those from malignant melanomas, we performed meQTL analysis on skin cutaneous melanomas from The Cancer Genome Atlas (n = 444). A substantial proportion of meQTL probes (45.9%) in primary melanocytes is preserved in melanomas, while a smaller fraction of eQTL genes is preserved (12.7%). Integration of melanocyte multi-QTLs and melanoma meQTLs identified candidate susceptibility genes at 72% of melanoma GWAS loci. Beyond GWAS annotation, meQTL-eQTL colocalization in melanocytes suggested that 841 unique genes potentially share a causal variant with a nearby methylation probe in melanocytes. Finally, melanocyte trans-meQTLs identified a hotspot for rs12203592, a cis-eQTL of a transcription factor, IRF4, with 131 candidate target CpGs. Motif enrichment and IRF4 ChIP-seq analysis demonstrated that these target CpGs are enriched in IRF4 binding sites, suggesting an IRF4-mediated regulatory network. Our study highlights the utility of cell-type-specific meQTLs.


Assuntos
Redes Reguladoras de Genes , Fatores Reguladores de Interferon/genética , Melanócitos/metabolismo , Melanoma/genética , Locos de Características Quantitativas , Neoplasias Cutâneas/genética , Alelos , Atlas como Assunto , Cromatina/química , Cromatina/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Fatores Reguladores de Interferon/metabolismo , Masculino , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma
17.
Nat Immunol ; 22(8): 983-995, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34282330

RESUMO

The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1; Fos-Jun) cooperate to promote the effector functions of T cells, but NFAT in the absence of AP-1 imposes a negative feedback program of T cell hyporesponsiveness (exhaustion). Here, we show that basic leucine zipper ATF-like transcription factor (BATF) and interferon regulatory factor 4 (IRF4) cooperate to counter T cell exhaustion in mouse tumor models. Overexpression of BATF in CD8+ T cells expressing a chimeric antigen receptor (CAR) promoted the survival and expansion of tumor-infiltrating CAR T cells, increased the production of effector cytokines, decreased the expression of inhibitory receptors and the exhaustion-associated transcription factor TOX and supported the generation of long-lived memory T cells that controlled tumor recurrence. These responses were dependent on BATF-IRF interaction, since cells expressing a BATF variant unable to interact with IRF4 did not survive in tumors and did not effectively delay tumor growth. BATF may improve the antitumor responses of CAR T cells by skewing their phenotypes and transcriptional profiles away from exhaustion and towards increased effector function.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fatores Reguladores de Interferon/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Recidiva Local de Neoplasia/imunologia , Fator de Transcrição AP-1/metabolismo
18.
Front Immunol ; 12: 665773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108966

RESUMO

The COVID-19 pandemic has caused more than three million deaths globally. The severity of the disease is characterized, in part, by a dysregulated immune response. CD16+ monocytes are innate immune cells involved in inflammatory responses to viral infections, and tissue repair, among other functions. We characterized the transcriptional changes in CD16+ monocytes from PBMC of people with COVID-19, and from healthy individuals using publicly available single cell RNA sequencing data. CD16+ monocytes from people with COVID-19 compared to those from healthy individuals expressed transcriptional changes indicative of increased cell activation, and induction of a migratory phenotype. We also analyzed COVID-19 cases based on severity of the disease and found that mild cases were characterized by upregulation of interferon response and MHC class II related genes, whereas the severe cases had dysregulated expression of mitochondrial and antigen presentation genes, and upregulated inflammatory, cell movement, and apoptotic gene signatures. These results suggest that CD16+ monocytes in people with COVID-19 contribute to a dysregulated host response characterized by decreased antigen presentation, and an elevated inflammatory response with increased monocytic infiltration into tissues. Our results show that there are transcriptomic changes in CD16+ monocytes that may impact the functions of these cells, contributing to the pathogenesis and severity of COVID-19.


Assuntos
COVID-19/virologia , Monócitos/virologia , Receptores de IgG/metabolismo , SARS-CoV-2/patogenicidade , Transcrição Genética , Transcriptoma , Adulto , Idoso , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , Estudos de Casos e Controles , Citocinas/genética , Citocinas/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , RNA-Seq , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Análise de Célula Única , Adulto Jovem
19.
Front Immunol ; 12: 628375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113337

RESUMO

Background: Interferon beta (IFNß) has been prescribed as a first-line disease-modifying therapy for relapsing-remitting multiple sclerosis (RRMS) for nearly three decades. However, there is still a lack of treatment response markers that correlate with the clinical outcome of patients. Aim: To determine a combination of cellular and molecular blood signatures associated with the efficacy of IFNß treatment using an integrated approach. Methods: The immune status of 40 RRMS patients, 15 of whom were untreated and 25 that received IFNß1a treatment (15 responders, 10 non-responders), was investigated by phenotyping regulatory CD4+ T cells and naïve/memory T cell subsets, by measurement of circulating IFNα/ß proteins with digital ELISA (Simoa) and analysis of ~600 immune related genes including 159 interferon-stimulated genes (ISGs) with the Nanostring technology. The potential impact of HLA class II gene variation in treatment responsiveness was investigated by genotyping HLA-DRB1, -DRB3,4,5, -DQA1, and -DQB1, using as a control population the Milieu Interieur cohort of 1,000 French healthy donors. Results: Clinical responders and non-responders displayed similar plasma levels of IFNß and similar ISG profiles. However, non-responders mainly differed from other subject groups with reduced circulating naïve regulatory T cells, enhanced terminally differentiated effector memory CD4+ TEMRA cells, and altered expression of at least six genes with immunoregulatory function. Moreover, non-responders were enriched for HLA-DQB1 genotypes encoding DQ8 and DQ2 serotypes. Interestingly, these two serotypes are associated with type 1 diabetes and celiac disease. Overall, the immune signatures of non-responders suggest an active disease that is resistant to therapeutic IFNß, and in which CD4+ T cells, likely restricted by DQ8 and/or DQ2, exert enhanced autoreactive and bystander inflammatory activities.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Variação Genética , Cadeias beta de HLA-DQ/genética , Fatores Imunológicos/uso terapêutico , Interferon beta-1a/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Cadeias beta de HLA-DQ/imunologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Fenótipo , Falha de Tratamento , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34108245

RESUMO

Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1ß, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.


Assuntos
Hipóxia Celular/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Monócitos/imunologia , COVID-19/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Monócitos/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...