Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Gene ; 747: 144672, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305634

RESUMO

Brain and muscle Arnt-like protein-1 (BMAL1) is a clock gene that plays an important role in hormone secretion and apoptosis, but its effect on Leydig cells is unidentified. Here the role of BMAL1 in apoptosis and testosterone secretion in TM3 Leydig cell line were investigated by inhibiting its expression using small interfering RNA (siRNA). Results showed that BMAL1 knockdown promoted the apoptosis of Leydig cells and expression of (BCL2 associated X) BAX mRNA and protein, and reduced the expression of (B-cell lymphoma-2) BCL-2 mRNA and protein. BMAL1 inhibition resulted in decreased testosterone secretion and reduced expression of key genes during hormone synthesis, specifically steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD). In addition, BMAL1 knockdown reduced the expression of phosphorylated p85 and AKT as confirmed by western blot. In conclusion, BMAL1 may affect testosterone secretion and apoptosis in mouse Leydig cells through regulation of the PI3K/AKT signaling pathway.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Apoptose , Técnicas de Silenciamento de Genes , Testosterona/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Apoptose/genética , Linhagem Celular , Regulação da Expressão Gênica , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Testosterona/biossíntese , Transcrição Genética
2.
Science ; 367(6479): 800-806, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054765

RESUMO

Circadian (~24 hour) clocks have a fundamental role in regulating daily physiology. The transcription factor BMAL1 is a principal driver of a molecular clock in mammals. Bmal1 deletion abolishes 24-hour activity patterning, one measure of clock output. We determined whether Bmal1 function is necessary for daily molecular oscillations in skin fibroblasts and liver slices. Unexpectedly, in Bmal1 knockout mice, both tissues exhibited 24-hour oscillations of the transcriptome, proteome, and phosphoproteome over 2 to 3 days in the absence of any exogenous drivers such as daily light or temperature cycles. This demonstrates a competent 24-hour molecular pacemaker in Bmal1 knockouts. We suggest that such oscillations might be underpinned by transcriptional regulation by the recruitment of ETS family transcription factors, and nontranscriptionally by co-opting redox oscillations.


Assuntos
Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fígado/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Deleção de Genes , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteoma/fisiologia , Transcrição Genética , Transcriptoma/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(3): 1543-1551, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900362

RESUMO

The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1-/- macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1-/- macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function.


Assuntos
Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/genética , Movimento Celular/efeitos dos fármacos , Resistência à Doença/genética , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pneumonia Pneumocócica/metabolismo , Actinas/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Citoesqueleto , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Streptococcus pneumoniae/patogenicidade , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Phytomedicine ; 67: 153161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31911401

RESUMO

BACKGROUND: Therapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest. PURPOSE: We aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity. METHODS: Toxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1-/-) mice. RESULTS: Fuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2­hydroxyl­MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2­hydroxyl­MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism. CONCLUSIONS: Fuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach.


Assuntos
Aconitum/química , Relógios Circadianos/efeitos dos fármacos , Extratos Vegetais/farmacocinética , Extratos Vegetais/toxicidade , Fatores de Transcrição ARNTL/genética , Aconitina/análogos & derivados , Aconitina/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão/métodos , Relógios Circadianos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microssomos Hepáticos/efeitos dos fármacos , Testes de Toxicidade/métodos
5.
Environ Pollut ; 258: 113735, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31864078

RESUMO

Apoptosis of vascular smooth muscle cells (VSMCs) accelerates manifestation of plaque vulnerability in atherosclerosis. Long noncoding RNA NEAT1 participates in the proliferation and apoptosis of cells. In addition, circadian clock genes play a significant role in cell apoptosis. However, whether acrolein, an environmental pollutant, affects the apoptosis of VSMCs by regulating NEAT1 and clock genes is still elusive. We established VSMCs as an atherosclerotic cell model in vitro. Acrolein exposure reduced survival rate of VSMCs, and raised apoptosis percentage through upregulating the expression of Bax, Cytochrome c and Cleaved caspase-3 and downregulating Bcl-2. Asparagus extract (AE), as a dietary supplementation, was able to protect VSMCs against acrolein-induced apoptosis. Expression of NEAT1, Bmal1 and Clock was decreased by acrolein, while was ameliorated by AE. Knockdown of NEAT1, Bmal1 or Clock promoted VSMCs apoptosis by regulating Bax, Bcl-2, Cytochrome c and Caspase-3 levels. Correspondingly, overexpression of NEAT1 inhibited the apoptosis. We also observed that silence of NEAT1 repressed the expression of Bmal1/Clock and vice versa. In this study, we demonstrated that VSMCs apoptosis induced by acrolein was associated with downregulation of NEAT1 and Bmal1/Clock. AE alleviated the effects of proapoptotic response and circadian disorders caused by acrolein, which shed a new light on cardiovascular protection.


Assuntos
Fatores de Transcrição ARNTL/genética , Acroleína/toxicidade , Apoptose , Proteínas CLOCK/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , RNA Longo não Codificante/genética , Asparagus (Planta)/química , Técnicas de Silenciamento de Genes , Humanos
6.
Nat Commun ; 10(1): 5766, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852900

RESUMO

Cognitive performance in people varies according to time-of-day, with memory retrieval declining in the late afternoon-early evening. However, functional roles of local brain circadian clocks in memory performance remains unclear. Here, we show that hippocampal clock controlled by the circadian-dependent transcription factor BMAL1 regulates time-of-day retrieval profile. Inducible transgenic dominant negative BMAL1 (dnBMAL1) expression in mouse forebrain or hippocampus disrupted retrieval of hippocampal memories at Zeitgeber Time 8-12, independently of retention delay, encoding time and Zeitgeber entrainment cue. This altered retrieval profile was associated with downregulation of hippocampal Dopamine-cAMP signaling in dnBMAL1 mice. These changes included decreases in Dopamine Receptors (D1-R and D5-R) and GluA1-S845 phosphorylation by PKA. Consistently, pharmacological activation of cAMP-signals or D1/5Rs rescued impaired retrieval in dnBMAL1 mice. Importantly, GluA1 S845A knock-in mice showed similar retrieval deficits with dnBMAL1 mice. Our findings suggest mechanisms underlying regulation of retrieval by hippocampal clock through D1/5R-cAMP-PKA-mediated GluA1 phosphorylation.


Assuntos
Relógios Circadianos/fisiologia , Hipocampo/metabolismo , Rememoração Mental/fisiologia , Receptores de AMPA/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Feminino , Técnicas de Introdução de Genes , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Modelos Animais , Fosforilação/fisiologia
7.
DNA Cell Biol ; 38(12): 1437-1443, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31580742

RESUMO

The connection between cancer and circadian rhythms has garnered recent attention. BMAL1 is a core factor in the regulation of circadian rhythms, and its variants have frequently been associated with human diseases, including cancer. Our study first clarifies the relationship of three single-nucleotide polymorphisms (rs3816360, rs2290035, and rs3816358) in BMAL1 with the risk of lung cancer, as well as the gene-environment interaction between the polymorphisms and tobacco exposure in a Northeast Chinese population. A case-control study of 409 new diagnosis patients and 417 controls was performed in Shenyang, Liaoning province. The gene-environment interactions were explored on both additive and multiplicative scale. After Bonferroni correction, rs3816360 and rs2290035 were evidently associated with lung cancer risk. For rs3816360, subjects carrying CC (adjusted odds ratio [OR] = 2.163, 95% confidence interval [CI] = 1.413-3.310, p = 0.004) genotype showed an increased risk of lung cancer compared to the subjects carrying homozygous TT genotype. As for rs2290035, homozygous carriers of AA genotype (OR = 1.908, 95% CI = 1.207-3.017, p = 0.006) showed a significantly increased risk of lung cancer. The dominant models and recessive models of rs3816360 and rs2290035 showed significant associations (p < 0.01). In the stratified analysis, our results revealed that rs3816360 and rs2290035 were associated with the risk of lung adenocarcinoma. However, rs3816358 polymorphism was not significantly associated with lung cancer risk. The measures of additive interaction and logistic models suggested that the gene-environment interactions were not statistically significant on both additive and multiplicative scales.


Assuntos
Fatores de Transcrição ARNTL/genética , Adenocarcinoma de Pulmão/genética , Grupo com Ancestrais do Continente Asiático/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Carcinoma de Pequenas Células do Pulmão/genética , Adenocarcinoma de Pulmão/epidemiologia , Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/epidemiologia , Carcinoma de Pequenas Células do Pulmão/patologia
8.
Nutrients ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546853

RESUMO

BACKGROUND: Dietary factors have significant effects on the brain, modulating mood, anxiety, motivation and cognition. To date, no attention has been paid to the consequences that the combination of ethanol (EtOH) and a high-fat diet (HFD) have on learning and mood disorders during adolescence. The aim of the present work was to evaluate the biochemical and behavioral consequences of ethanol binge drinking and an HFD consumption in adolescent mice. METHODS: Animals received either a standard diet or an HFD (ad libitum vs. binge pattern) in combination with ethanol binge drinking and were evaluated in anxiety and memory. The metabolic profile and gene expression of leptin receptors and clock genes were also evaluated. RESULTS: Excessive white adipose tissue and an increase in plasma insulin and leptin levels were mainly observed in ad libitum HFD + EtOH mice. An upregulation of the Lepr gene expression in the prefrontal cortex and the hippocampus was also observed in ad libitum HFD groups. EtOH-induced impairment on spatial memory retrieval was absent in mice exposed to an HFD, although the aversive memory deficits persisted. Mice bingeing on an HFD only showed an anxiolytic profile, without other alterations. We also observed a mismatch between Clock and Bmal1 expression in ad libitum HFD animals, which were mostly independent of EtOH bingeing. CONCLUSIONS: Our results confirm the bidirectional influence that occurs between the composition and intake pattern of a HFD and ethanol consumption during adolescence, even when the metabolic, behavioral and chronobiological effects of this interaction are dissociated.


Assuntos
Bulimia , Dieta Hiperlipídica , Etanol/toxicidade , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adiposidade , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Hipocampo/metabolismo , Aprendizagem/fisiologia , Leptina/sangue , Masculino , Camundongos , Transtornos do Humor/etiologia , Transtornos do Humor/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ganho de Peso
9.
Nature ; 574(7777): 254-258, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534216

RESUMO

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Assuntos
Encéfalo/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Homeostase/efeitos da radiação , Intestinos/imunologia , Intestinos/efeitos da radiação , Luz , Linfócitos/imunologia , Linfócitos/efeitos da radiação , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Encéfalo/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/imunologia , Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Comportamento Alimentar/efeitos da radiação , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Imunidade Inata/efeitos da radiação , Intestinos/citologia , Metabolismo dos Lipídeos , Linfócitos/metabolismo , Masculino , Camundongos , Fotoperíodo
10.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416128

RESUMO

The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut's cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.


Assuntos
Fatores de Transcrição ARNTL/genética , Canais de Cálcio Tipo L/metabolismo , Circulação Cerebrovascular/genética , Ritmo Circadiano , MicroRNAs/genética , Vasoconstrição/genética , Ausência de Peso , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Masculino , Modelos Biológicos , Ratos , Transdução de Sinais
11.
Endocrinology ; 160(10): 2215-2229, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398249

RESUMO

The circadian glucocorticoid (GC) rhythm is dependent on a molecular clock in the suprachiasmatic nucleus (SCN) and an adrenal clock that is synchronized by the SCN. To determine whether the adrenal clock modulates GC responses to stress, experiments used female and male Cyp11A1Cre/+::Bmal1Fl/Fl knockout [side-chain cleavage (SCC)-KO] mice, in which the core clock gene, Bmal1, is deleted in all steroidogenic tissues, including the adrenal cortex. Following restraint stress, female and male SCC-KO mice demonstrate augmented plasma corticosterone but not plasma ACTH. In contrast, following submaximal scruff stress, plasma corticosterone was elevated only in female SCC-KO mice. Adrenal sensitivity to ACTH was measured in vitro using acutely dispersed adrenocortical cells. Maximal corticosterone responses to ACTH were elevated in cells from female KO mice without affecting the EC50 response. Neither the maximum nor the EC50 response to ACTH was affected in male cells, indicating that female SCC-KO mice show a stronger adrenal phenotype. Parallel experiments were conducted using female Cyp11B2 (Aldosterone Synthase)Cre/+::Bmal1Fl/Fl mice and adrenal cortex-specific Bmal1-null (Ad-KO) mice. Plasma corticosterone was increased in Ad-KO mice following restraint or scruff stress, and in vitro responses to ACTH were elevated in adrenal cells from Ad-KO mice, replicating data from female SCC-KO mice. Gene analysis showed increased expression of adrenal genes in female SCC-KO mice involved in cell cycle control, cell adhesion-extracellular matrix interaction, and ligand receptor activity that could promote steroid production. These observations underscore a role for adrenal Bmal1 as an attenuator of steroid secretion that is most prominent in female mice.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Córtex Suprarrenal/metabolismo , Corticosterona/sangue , Glucocorticoides/metabolismo , Fatores de Transcrição ARNTL/genética , Hormônio Adrenocorticotrópico , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Feminino , Genótipo , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fatores Sexuais , Estresse Fisiológico
12.
Molecules ; 24(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408938

RESUMO

Resveratrol (RES) possesses anti-inflammatory and anti-oxidant activities, and it can prevent liver lipid metabolism disorders in obese and diabetic individuals. This study elucidated the mechanisms of brain and muscle Arnt-like protein-1 (Bmal1) in the protective effects of RES against liver lipid metabolism disorders. The results indicated that RES ameliorated free fatty acid (FFA)-induced (oleic acid (OA): palmitic acid (PA) = 2:1) glycolipid metabolic disorders in hepatocytes. Simultaneously, RES partially reverted the relatively shallow daily oscillations of FFA-induced circadian clock gene transcription and protein expression in HepG2 cells. RES also attenuated FFA-triggered reactive oxygen species (ROS) secretion and restored mitochondrial membrane potential consumption, as well as the restoration of mitochondrial respiratory complex expression. This study provides compelling evidence that RES controls intracellular lipid metabolic imbalance in a Bmal1-dependent manner. Overall, RES may serve as a promising natural nutraceutical for the regulation of lipid metabolic disorders relevant to the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Resveratrol/farmacologia , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relógios Circadianos/genética , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Homeostase/genética , Humanos , Metabolismo dos Lipídeos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Oleico/antagonistas & inibidores , Ácido Oleico/farmacologia , Ácido Palmítico/antagonistas & inibidores , Ácido Palmítico/farmacologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
J Agric Food Chem ; 67(36): 10089-10096, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31423784

RESUMO

Circadian rhythms are closely associated with metabolic homeostasis. Metabolic disorders can be alleviated by many bioactive components through controlling of clock gene expressions. Capsaicin has been demonstrated with many beneficial effects including anti-obesity and anti-insulin resistance activities, yet whether the rhythmic expression of circadian clock genes are involved in the regulation of redox imbalance and glucose metabolism disorder by capsaicin remains unclear. In this work, the insulin resistance was induced in HepG2 cells by treatment of glucosamine. Glucose uptake levels, reactive oxygen species, H2O2 production, and mitochondrial membrane potential (MMP) were measured with/without capsaicin cotreatment. The mRNA and protein expressions of core circadian clock genes were evaluated by RT-qPCR and western blot analysis. Our study revealed that circadian misalignment could be ameliorated by capsaicin. The glucosamine-induced cellular redox imbalance and glucose metabolism disorder were ameliorated by capsaicin in a Bmal1-dependent manner.


Assuntos
Capsaicina/administração & dosagem , Relógios Circadianos/efeitos dos fármacos , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Resistência à Insulina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/genética , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/fisiopatologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos
14.
Environ Toxicol ; 34(11): 1255-1262, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31298479

RESUMO

Progesterone (P4) is a biologically active steroid hormone that is involved in the regulation of oocyte growth and maturation, as well as development of the endometrium and implantation in the uterus of humans. It can also stimulate oocyte maturation in female fish, as well as spermatogenesis and sperm motility in male fish. Thus, P4 has been extensively used in human and animal husbandry as a typical progestin. However, P4 remaining in the water environment will pose a potential hazard to aquatic organisms. For example, it can interfere with sex differentiation and reproduction in aquatic vertebrates such as fish. Therefore, we investigated the effects of prolonged progesterone exposure on the expression of genes related to circadian rhythm signaling and the hypothalamic-pituitary-gonadal (HPG) axes in Yellow River Carp, which may have a potential impact on their sex differentiation. Our results suggested that P4 exposure altered the expression of genes related to circadian rhythm signaling, which can lead to disorders in the endocrine system and regulate the HPG axes-related activities. Furthermore, the expression of genes related to the HPG axes was also altered, which might affect gonadal development and the reproductive systems of Yellow River Carp. In addition, these changes may provide a plausible mechanism for the observed shifts in their sex ratio toward females.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Progesterona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Feminino , Gônadas/efeitos dos fármacos , Gônadas/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Razão de Masculinidade , Transcrição Genética/efeitos dos fármacos
15.
EBioMedicine ; 45: 139-154, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31300350

RESUMO

BACKGROUND: The identification of new biomarkers and the development of novel, targetable contexts of vulnerability are of urgent clinical need in drug-resistant metastatic colorectal cancer (mCRC). Aryl-Hydrocarbon-Receptor-Nuclear-Translocator-Like (ARNTL/BMAL1) is a circadian clock-regulated transcription factor promoting expression of genes involved in angiogenesis and tumour progression. We hypothesised that BMAL1 increases expression of the vascular endothelial growth factor A VEGFA gene and, thereby, confers resistance to anti-angiogenic therapy with bevacizumab (Beva), a clinically used antibody for neutralization of VEGFA. METHODS: PCR and immunohistochemistry were employed to assess BMAL1 expression in mice (C57BL/6 J Apcmin/+; BALB/c nu/nu xenografts) and CRC patients under combination chemotherapy with Beva. BMAL1 single nucleotide gene polymorphisms (SNPs) were analysed by DNA-microarray in clinical samples. BMAL1 functions were studied in human CRC cell lines using colorimetric growth, DNA-binding and reporter assays. FINDINGS: In murine CRCs, high BMAL1 expression correlated with poor preclinical response to Beva treatment. In CRC patients' tumours (n = 74), high BMAL1 expression was associated with clinical non-response to combination chemotherapy with Beva (*p = .0061) and reduced progression-free survival (PFS) [*p = .0223, Hazard Ratio (HR) = 1.69]. BMAL1 SNPs also correlated with shorter PFS (rs7396943, rs7938307, rs2279287) and overall survival (OS) [rs11022780, *p = .014, HR = 1.61]. Mechanistically, Nuclear-Receptor-Subfamily-1-Group-D-Member-1 (NR1D1/REVERBA) bound a - 672 bp Retinoic-Acid-Receptor-Related-Orphan-Receptor-Alpha-responsive-element (RORE) adjacent to a BMAL1 DNA-binding motif (E-box) in the VEGFA gene promoter, resulting in increased VEGFA synthesis and proliferation of human CRC cell lines. INTERPRETATION: BMAL1 was associated with Beva resistance in CRC. Inhibition of REVERBA-BMAL1 signalling may prevent resistance to anti-angiogenic therapy. FUND: This work was in part supported by the European Commission Seventh Framework Programme (Contract No. 278981 [ANGIOPREDICT]).


Assuntos
Fatores de Transcrição ARNTL/genética , Bevacizumab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Bevacizumab/efeitos adversos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Intervalo Livre de Progressão , Regiões Promotoras Genéticas/genética
16.
J Agric Food Chem ; 67(31): 8510-8519, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31294559

RESUMO

Acrylamide, mainly formed in Maillard browning reaction during food processing, causes defects in liver circadian clock and mitochondrial function by inducing oxidative stress. Resveratrol is a polyphenol that has powerful antioxidant and anti-inflammatory activity. However, the preventive effects of resveratrol on acrylamide-triggered oxidative damage and circadian rhythm disorders are unclear at the current stage. The present research revealed that resveratrol pretreatment prevented acrylamide-induced cell death, mitochondrial dysfunction, and inflammatory responses in HepG2 liver cells. Acrylamide significantly triggered disorders of circadian genes transcription and protein expressions including Bmal1 and Cry 1 in primary hepatocytes, which were prevented by resveratrol pretreatment. Moreover, we found that the beneficial effects of resveratrol on stimulating Nrf2/NQO-1 pathway and mitochondrial respiration complex expressions in acrylamide-treated cells were Bmal1-dependent. Similarly, the inhibitory effects of resveratrol on inflammation signaling NF-κB were Cry1-dependent. In conclusion, these results demonstrated resveratrol could be a promising compound in suppressing acrylamide-induced hepatotoxicity and balancing the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/imunologia , Acrilamida/toxicidade , Transtornos Cronobiológicos/imunologia , Criptocromos/imunologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Resveratrol/farmacologia , Fatores de Transcrição ARNTL/genética , Animais , Transtornos Cronobiológicos/tratamento farmacológico , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano/efeitos dos fármacos , Criptocromos/genética , Células Hep G2 , Hepatócitos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/imunologia
17.
Elife ; 82019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294688

RESUMO

Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.


Assuntos
Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/genética , Lisina Acetiltransferase 5/genética , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Elementos E-Box/genética , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Ativação Transcricional/genética
18.
Environ Pollut ; 252(Pt B): 1455-1463, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265956

RESUMO

Circadian rhythm is believed to play important roles in atherosclerosis. The gut microbiota is found to be closely related to atherogenesis, and shows compositional and functional circadian oscillation. However, it's still unclarified whether circadian clock and intestinal microbiota are involved in the progression of atherosclerosis induced by environmental pollutant acrolein. Herein, patients with atherosclerosis showed higher MMP9, a promising biomarker for atherosclerosis, and lower Bmal1 and Clock expression in the plasma. Interestingly, acrolein exposure contributed to the increased MMP9, decreased Clock and Bmal1, and activated MAPK pathways in human umbilical vein endothelial cells (HUVECs). We found that knockdown of Clock or Bmal1 lead to upregulation of MMP9 in HUVECs, and that Clock and Bmal1 expression was elevated while MAPK pathways were blocked. Atherosclerotic apolipoproteinE-deficient mice consumed a high-fat diet were used and treated with acrolein (3 mg/kg/day) in the drinking water for 12 weeks. Upregulation of MMP9, and downregulation of Clock and Bmal1 were also observed in plasma of the mice. Besides, acrolein feeding altered gut microbiota composition at a phylum level especially for an increased Firmicutes and a decreased Bacteroidetes. Additionally, gut microbiota showed correlation with atherosclerotic plaque, MMP9 and Bmal1 levels. Therefore, our findings indicated that acrolein increased the expression of MMP9 through MAPK regulating circadian clock, which was associated with gut microbiota regulation in atherosclerosis. Circadian rhythms and gut microbiota might be promising targets in the prevention of cardiovascular disease caused by environmental pollutants.


Assuntos
Fatores de Transcrição ARNTL/sangue , Aterosclerose/patologia , Proteínas CLOCK/sangue , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Fatores de Transcrição ARNTL/genética , Acroleína , Adulto , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Proteínas CLOCK/genética , Linhagem Celular , Relógios Circadianos/fisiologia , Dieta Hiperlipídica , Regulação para Baixo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout
19.
Genome Res ; 29(8): 1262-1276, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249065

RESUMO

Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain. Comparison of genomic, transcriptomic, and proteomic data revealed that changes in gene expression due to intergenic polymorphisms are associated with longevity and preservation of skeletal muscle function with aging in these strains. Analysis of transcription factors differentially modulated in long-lived versus parental strains indicates a possible role of circadian clock core components. Specifically, there is higher period and timeless and lower cycle expression in the muscle of strains with delayed aging compared to the parental strain. These changes in the levels of circadian clock transcription factors lead to changes in the muscle circadian transcriptome, which includes genes involved in metabolism, proteolysis, and xenobiotic detoxification. Moreover, a skeletal muscle-specific increase in timeless expression extends lifespan and recapitulates some of the transcriptional and circadian changes that differentiate the long-lived from the parental strains. Altogether, these findings indicate that the muscle circadian clock is important for longevity and that circadian gene variants contribute to the evolutionary divergence in longevity across populations.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Longevidade/genética , Músculo Esquelético/metabolismo , Proteínas Circadianas Period/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Evolução Biológica , Ritmo Circadiano/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Genética Populacional , Genômica , Músculo Esquelético/crescimento & desenvolvimento , Proteínas Circadianas Period/metabolismo , Polimorfismo Genético , Transcriptoma , Sequenciamento Completo do Genoma
20.
Chem Biol Interact ; 308: 288-293, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150629

RESUMO

Hypaconitine is an active and highly toxic constituent derived from Aconitum species. Here we aimed to determine the chronotoxicity of hypaconitine in mice, and to investigate a potential role of metabolism in hypaconitine chronotoxicity. Cardiac toxicity was assessed by measuring CK (creatine kinase) and LDH (lactate dehydrogenase) levels after hypaconitine administration to wild-type and Bmal1-/- (a clock disrupted model) mice at different times of day. The mRNA and protein levels of Cyp3a11 in mouse livers were determined by qPCR and western blotting, respectively. In vitro metabolism was assessed using liver microsomes. Pharmacokinetic study of hypaconitine was performed with wild-type mice. We observed injection time-dependent toxicity (i.e., a more severe toxicity during the light phase than the dark phase) for hypaconitine in mice. The chronotoxicity was attributed to a difference in systemic exposure of hypaconitine caused by time of day-dependent metabolism. Furthermore, circadian metabolism of hypaconitine was accounted for by the diurnal expression of Cyp3a11, a major enzyme for hypaconitine detoxification in the liver. Moreover, Bmal1 ablation in mice abolished the daily rhythm of Cyp3a11 expression and abrogated the time-dependency of hypaconitine toxicity. In conclusion, circadian Cyp3a11 metabolism contributed to chronotoxicity of hypaconitine in mice. This metabolism-based chronotoxicity would facilitate the formulation of best timing for drug administration.


Assuntos
Aconitina/análogos & derivados , Relógios Circadianos , Citocromo P-450 CYP3A/metabolismo , Fígado/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Aconitina/metabolismo , Aconitina/farmacocinética , Aconitina/toxicidade , Animais , Creatina Quinase/sangue , Citocromo P-450 CYP3A/genética , Células HEK293 , Meia-Vida , Humanos , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA