Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.773
Filtrar
1.
BMC Plant Biol ; 21(1): 288, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167468

RESUMO

BACKGROUND: B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. RESULTS: In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. CONCLUSIONS: Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.


Assuntos
Brassica napus/genética , Brassicaceae/genética , Genes de Plantas/genética , Fatores de Transcrição/genética , Brassica napus/fisiologia , Sequência Conservada , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Mapas de Interação de Proteínas , Estresse Fisiológico , Sintenia , Tetraploidia , Fatores de Transcrição/fisiologia
2.
BMC Plant Biol ; 21(1): 295, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174836

RESUMO

BACKGROUND: Drought is a common phenomenon worldwide. It is also one of the main abiotic factors that affect the growth and quality of strawberry. The dehydration-responsive element binding protein (DREB) members that belong to the APETALA2/ethylene-responsive element binding protein (AP2/EREBP) superfamily are unique transcription factors in plants that play important roles in the abiotic stress response. RESULTS: Here, a total of 119 AP2/EREBP genes were identified in Fragaria vesca, and the AP2/EREBP superfamily was divided into AP2, RAV, ERF, DREB, and soloist subfamilies, containing 18, 7, 61, 32, and one member(s), respectively. The DREB subfamily was further divided into six subgroups (A-1 to A-6) based on phylogenetic analysis. Gene structure, conserved motifs, chromosomal location, and synteny analysis were conducted to comprehensively investigate the characteristics of FvDREBs. Furthermore, transcriptome analysis revealed distinctive expression patterns among the FvDREB genes in strawberry plants exposed to drought stress. The expression of FvDREB6 of the A-2 subgroup was down-regulated in old leaves and up-regulated in young leaves in response to drought. Furthermore, qRT-PCR analysis found that FvDREB8 from the A-2 subgroup had the highest expression level under drought stress. Together, analyses with the expression pattern, phylogenetic relationship, motif, and promoter suggest that FvDREB18 may play a critical role in the regulation of FvDREB1 and FvDREB2 expression. CONCLUSIONS: Our findings provide new insights into the characteristics and potential functions of FvDREBs. These FvDREB genes should be further studied as they appear to be excellent candidates for drought tolerance improvement of strawberry.


Assuntos
Fragaria/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Sequência Conservada , Desidratação , Fragaria/metabolismo , Fragaria/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/fisiologia
3.
BMC Plant Biol ; 21(1): 301, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187365

RESUMO

BACKGROUND: Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT: In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS: Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


Assuntos
Genes de Plantas/genética , Mutação com Perda de Função/genética , Mostardeira/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Alelos , Antocianinas/metabolismo , Arabidopsis , Clonagem Molecular , Cor , Genes de Plantas/fisiologia , Mostardeira/anatomia & histologia , Mostardeira/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/fisiologia
4.
J Plant Physiol ; 262: 153439, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023806

RESUMO

Late stages of floret development, such as booting, heading, and anthesis stages, are important steps for determining grain setting and for filling in wheat. Herein, we report the molecular function of Triticum aestivum ELF7 encoding RNA polymerase II-associated factor 1 (PAF1), which may act as a negative regulator in floret development and anthesis stages. Among the six TaELF7-like genes isolated from wheat, TaELF7 like1-A and TaELF7 like2-B showed contrasting expression levels during the late stage of floret development stages, with observation of decreased expression level of TaELF7 like1-A compared to that of TaELF7 like2-B. The full-length TaELF7 like1-A has a 1038-bp open reading frame that contains a proline-rich domain in the N-terminal region and a nuclear localization signal domain in the C-terminal region. TaELF7 like1-A was found to be localized in the nucleus in both tobacco and wheat. Direct interaction of TaELF7 with the RING-type E3 ligase TaHUB2 was confirmed using a yeast two-hybrid system, an in vitro pull-down assay, and a bimolecular fluorescence complementation assay. The flowering time was delayed in TaELF7-overexpressing plants compared to that in the control plants. Expression levels of few floral repressor genes were markedly increased in TaELF7-overexpressing Arabidopsis plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Triticum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
5.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946839

RESUMO

Hormone signaling plays a pivotal role in plant-microbe interactions. There are three major phytohormones in plant defense: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The activation and trade-off of signaling between these three hormones likely determines the strength of plant defense in response to pathogens. Here, we describe the allocation of hormonal signaling in Brassica napus against the fungal pathogen Leptosphaeria maculans. Three B. napus genotypes (Westar, Surpass400, and 01-23-2-1) were inoculated with two L. maculans isolates (H75 8-1 and H77 7-2), subsequently exhibiting three levels of resistance: susceptible, intermediate, and resistant. Quantitative analyses suggest that the early activation of some SA-responsive genes, including WRKY70 and NPR1, contribute to an effective defense against L. maculans. The co-expression among factors responding to SA/ET/JA was also observed in the late stage of infection. The results of conjugated SA measurement also support that early SA activation plays a crucial role in durable resistance. Our results demonstrate the relationship between the onset patterns of certain hormone regulators and the effectiveness of the defense of B. napus against L. maculans.


Assuntos
Brassica napus/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Leptosphaeria/crescimento & desenvolvimento , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Brassica napus/genética , Brassica napus/microbiologia , Cotilédone/metabolismo , Cotilédone/microbiologia , Resistência à Doença , Genes de Plantas , Genótipo , Interações Hospedeiro-Patógeno/genética , Hifas/ultraestrutura , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Transdução de Sinais , Fatores de Transcrição/fisiologia
6.
DNA Cell Biol ; 40(6): 798-810, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34030484

RESUMO

Recent studies have revealed the significant role of TEA domain family member 4 (TEAD4) in the development and progression of cancer. However, the potential role of TEAD4 in the progression of bladder cancer (BC) remains to be explored. The aim of this study was to determine whether TEAD4 could serve as a pan-cancer predictor of the prognosis for BC. Based on data mined from public databases, expression levels and clinical value of TEAD4 were identified in BC and human pan-cancers. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the TEAD4 expression levels in BC cell lines. Gene Set Enrichment Analysis (GSEA) was carried out for functional analysis in BC, and the relationship between infiltrating immune cells and TEAD4 expression was evaluated by the CIBERSORT algorithm in BC and pan-cancer data. TEAD4 was overexpressed and associated with poor prognosis in BC and several types of cancers. GSEA and CIBERSORT algorithm suggested that various pathways including immune-related pathways were enriched in TEAD4 high expression group and several immunocytes infiltrated were correlated with the expression of TEAD4. This study revealed TEAD4 is an immune regulating-related predictor of prognosis for BC and has generalization value in pan-cancer.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Musculares/fisiologia , Fatores de Transcrição/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/fisiologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946960

RESUMO

After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin-cytokinin-PLT regulatory network.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Transporte Biológico , Divisão Celular , Citocininas/biossíntese , Citocininas/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/ultraestrutura , Dinâmica não Linear , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica , Domínios Proteicos , Nicho de Células-Tronco/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Nucleic Acids Res ; 49(10): 5605-5622, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33963872

RESUMO

Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Fatores de Transcrição/fisiologia , Animais , Replicação do DNA , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout
9.
Plant Cell Rep ; 40(7): 1071-1085, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33860345

RESUMO

KEY MESSAGE: WRKY transcription factors are among the largest families of transcriptional regulators. In this review, their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed. Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate processes and defense-related genes, thus establishing their significant contributions to plant immune response. The present review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising molecular diagnostics for enhancing crop improvement.


Assuntos
Proteínas de Plantas/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Família Multigênica , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Transdução de Sinais , Fatores de Transcrição/química
10.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800795

RESUMO

Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.


Assuntos
Genes de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/fisiologia , Populus/genética , Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Clorofila/biossíntese , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/fisiologia , Regiões Promotoras Genéticas/genética , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Frações Subcelulares/metabolismo , Tabaco/genética , Tabaco/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
11.
Nucleic Acids Res ; 49(7): 3748-3763, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764436

RESUMO

Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63- a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2-p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2-p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia.


Assuntos
Queratinócitos , Fator 2 Relacionado a NF-E2/fisiologia , Pele , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Pele/metabolismo
12.
Plant Cell Physiol ; 62(1): 53-65, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764471

RESUMO

Secondary wall deposition in xylem vessels is activated by Vascular-Related NAC Domain proteins (VNDs) that belong to a group of secondary wall NAC (SWN) transcription factors. By contrast, Xylem NAC Domain1 (XND1) negatively regulates secondary wall deposition in xylem vessels when overexpressed. The mechanism by which XND1 exerts its functions remains elusive. We employed the promoter of the fiber-specific Secondary Wall-Associated NAC Domain1 (SND1) gene to ectopically express XND1 in fiber cells to investigate its mechanism of action on secondary wall deposition. Ectopic expression of XND1 in fiber cells severely diminished their secondary wall deposition and drastically reduced the expression of SWN-regulated downstream transcription factors and secondary wall biosynthetic genes but not that of the SWN genes themselves. Transactivation analyses revealed that XND1 specifically inhibited SWN-activated expression of these downstream genes but not their MYB46-activated expression. Both the NAC domain and the C-terminus of XND1 were required for its inhibitory function and its NAC domain interacted with the DNA-binding domains of SWNs. XND1 was shown to be localized in the cytoplasm and the nucleus and its co-expression with VND6 resulted in the cytoplasmic sequestration of VND6. Furthermore, the C-terminus of XND1 was indispensable for the XND1-mediated cytoplasmic retention of VND6 and its fusion to VND6 was able to direct VND6 to the cytoplasm and render it unable to activate the gene expression. Since the XND1 gene is specifically expressed in xylem cells, these results indicate that XND1 acts through inhibiting VND functions to negatively regulate secondary wall deposition in xylem vessels.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Fatores de Transcrição/metabolismo , Xilema/fisiologia
13.
Gene ; 785: 145618, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33775849

RESUMO

Fruiting body formation in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (matA and matB) and transcription factors are important regulators in the process. Here, we report a new High-mobility-group (HMG) box domain protein FvHmg1 that acts as a negative transcription regulator in fruiting body development in Winter Mushroom Flammulina velutipes. However, the expression of Fvhmg1 in dikaryon and primordial stages was significantly lower than that of monokaryon. The Fvhmg1-RNAi mutants had a better ability of fruiting than wild type strain. Overall expression of Fvhmg1 was controlled under compatible matA and matB genes where compatible matA genes could increase its expression level, while compatible matB genes had the opposite effect. It means when two monokaryons with compatible matA and matB genes were crossed, the negatively transcription factor FvHmg1 was inhibited, and normal fully fruiting body could formation and develop. The relationship between FvHmg1 and mating type pathway would advance to understand of sexual reproduction and fruiting body development in edible mushrooms.


Assuntos
Flammulina/genética , Proteína HMGB1/fisiologia , Fatores de Transcrição/fisiologia , Flammulina/crescimento & desenvolvimento , Carpóforos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Filogenia
14.
Plant Sci ; 304: 110821, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568311

RESUMO

To endure environmental stresses, plants have evolved complex regulatory mechanisms involving phytohormones, including abscisic acid (ABA). The function of the plant-specific AT-rich sequence zinc-binding protein (PLATZ) family has not yet been extensively characterized in Arabidopsis (Arabidopsis thaliana). In this report, we evaluated the function of a putative member of the PLATZ family in Arabidopsis, ABA-INDUCED expression 1 (AIN1). We determined that AIN1 expression was induced by ABA and abiotic stresses. AIN1 overexpression (OE) enhanced ABA sensitivity and inhibited primary root elongation, but reduced expression of AIN1 in RNA interference (RNAi) plants produced roots less sensitive to ABA. When treated with ABA, we observed a reduction of meristem size and over-accumulation of reactive oxygen species (ROS) at the root tips of OE lines, demonstrating the importance of AIN1 in plant responses to ABA. A set of ROS scavenger genes showed reduced expression in the OE lines but improved in the RNAi plants relative to Col-0. In addition, we report that exogenous application of reduced glutathione (GSH) rescued the root growth defects seen in AIN1 overexpression lines treated with ABA. In summary, our results suggest that Arabidopsis AIN1 is involved in ABA-mediated inhibition of root elongation by modulating ROS homeostasis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
15.
Plant Sci ; 304: 110799, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568298

RESUMO

The biosynthesis of flavonols and anthocyanins is precisely regulated by different transcription factors in plants. WRKY11 promotes the biosynthesis of flavonoids in apple, but the molecular mechanism of WRKY11 regulating flavonols biosynthesis, and whether WRKY11 plays the same roles in other plants species remains to be further studied. Here, we cloned four NtWRKY11 genes from tobacco, which all contained the conserved WRKYGQK heptapeptide and a zinc-finger motif. The NtWRKY11b showed higher expression levels than the other NtWRKY11 genes in all the tobacco tissues examined, especially in tobacco leaves. Silencing of NtWRKY11b in tobacco leaves reduced the content of flavonols to 45.2 %-69.8 % of that in the WT plants, but overexpression of NtWRKY11b increased the flavonols content by 37.8 %-80.7 %. Transcriptome analysis revealed 8 flavonoids related differentially expressed genes (DEGs) between NtWRKY11b-OE and WT plants, among which the transcription of NtMYB12, NtFLS, NtGT5, and NtUFGT was significantly induced by posttranslational activation of NtWRKY11b with the presence of protein synthesis inhibitor, indicating a putative direct promotion of NtWRKY11b on the transcription of these flavonoids related genes. Chromatin immunoprecipitation assays further demonstrated that NtWRKY11b could bind to the promoter regions of NtMYB12, NtFLS, NtGT5, and NtUFGT to activate the transcription of these genes. Moreover, ectopic expression of NtWRKY11b also promoted the expression levels of NtCML38, NtCTL1, NtWRKY44, and NtCML37 genes, which have been shown to enhance plant resistance to various stresses. Our findings revealed the molecular mechanism of NtWRKY11b regulating flavonols biosynthesis, and provided a promising target for increasing flavonols content in tobacco.


Assuntos
Flavonóis/biossíntese , Proteínas de Plantas/fisiologia , Tabaco/metabolismo , Fatores de Transcrição/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Sci ; 304: 110806, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568306

RESUMO

Control of gene transcription is crucial to regulate plant growth and development events, such as flowering, leaf senescence, and seed germination. Here we identified a NAC transcription factor (ScNAC23) isolated from sugarcane (cv. ROC22). Analysis by qRT-PCR indicated that ScNAC23 expression was strongly induced in mature leaves and flowering varieties and was also responsive to exogenous treatment with the hormone gibberellin (GA). Ectopic expression of ScNAC23 in Arabidopsis accelerated bolting, flowering, and leaf senescence compared to wild type plants. Furthermore, Arabidopsis overexpressed ScNAC23 were more sensitive to GA than the wild type, and exogenous GA significantly accelerated flowering and senescence in the ScNAC23-overexpressed ones. A direct interaction between ScNAC23 and ScGAI, an inhibitor of GA signaling, was confirmed by yeast-two hybrid, bimolecular fluorescence complementation, and GST-pull down assay. The putative GA-ScNAC23-LFY/SAGs regulator module might provide a new sight into the molecular action of GA to accelerating flowering and leaf senescence in sugarcane.


Assuntos
Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Saccharum/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Envelhecimento , Arabidopsis , Clorofila/metabolismo , Clonagem Molecular , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Saccharum/genética , Saccharum/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Plant Sci ; 304: 110820, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568310

RESUMO

Fusarium head blight (FHB) is a destructive disease affecting cereal crops globally due to mycotoxin contamination of grains that reduce yield and quality. Among hundreds of QTLs identified for resistance, the QTL-Fhb1 is of significant interest even today, for its major contribution to FHB resistance. Previously, QTL-Fhb1 dissection based on a combined metabolo-genomics approach, identified a few potential resistance genes, including a NAC like transcription factor for FHB resistance. Sequencing and phylogenetic analysis confirmed NAC to be the wheat TaNAC032. Also, the quantitative RT-PCR studies revealed a greater induced expression of TaNAC032 in resistant NIL in comparison to susceptible NIL upon Fusarium graminearum (Fg) infection. The virus-induced gene silencing (VIGS) based functional validation of TaNAC032 in resistant NIL confirmed increased disease severity and fungal biomass. Metabolic profiling revealed low abundances of resistance-related (RR) metabolites in TaNAC032 silenced NIL-R compared to non-silenced. Silenced plants showed decreased transcript abundances of RR metabolite biosynthetic genes associated with a reduction in total lignin content in rachis, confirming the regulatory role of TaNAC032 in wheat in response to Fg infection. If TaNA032 is mutated in an FHB susceptible cultivar, it can be edited to enhance FHB resistance.


Assuntos
Fusarium , Genes de Plantas , Lignina/biossíntese , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Triticum/microbiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica , Genes de Plantas/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Polimorfismo Genético/genética , Locos de Características Quantitativas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Triticum/genética , Triticum/imunologia , Triticum/metabolismo
18.
Plant Physiol ; 185(1): 77-93, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631797

RESUMO

Numerous proteins involved in cellulose biosynthesis and assembly have been functionally characterized. Nevertheless, we have a limited understanding of the mechanisms underlying the transcriptional regulation of the genes that encode these proteins. Here, we report that HOMEODOMAIN GLABROUS2 (HDG2), a Homeobox-Leucine Zipper IV transcription factor, regulates cellulose biosynthesis in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. HDG2 is a transcriptional activator with the transactivation domain located within its Leucine-Zipper domain. Transcripts of HDG2 were detected specifically in seed coat epidermal cells with peak expression at 10 d postanthesis. Disruptions of HDG2 led to seed coat mucilage with aberrant morphology due to a reduction in its crystalline cellulose content. Electrophoretic mobility shift and yeast one-hybrid assays, together with chromatin immunoprecipitation and quantitative PCR, provided evidence that HDG2 directly activates CELLULOSE SYNTHASE5 (CESA5) expression by binding to the L1-box cis-acting element in its promoter. Overexpression of CESA5 partially rescued the mucilage defects of hdg2-3. Together, our data suggest that HDG2 directly activates CESA5 expression and thus is a positive regulator of cellulose biosynthesis in seed coat mucilage.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Celulose/biossíntese , Celulose/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Plant Cell Physiol ; 62(2): 321-333, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33386852

RESUMO

The molecular mechanisms underlying the diversity of leaf shapes have been of great interest to researchers. Leaf shape depends on the pattern of serrations and the degree of indentation of leaf margins. Multiple transcription factors and hormone signaling pathways are involved in this process. In this study, we characterized the developmental roles of SMALL AND SERRATED LEAF (SSL) by analyzing a recessive mutant in the model legume Medicago truncatula. An ortholog of Arabidopsis thaliana GA3-oxidase 1 (GA3ox1), MtGA3ox1/SSL, is required for GA biosynthesis. Loss of function in MtGA3ox1 results in the small plant and lateral organs. The prominent phenotype of the mtga3ox1 mutant is a more pronounced leaf margin, indicating the critical role of GA level in leaf margin formation. Moreover, 35S:MtDELLA2ΔDELLA and 35S:MtARF3 transgenic plants display leaves with a deeply wavy margin, which resembles those of mtga3ox1. Further investigations show that MtGA3ox1 is under the control of MtDELLA1/2/3-MtGAF1 complex-dependent feedback regulation. Further, MtARF3 behaves as a competitive inhibitor of MtDELLA2/3-MtGAF1 complexes to repress the expression of MtGA3ox1 indirectly. These findings suggest that GA feedback regulatory circuits play a fundamental role in leaf margin formation, in which the posttranslational interaction between transcription factors functions as an additional feature.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Genética
20.
Plant Physiol Biochem ; 160: 37-50, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454635

RESUMO

NAC transcription factors (TFs) play critical roles in plant abiotic stress responses. However, information on the roles of NAC TFs is limited in wheat (Triticum aestivum L.). In this study, we isolated three wheat TaSNAC4 homeologous genes, TaSNAC4-3A, TaSNAC4-3B, and TaSNAC4-3D, and characterized the function of TaSNAC4-3A in plant drought tolerance. TaSNAC4 is highly expressed in seedling leaves, and expression is induced by various abiotic stresses. Transient expression and transactivation assays showed that TaSNAC4-3A is localized to the nucleus, and the C-terminal region has transcriptional activation activity. Overexpression of TaSNAC4-3A in Arabidopsis led to stimulated germination and root growth when exposed to salt and osmotic stresses, and drought stress tolerance was significantly increased in the TaSNAC4-3A transgenic lines. When compared to the control plants, the transgenic lines overexpressing TaSNAC4-3A exhibited reduced stomatal aperture size under drought stress, and therefore had lower water loss rates. In addition, the overexpression of TaSNAC4-3A led to abscisic acid (ABA) hypersensitivity at the root elongation and seed germination stages. Further transcriptomic analysis demonstrated that there was a significant up-regulation of stress responsive genes in the TaSNAC4-3A transgenic lines. Our findings have revealed the important role of TaSNAC4-3A in plant drought tolerance.


Assuntos
Arabidopsis/fisiologia , Secas , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Triticum/genética , Ácido Abscísico , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...