Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Life Sci ; 248: 117454, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088211

RESUMO

AIMS: Dihydroartemisinin (DHA) is currently considered as the promising cancer therapeutic drug. In this study, we aimed to investigate the anti-proliferative and anti-metastasis effects of DHA. MAIN METHODS: Utilizing breast cancer cells MCF-7, MDA-MB-231 and BT549, cell proliferation, migration and invasion were detected. RT-qPCR was performed to detect CIZ1, TGF-ß1 and Snail expression, and the interactions of these related molecules were analyzed by GeneMANIA database. Western blot detected CIZ1, TGF-ß1/Smads signaling and Snail expression in DHA-treated cells, in TGFß1-induced cells with enhanced metastatic capacity, and in cells treated with DHA plus TGFß1/TGFß1 inhibitor SD-208. KEY FINDINGS: Results indicated DHA inhibited breast cancer cell proliferation and migration, with more potent effects compared with that of artemisinin. RT-qPCR and Western blot showed DHA inhibited CIZ1, TGF-ß1 and Snail expression, and these molecules were shown to have protein-protein interactions by bioinformatics. Furthermore, TGFß1-treatment enhanced MCF-7 migration and invasion, and CIZ1, TGF-ß1/Smads signaling and snail activities; DHA, SD-208, combination of DHA and SD-208 reversed these conditions, preliminarily proving the cascade regulation between TGF-ß1 signaling and CIZ1. MCF-7 xenografts model demonstrated the inhibition of DHA on tumor burden, and its mechanisms and well-tolerance in vivo; combination of DHA and SD-208 tried by us for the first time showed better treatment effects, but possible liver impairment made its use still keep cautious. SIGNIFICANCE: DHA treatment inhibits the proliferation and metastasis of breast cancer, through suppressing TGF-ß1/Smad signaling and CIZ1, suggesting the promising potential of DHA as a well-tolerated antitumor TGF-ß1 pathway inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisininas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta1/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metástase Linfática , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Pteridinas/farmacologia , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Photochem Photobiol B ; 202: 111672, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778952

RESUMO

In highly proliferating cancer cells oncogenic mutations reprogram the metabolism and increase the production of reactive oxygen species (ROS). Cancer cells prevent ROS accumulation by upregulating antioxidant systems. Here we show that an increase of oxidative stress (ROS and singlet oxygen), generated by photoactivated TMPyP4, results in the upregulation of KRAS and Nrf2, the major regulator of the redox homeostasis. In agreement with a previous observation, the ectopic expression of KRAS G12D or G12 V is found to stimulate Nrf2. This suggests that ROS, KRAS and Nrf2 establish a molecular axis controlling the redox homeostasis in cancer cells. We found that this axis also modulates the function of the NF-kB/Snail/RKIP circuitry, regulating the survival and apoptosis pathways. Our data show that low ROS levels, obtained when Nrf2 is activated by KRAS, results in the upregulation of prosurvival Snail and simultaneous downregulation of proapoptotic RKIP: an expression pattern favouring cell proliferation. By contrast, high ROS levels, obtained when Nrf2 is inhibited by a small molecule (luteolin), favour apoptosis by upregulating proapoptotic RKIP and downregulating prosurvival Snail. The results of this study are useful to design efficient photodynamic therapy (PDT) against cancer. We hypothesize that cancer cells can be sensitized to PDT when the photosensitizer is used in the presence of an inhibitor of Nrf2 (adjuvant). To test this hypothesis, we used luteolin (3',4',5,7-tetrahydroflavone) as Nrf2 inhibitor, since it reduces the expression of Nrf2 and increases intracellular ROS. By means of colony formation and viability assays we found that when Nrf2 is inhibited, PDT shows an increase of efficiency up to 45%.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
3.
Cancer Sci ; 111(1): 84-97, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31774615

RESUMO

Although accumulating evidence has indicated the intimate association between epithelial-mesenchymal transition (EMT) and acquired resistance to chemotherapy for colorectal cancer (CRC), the underlying mechanisms remain elusive. Herein, we reported that Snail, a crucial EMT controller, was upregulated in CRC tissues. Colorectal cancer cells overexpressing Snail were found to be more resistant to 5-fluorouracil (5-Fu). Mechanistic studies reveal that Snail could increase the expression of ATP-binding cassette subfamily B member 1 (ABCB1) rather than the other 23 chemoresistance-related genes. Additionally, knockdown of ABCB1 significantly attenuated Snail-induced 5-Fu resistance in CRC cells. Oxaliplatin increased Snail and ABCB1 expression in CRC cells. Snail and ABCB1 were upregulated in 5-Fu-resistant HCT-8 (HCT-8/5-Fu) cells and inhibition of Snail decreased ABCB1 in HCT-8/5-Fu cells. These results confirm the vital role played by ABCB1 in Snail-induced chemoresistance. Further investigation into the relevant molecular mechanism revealed Snail-mediated ABCB1 upregulation was independent of ß-catenin, STAT3, PXR, CAR and Foxo3a, which are commonly involved in modulating ABCB1 transcription. Instead, Snail upregulated ABCB1 transcription by directly binding to its promoter. Clinical analysis confirms that increased Snail expression correlated significantly with tumor size (P = .018), lymph node metastasis (P = .033), distant metastasis (P = .025), clinical stage grade (P = .024), and poor prognosis (P = .045) of CRC patients. Moreover, coexpression of Snail and ABCB1 was observed in CRC patients. Our study revealed that direct regulation of ABCB1 by Snail was critical for conferring chemoresistance in CRC cells. These findings unraveled the mechanisms underlying the association between EMT and chemoresistance, and provided potential targets for CRC clinical treatment.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição da Família Snail/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Transdução de Sinais/genética , Regulação para Cima/genética
4.
Life Sci ; 241: 117143, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811855

RESUMO

AIM: To investigate the effect of propofol on the migration and invasion of oral squamous cell carcinoma (OSCC) cells and explore the underlying mechanism. MAIN METHODS: Cal-27 and SCC-25 cells treated with or without propofol, then the cells metastasis were determined. The levels of SNAI1 mRNA and protein were detected by real-time PCR and western blot. Cell migration ability was evaluated by wound healing assay, and the invasion of cells was measured using transwell assay. KEY FINDINGS: Propofol treatment significantly promoted cell migration and invasion of OSCC. Further mechanistic studies of the stimulating effects of propofol on OSCC cell metastasis revealed that propofol treatment dose-dependently upregulated the expression of SNAI1, a member of the Snail superfamily of zinc-finger transcription factors. Additionally, the inhibition of endogenous SNAI1 expression reversed the effect of propofol on cell migration and invasion in Cal-27 and SCC-25 cells. SIGNIFICANCE: Our results demonstrate that propofol at clinically relevant concentrations facilitates cell migration and invasion through up-regulation of SNAI1 in OSCC cells, and suggest propofol may not be suitable for anesthesia management in OSCC patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Neoplasias Bucais/patologia , Propofol/farmacologia , Fatores de Transcrição da Família Snail/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Fatores de Transcrição da Família Snail/genética , Células Tumorais Cultivadas
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(10): 932-937, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31814570

RESUMO

Objective To investigate the expression of semaphorin 6D (SEMA6D) and Snail and their clinicopathological implications in gastric cancer. Methods 54 cases of gastric cancer tissues and 26 paracancerous gastric mucosa were collected for detecting the expression of SEMA6D and Snail by immunohistochemistry and Western blot analysis. The co-localization of SEMA6D and Snail was observed by immunofluorescence double staining and laser scanning confocal microscopy. The correlation between SEMA6D and Snail and their relationships with the clinicopathological features of the patients were analyzed. Results Compared with the paracancerous gastric mucosa, the protein expression of SEMA6D and Snail in the gastric cancer significantly increased, and there was a significant co-localization of SEMA6D and Snail in gastric cancer. Further statistical analysis showed that the expression of SEMA6D and Snail in gastric cancer was positively correlated with the degree of differentiation, invasion, lymph node metastasis and TNM stage. Conclusion The high expression of SEMA6D and Snail in gastric cancer are related to the malignant clinicopathological indexes of gastric cancer.


Assuntos
Semaforinas/genética , Fatores de Transcrição da Família Snail/genética , Neoplasias Gástricas/genética , Western Blotting , Humanos , Imuno-Histoquímica , Metástase Linfática , Prognóstico , Neoplasias Gástricas/patologia
6.
Cell Physiol Biochem ; 53(6): 999-1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31838790

RESUMO

BACKGROUND/AIMS: Schlafen12 (SLFN12) promotes human intestinal and prostatic epithelial differentiation. We sought to determine whether SLFN12 reduces triple-negative breast cancer (TNBC) aggressiveness. METHODS: We validated bioinformatics analyses of publicly available databases by staining human TNBC. After virally overexpressing or siRNA-reducing SLFN12 in TNBC cell lines, we measured proliferation by CCK-8 assay, invasion into basement-membrane-coated pores, mRNA by q-RT-PCR and protein by Western blotting. Flow cytometry assessed proliferation and stem cell marker expression, and sorted CD44+/CD24- cells. Stemness was also assessed by mammosphere formation, and translation by click-it-AHA chemistry. RESULTS: SLFN12 expression was lower in TNBC tumors and correlated with survival. SLFN12 overexpression reduced TNBC MDA-MB-231, BT549, and Hs578T proliferation. In MDA-MB-231 cells, AdSLFN12 reduced invasion, promoted cell cycle arrest, increased E-cadherin promoter activity, mRNA, and protein, and reduced vimentin expression and protein. SLFN12 knockdown increased vimentin. AdSLFN12 reduced the proportion of MDA-MB-231 CD44+CD24- cells, with parallel differentiation changes. SLFN12 overexpression reduced MDA-MB-231 mammosphere formation. SLFN12 overexpression decreased ZEB1 and Slug protein despite increased ZEB1 and Slug mRNA in all three lines. SLFN12 overexpression accelerated MDA-MB-231 ZEB1 proteasomal degradation and slowed ZEB1 translation. SLFN12 knockdown increased ZEB1 protein. Coexpressing ZEB1 attenuated the SLFN12 effect on E-cadherin mRNA and proliferation in all three lines. CONCLUSION: SLFN12 may reduce TNBC aggressiveness and improve survival in part by a post-transcriptional decrease in ZEB1 that promotes TNBC cancer stem cell differentiation.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
PLoS Genet ; 15(11): e1008487, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725726

RESUMO

Maintenance of normal lipid homeostasis is crucial to heart function. On the other hand, the heart is now recognized to serve an important role in regulating systemic lipid metabolism; however, the molecular basis remains unclear. In this study, we identify the Drosophila Snail family of transcription factors (herein termed Sna TFs) as new mediators of the heart control of systemic lipid metabolism. Overexpression of Sna TF genes specifically in the heart promotes whole-body leanness whereas their knockdown in the heart promotes obesity. In addition, flies that are heterozygous for a snail deficiency chromosome also exhibit systemic obesity, and that cardiac-specific overexpression of Sna substantially reverses systemic obesity in these flies. We further show that genetically manipulating Sna TF levels in the fat body and intestine do not affect systemic lipid levels. Mechanistically, we find that flies bearing the overexpression or inhibition of Sna TFs in the postnatal heart only exhibit systemic lipid metabolic defects but not heart abnormalities. Cardiac-specific alterations of Sna TF levels also do not perturb cardiac morphology, viability, lipid metabolism or fly food intake. On the other hand, cardiac-specific manipulations of Sna TF levels alter lipogenesis and lipolysis gene expression, mitochondrial biogenesis and respiration, and lipid storage droplet 1 and 2 (Lsd-1 and Lsd-2) levels in the fat body. Together, our results reveal a novel and specific role of Sna TFs in the heart on systemic lipid homeostasis maintenance that is independent of cardiac development and function and involves the governance of triglyceride synthesis and breakdown, energy utilization, and lipid droplet dynamics in the fat body.


Assuntos
Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Obesidade/genética , Fatores de Transcrição da Família Snail/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica/genética , Coração/fisiologia , Humanos , Gotículas Lipídicas/metabolismo , Lipídeos/genética , Miocárdio/patologia , Obesidade/patologia , Biogênese de Organelas , Oxirredutases N-Desmetilantes/genética , Fatores de Transcrição/genética
8.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614978

RESUMO

TGF-ß/Smad signaling is a major pathway in progressive fibrotic processes, and further studies on the molecular mechanisms of TGF-ß/Smad signaling are still needed for their therapeutic targeting. Recently, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) was shown to improve renal fibrosis, making it an attractive target for chronic kidney diseases (CKDs). Here, we show the mechanism by which PGC-1α regulates the TGF-ß/Smad signaling pathway using HK-2 cell lines stably overexpressing empty vector (mock cells) or human PGC1α (PGC1α cells). Stable PGC-1α overexpression negatively regulated the expression of TGF-ß-induced epithelial-mesenchymal transition (EMT) markers (fibronectin, E-cadherin, vimentin, and α-SMA) and EMT-related transcription factors (Snail and Slug) compared to mock cells, inhibiting fibrotic progression. Interestingly, among molecules upstream of Smad2/3 activation, the gene expression of only TGFßRI, but not TGFßRII, was downregulated in PGC-1α cells. In addition, the downregulation of TGFßRI by PGC-1α was associated with the upregulation of let-7b/c, miRNA for which the 3' untranslated region (UTR) of TGFßRI contains a binding site. In conclusion, PGC-1α suppresses TGF-ß/Smad signaling activation via targeting TGFßRI downregulation by let-7b/c upregulation.


Assuntos
MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Insuficiência Renal Crônica/genética , Sítios de Ligação/genética , Linhagem Celular , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/genética , Humanos , Peroxissomos/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Proteínas Smad/genética , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta/genética
9.
Molecules ; 24(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480595

RESUMO

Pyrrole-imidazole (PI) polyamides are novel gene silencers that strongly bind the promoter region of target genes in a sequence-specific manner to inhibit gene transcription. We created a PI polyamide targeting human TGF-ß1 (hTGF-ß1). To develop this PI polyamide targeting hTGF-ß1 (Polyamide) as a practical medicine for treating progressive renal diseases, we examined the effects of Polyamide in two common marmoset models of nephropathy. We performed lead optimization of PI polyamides that targeted hTGF-ß1 by inhibiting in a dose-dependent manner the expression of TGF-ß1 mRNA stimulated by PMA in marmoset fibroblasts. Marmosets were housed and fed with a 0.05% NaCl and magnesium diet and treated with cyclosporine A (CsA; 37.5 mg/kg/day, eight weeks) to establish chronic nephropathy. We treated the marmosets with nephropathy with Polyamide (1 mg/kg/week, four weeks). We also established a unilateral urethral obstruction (UUO) model to examine the effects of Polyamide (1 mg/kg/week, four times) in marmosets. Histologically, the renal medulla from CsA-treated marmosets showed cast formation and interstitial fibrosis in the renal medulla. Immunohistochemistry showed strong staining of Polyamide in the renal medulla from CsA-treated marmosets. Polyamide treatment (1 mg/kg/week, four times) reduced hTGF-ß1 staining and urinary protein excretion in CsA-treated marmosets. In UUO kidneys from marmosets, Polyamide reduced the glomerular injury score and tubulointerstitial injury score. Polyamide significantly suppressed hTGF-ß1 and snail mRNA expression in UUO kidneys from the marmosets. Polyamide effectively improved CsA- and UUO-associated nephropathy, indicating its potential application in the prevention of renal fibrosis in progressive renal diseases.


Assuntos
DNA/metabolismo , Imidazóis/farmacologia , Nefropatias/genética , Nylons/farmacologia , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Pirróis/farmacologia , Fator de Crescimento Transformador beta1/genética , Animais , Sequência de Bases , Caderinas/metabolismo , Callithrix , Ciclosporina , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Obstrução Uretral/genética , Obstrução Uretral/patologia
10.
Oncol Rep ; 42(4): 1431-1440, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31364745

RESUMO

Jumonji domain­containing protein 2A (JMJD2A) has been identified to promote cell proliferation in bladder cancer; however, it remains undetermined whether JMJD2A regulates cell migration and invasion in bladder cancer. The aim of the present study was to further investigate the roles of JMJD2A in bladder cancer. The expression levels of JMJD2A in bladder cancer tissues and cell lines were established by RT­qPCR assays and western blot analysis. Moreover, by gain­ and loss­of­function assays, the effects of JMJD2A on migration and invasion as well as proliferation were investigated in bladder cancer cells. The results revealed that the expression level of JMJD2A was significantly upregulated in bladder cancer tissues and cell lines compared to adjacent non­tumor tissues and a human immortalized bladder urothelial cell line. Kaplan­Meier survival analysis indicated that patients with high JMJD2A expression level had shorter overall survival. Moreover, JMJD2A could promote cell migration and invasion by facilitating epithelial­mesenchymal transition (EMT) in bladder cancer. In addition, it was determined that JMJD2A promoted EMT through regulation of SLUG expression. Collectively, our findings revealed that JMJD2A may act as an oncogene and participate in bladder cancer progression, which provides a promising therapeutic strategy for patients with bladder cancer.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , Humanos , Histona Desmetilases com o Domínio Jumonji/biossíntese , Histona Desmetilases com o Domínio Jumonji/genética , Gradação de Tumores , Invasividade Neoplásica , Fatores de Transcrição da Família Snail/genética , Transcrição Genética , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
11.
J Ovarian Res ; 12(1): 60, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277702

RESUMO

OBJECTIVE: To investigate whether miR-203a-3p can regulate the biological behaviors of ovarian cancer cells by targeting ATM to affect the Akt/GSK-3ß/Snail signaling pathway. METHODS: The expression levels of miR-203a-3p and ATM were detected by qRT-PCR, immunohistochemical staining and Western blotting in ovarian cancer tissues and adjacent normal tissues obtained from 152 subjects. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-203a-3p and ATM. Human ovarian cancer cell lines (A2780 and SKOV3) were used to generate the Blank, miR-NC, miR-203a-3p mimic, Control siRNA, ATM siRNA, and miR-203a-3p inhibitor + ATM siRNA groups. The biological behaviors of ovarian cancer cells were evaluated by CCK-8, wound healing, and Transwell invasion assays, annexin V-FITC/PI staining and flow cytometry. The levels of Akt/GSK-3ß/Snail pathway-related proteins were assessed by Western blotting. RESULTS: Ovarian cancer tissues showed lower miR-203a-3p levels and higher ATM levels than adjacent normal tissues, both of which were associated with the FIGO stage, grade and prognosis of ovarian cancer. As confirmed by a dual-luciferase reporter gene assay, miR-203a-3p could target ATM. Furthermore, the miR-203a-3p mimic had multiple effects, including the inhibition of the proliferation, invasion and migration of A2780 and SKOV3 cells, the promotion of cell apoptosis, the arrest of the cell cycle at the G1 phase, and the blockage of the Akt/GSK-3ß/Snail signaling pathway. ATM siRNA had similar effects on the biological behaviors of ovarian cancer cells, and these effects could be reversed by a miR-203a-3p inhibitor. CONCLUSION: miR-203a-3p was capable of hindering proliferation, migration, and invasion and facilitating the apoptosis of ovarian cancer cells through its modulation of the Akt/GSK-3ß/Snail signaling pathway by targeting ATM, and therefore it could serve as a potential therapeutic option for ovarian cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Adulto , Idoso , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno , Fatores de Transcrição da Família Snail/genética
12.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340433

RESUMO

Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases.


Assuntos
Aminoácido Oxirredutases/genética , Artrite/genética , Fissura Palatina/genética , Doenças do Tecido Conjuntivo/genética , Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Miopia/genética , Neoplasias/genética , Descolamento Retiniano/genética , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Artrite/enzimologia , Artrite/patologia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Doenças do Tecido Conjuntivo/enzimologia , Doenças do Tecido Conjuntivo/patologia , Elastina/química , Elastina/genética , Elastina/metabolismo , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/química , Matriz Extracelular/enzimologia , Regulação da Expressão Gênica , Perda Auditiva Neurossensorial/enzimologia , Perda Auditiva Neurossensorial/patologia , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Miopia/enzimologia , Miopia/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Especificidade de Órgãos , Descolamento Retiniano/enzimologia , Descolamento Retiniano/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
13.
Gene ; 711: 143938, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31220580

RESUMO

BACKGROUND AND PURPOSE: The pathogenesis of endometrial cancer (EC) involves many regulatory pathways including transcriptional regulatory networks supported by transcription factors and microRNAs only in part known. The aim of this retrospective study was to explore the possible correlation in the EC microenvironment between master regulators of complex phenomena such as steroid responsiveness through estrogen receptor alpha (ERα) and progesterone receptor (PR), epithelial-to-mesenchymal transition (supported by SLUG transcription factor), hypoxia (with hypoxia inducible factor-1 alpha, HIF-1α), and obesity that has been recognized as a EC risk factor. METHODS: Formalin-Fixed Paraffin-Embedded (FFPE) blocks from University of Ferrara Pathology Archive were used and allocated into 2 groups according to their immunohistochemical positivity to ERα and PR, distinguishing the samples with a more benign prognosis (ERα+/PR+) from those with a poorer prognosis (ERα-/PR-). Immunohistochemistry for HIF1-α and SLUG was also performed. Body mass index (BMI) was registered at the time of diagnosis: patients with BMI ≥ 30 kg/m2 were defined obese (OB). Total RNA was isolated for miR-221 analysis. RESULTS: We showed a comparable percentage of HIF1-α and SLUG positive samples in the ERα+/PR+ and ERα-/PR- groups. However, the obesity factor impacted more in the ERα+/PR+ group since the ratio between OB and non-obese (NOB) patients with high expression of HIF1-α and SLUG was higher in ERα+/PR+ than in the ERα-/PR- group. miR-221 levels were significantly higher in the OB than NOB patients, and, also in this case, obesity impacted more in the ERα+/PR+ group. CONCLUSIONS: A molecular circuit of mutual regulation between ERα, PR, HIF1-α, SLUG and miR-221 is feasible in the EC and was firstly suggested by our research. In this interplay miR-221 seems to be in a nodal point of the regulatory system that is particularly strengthened by the metabolic changes in obesity.


Assuntos
Neoplasias do Endométrio/genética , Receptor alfa de Estrogênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Obesidade/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição da Família Snail/genética , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Estudos Retrospectivos , Fatores de Risco , Fatores de Transcrição da Família Snail/metabolismo , Microambiente Tumoral
14.
EBioMedicine ; 45: 208-219, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31221586

RESUMO

BACKGROUND: Heterogeneous nuclear ribonucleoprotein F (hnRNP-F) has been implicated in multiple cancers, suggesting its role in tumourigenesis, but the potential oncogenic role and mechanism of hnRNP-F in bladder cancer (BC) remain incompletely understood. METHODS: HnRNP-F was identified by proteomic methods. A correlation of hnRNP-F expression with prognosis was analysed in 103 BC patients. Then, we applied in vitro and in vivo methods to reveal the behaviours of hnRNP-F in BC tumourigenesis. Furthermore, the interaction between hnRNP-F and Snail1 mRNA was examined by RNA immunoprecipitation (RIP), and Snail1 mRNA stability was measured after treatment with actinomycin D. Finally, the binding domain between hnRNP-F and Snail1 mRNA was verified by constructing Snail1 mRNA truncations and mutants. FINDING: HnRNP-F is significantly upregulated in BC tissue, and its increased expression is associated with a poor prognosis in BC patients. HnRNP-F is necessary for tumour growth, inducing epithelial-mesenchymal transition (EMT) and metastasis in BC. The changes in Snail1 expression were positively correlated with hnRNP-F at both the mRNA and protein levels when hnRNP-F was silenced or enhanced, suggesting that Snail1 is likely a downstream target of hnRNP-F that mediates its effects on enhancing invasion, metastasis and EMT in BC. The overexpression of hnRNP-F caused an increase in the stability of Snail1 mRNA. Our RNA chip analysis revealed that hnRNP-F could combine with Snail1 mRNA, and we further demonstrated that hnRNP-F could directly bind to the 3' untranslated region (3' UTR) of Snail1 mRNA to enhance its stability. INTERPRETATION: Our findings suggest that hnRNP-F mediates the stabilization of Snail1 mRNA by binding to its 3' UTR, subsequently regulating EMT.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Proteômica , Fatores de Transcrição da Família Snail/genética , Neoplasias da Bexiga Urinária/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Ligação Proteica , Interferência de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/patologia
15.
Nat Commun ; 10(1): 2568, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189923

RESUMO

Activation of the p16Ink4a-associated senescence pathway during aging breaks muscle homeostasis and causes degenerative muscle disease by irreversibly dampening satellite cell (SC) self-renewal capacity. Here, we report that the zinc-finger transcription factor Slug is highly expressed in quiescent SCs of mice and functions as a direct transcriptional repressor of p16Ink4a. Loss of Slug promotes derepression of p16Ink4a in SCs and accelerates the entry of SCs into a fully senescent state upon damage-induced stress. p16Ink4a depletion partially rescues defects in Slug-deficient SCs. Furthermore, reduced Slug expression is accompanied by p16Ink4a accumulation in aged SCs. Slug overexpression ameliorates aged muscle regeneration by enhancing SC self-renewal through active repression of p16Ink4a transcription. Our results identify a cell-autonomous mechanism underlying functional defects of SCs at advanced age. As p16Ink4a dysregulation is the chief cause for regenerative defects of human geriatric SCs, these findings highlight Slug as a potential therapeutic target for aging-associated degenerative muscle disease.


Assuntos
Autorrenovação Celular/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Envelhecimento/fisiologia , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fatores de Transcrição da Família Snail/genética
16.
Int J Nanomedicine ; 14: 3645-3667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190817

RESUMO

Background: Neo-adjuvant chemotherapy is an effective strategy for improving treatment of breast cancers. However, the efficacy of this treatment strategy is limited for treatment of triple negative breast cancer (TNBC). Gene therapy may be a more effective strategy for improving the prognosis of TNBC. Methods: A novel 25 nucleotide sense strand of miRNA was designed to treat TNBC by silencing the Slug gene, and encapsulated into DSPE-PEG2000-tLyp-1 peptide-modified functional liposomes. The efficacy of miRNA liposomes was evaluated on invasive TNBC cells and TNBC cancer-bearing nude mice. Furthermore, functional vinorelbine liposomes were constructed to investigate the anticancer effects of combined treatment. Results: The functional miRNA liposomes had a round shape and were nanosized (120 nm). Functional miRNA liposomes were effectively captured by TNBC cells in vitro and were target to mitochondria. Treatment with functional liposomes silenced the expression of Slug and Slug protein, inhibited the TGF-ß1/Smad pathway, and inhibited invasiveness and growth of TNBC cells. In TNBC cancer-bearing mice, functional miRNA liposomes exerted a stronger anticancer effect than functional vinorelbine liposomes, and combination therapy with these two formulations resulted in nearly complete inhibition of tumor growth. Preliminary safety evaluations indicated that the functional miRNA liposomes did not affect body weight or cause damage to any major organs. Furthermore, the functional liposomes significantly increased the half-life of the drug in the blood of cancer-bearing nude mice, and increased drug accumulation in breast cancer tissues. Conclusion: In this study, we constructed novel functional miRNA liposomes. These liposomes silenced Slug expression and inhibited the TGF-ß1/Smad pathway in TNBC cells, and enhanced anticancer efficacy in mice using combined chemotherapy. Hence, the present study demonstrated a promising strategy for gene therapy of invasive breast cancer.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Nanopartículas/química , Tamanho da Partícula , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
17.
J Pharmacol Sci ; 140(1): 33-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31151763

RESUMO

The present study aimed to investigate the functional components from Bushen Yijing Formula and their inhibition of endothelial-mesenchymal transition (EndMT) and fibrosis in human umbilical vascular endothelial cells (HUVECs). HUVEC fibrosis was induced by treatment of transforming growth factor ß (TGF-ß) as the cellular model. Expression of EndMT biomarker gene and cofactors were determined by quantitative real-time-PCR, western blotting, and immunofluorescence. Angiogenesis capacity of vein endothelial cells was evaluated using tube formation assay. Ursolic acid and drug-contained serum ameliorated EndMT biomarker gene expression changes and angiogenesis capacity suppression induced by TGF-ß treatment. Slug, Snail, and Twist gene expression and phosphorylation of mammalian target of rapamycin (mTOR) and AKT altered by TGF-ß in HUVECs were suppressed by ursolic acid and drug-contained serum. Treatment with the mTOR signaling pathway inhibitor, rapamycin, inhibited the phosphorylation of mTOR and AKT, decreased Snail and Vimentin protein levels, and increased VE-cad protein levels. Overexpression of Snail gene promoted expression of EndMT-related genes and suppressed angiogenesis in HUVECs, which were attenuated by application of ursolic acid and drug-contained serum. Ursolic acid from Bushen Yijing Formula inhibits human umbilical vein endothelial cell EndMT and fibrosis, mediated by AKT/mTOR signaling and Snail gene expression.


Assuntos
Medicamentos de Ervas Chinesas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta1/efeitos adversos , Triterpenos/farmacologia , Células Cultivadas , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/isolamento & purificação
18.
Nature ; 571(7763): 127-131, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243371

RESUMO

Cancer metastasis is the primary cause of morbidity and mortality, and accounts for up to 95% of cancer-related deaths1. Cancer cells often reprogram their metabolism to efficiently support cell proliferation and survival2,3. However, whether and how those metabolic alterations contribute to the migration of tumour cells remain largely unknown. UDP-glucose 6-dehydrogenase (UGDH) is a key enzyme in the uronic acid pathway, and converts UDP-glucose to UDP-glucuronic acid4. Here we show that, after activation of EGFR, UGDH is phosphorylated at tyrosine 473 in human lung cancer cells. Phosphorylated UGDH interacts with Hu antigen R (HuR) and converts UDP-glucose to UDP-glucuronic acid, which attenuates the UDP-glucose-mediated inhibition of the association of HuR with SNAI1 mRNA and therefore enhances the stability of SNAI1 mRNA. Increased production of SNAIL initiates the epithelial-mesenchymal transition, thus promoting the migration of tumour cells and lung cancer metastasis. In addition, phosphorylation of UGDH at tyrosine 473 correlates with metastatic recurrence and poor prognosis of patients with lung cancer. Our findings reveal a tumour-suppressive role of UDP-glucose in lung cancer metastasis and uncover a mechanism by which UGDH promotes tumour metastasis by increasing the stability of SNAI1 mRNA.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/prevenção & controle , Estabilidade de RNA , Fatores de Transcrição da Família Snail/genética , Uridina Difosfato Glucose/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteína Semelhante a ELAV 1/deficiência , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Fosfotirosina/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Fatores de Transcrição da Família Snail/biossíntese , Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo
19.
Pathol Res Pract ; 215(8): 152471, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31153693

RESUMO

Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a deubiquitinating enzyme, plays an essential regulatory role in inflammation, immune responses and tumorigenesis. Our present study indicates that TNFAIP3 is required for the ubiquitination degradation of epithelial-mesenchymal transition (EMT) related transcription factors Snail and ZEB1, which further altered the expression of EMT-related marker proteins and eventually contributing to the malignant phenotype and poorer prognosis of gastric carcinoma. Depletion of TNFAIP3 attenuated the capacity of proliferation, migration and invasion of gastric cancer cells in vitro. Taken together, these findings propose a pathway linking the TNFAIP3 to the EMT-mediated metastatic process in gastric cancer, which provides a viable strategy regarding the interventions and prognostic analysis of gastric carcinoma in clinical practice.


Assuntos
Transformação Celular Neoplásica/genética , Invasividade Neoplásica/genética , Neoplasias Gástricas/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas/genética , Fatores de Transcrição/metabolismo
20.
Int J Oncol ; 54(6): 2157-2168, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31081061

RESUMO

Gastric cancer (GC) is the fifth most prevalent type of malignancy and the third leading cause of cancer­related mortality worldwide, with the prognosis of patients with late­stage GC remaining at poor levels. Long non­coding RNA (lncRNA) H19 (H19) is involved in the growth and metastasis of tumors, and it is upregulated under hypoxic conditions and in certain types of cancer; however, the underlying mechanisms of action of this lncRNA as regards the initiation and development of GC remain unknown. Thus, in the present study, we aimed to determine the role of lncRNA H19 in GC and to elucidate the underlying mechanisms. H19 was found to be upregulated in GC tissues and cells compared with the para­cancerous tissues, and an elevated expression of H19 was associated with lymph node metastasis and TNM stage. Furthermore, the downregulation of H19 suppressed the proliferation, invasion, migration and epithelial­mesenchymal transition of GC cells in vitro and suppressed tumor growth in vivo. H19 was also found to be able to bind with miR­22­3p, and H19­induced cell growth and metastasis were shown to be reversed by the upregulation of miR­22­3p; the miR­22­3p level was found to inversely correlate with H19 expression in GC tissues. Furthermore, the overexpression of miR­22­3p notably suppressed the proliferation, migration and invasion of GC cells, and these effects were enhanced by the downregulation of Snail1. In addition, cell growth and metastasis induced by miR­22­3p downregulation were partially reversed by the knockdown of Snail1. Furthermore, a negative correlation was observed between the mRNA expression levels of miR­22­3p and Snail1 in GC tissues. On the whole, the findings of the present study revealed that H19 was upregulated in GC tissues, which promoted tumor growth and metastasis via the miR­22­3p/Snail1 signaling pathway. In summary, these findings provide novel insight into the potential regulatory roles of H19 in GC, and suggest that the H19/miR­22­3p/Snail1 axis may prove to be a promising therapeutic target for the treatment of patients with GC.


Assuntos
MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição da Família Snail/genética , Neoplasias Gástricas/patologia , Regulação para Cima , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transplante de Neoplasias , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA