RESUMO
Members of the genus Alphavirus are mostly mosquito-borne pathogens that cause disease in their vertebrate hosts. Chikungunya virus (CHIKV), which is one member of the genus Alphavirus [1], has been a major health problem in endemic areas since its re-emergence in 2006. CHIKV is transmitted to mammalian hosts by the Aedes mosquito, causing persistent debilitating symptoms in many cases. At present, there is no specific treatment or vaccine. Experiments involving live CHIKV need to be performed in BSL-3 facilities, which limits vaccine and drug research. The emergence of pseudotyped virus technology offered the potential for the development of a safe and effective evaluation method. In this chapter, we review the construction and application of pseudotyped CHIKVs, the findings from which have enhanced our understanding of CHIKV. This will, in turn, enable the exploration of promising therapeutic strategies in animal models, with the ultimate aim of developing effective treatments and vaccines against CHIKV and other related viruses.
Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Vírus Chikungunya/genética , Febre de Chikungunya/prevenção & controle , Pseudotipagem Viral , MamíferosRESUMO
Alphaviruses are emerging positive-stranded RNA viruses which replicate and transcribe their genomes in membranous organelles formed in the cell cytoplasm. The nonstructural protein 1 (nsP1) is responsible for viral RNA capping and gates the replication organelles by assembling into monotopic membrane-associated dodecameric pores. The capping pathway is unique to Alphaviruses; beginning with the N7 methylation of a guanosine triphosphate (GTP) molecule, followed by the covalent linkage of an m7GMP group to a conserved histidine in nsP1 and the transfer of this cap structure to a diphosphate RNA. Here, we provide structural snapshots of different stages of the reaction pathway showing how nsP1 pores recognize the substrates of the methyl-transfer reaction, GTP and S-adenosyl methionine (SAM), how the enzyme reaches a metastable postmethylation state with SAH and m7GTP in the active site, and the subsequent covalent transfer of m7GMP to nsP1 triggered by the presence of RNA and postdecapping reaction conformational changes inducing the opening of the pore. In addition, we biochemically characterize the capping reaction, demonstrating specificity for the RNA substrate and the reversibility of the cap transfer resulting in decapping activity and the release of reaction intermediates. Our data identify the molecular determinants allowing each pathway transition, providing an explanation for the need for the SAM methyl donor all along the pathway and clues about the conformational rearrangements associated to the enzymatic activity of nsP1. Together, our results set ground for the structural and functional understanding of alphavirus RNA-capping and the design of antivirals.
Assuntos
Alphavirus , Febre de Chikungunya , Humanos , Alphavirus/genética , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Antivirais/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , S-Adenosilmetionina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas não Estruturais Virais/genética , Replicação ViralRESUMO
OBJECTIVE: To identify the spatial patterns of chikungunya fever (CHIKF) and the associated socioeconomic, demographic, and vector infestation factors in the 1st Health Region of Pernambuco (1st HRP). METHODS: This ecological study used a spatial analysis of Mean Incidence Rates (MIR) of probable cases of CHIKF reported among residents of the 19 municipalities of the 1st HRP, in 2015-2021. The univariate and bivariate global Moran indexes (I) were estimated. From the significant associations (p<0.05), clusters were identified using the local Moran index and maps. RESULTS: A predominance of the largest CHIKF rates was identified in the east. However, there was a heterogeneous distribution of rates across municipalities, which may have contributed to the absence of spatial autocorrelation of CHIKF (I=0.03; p=0.294) in univariate I. The bivariate I revealed a positive spatial correlation between CHIKF and the Municipal Human Development Index (MHDI) (I=0.245; p=0.038), but with a cluster of cities with low incidences and low MHDI in the west. There was no spatial correlation between CHIKF and the other variables analyzed: population density, Gini index, social vulnerability index, and building infestation index for Aedes aegypti. CONCLUSIONS: The results suggest that only the MHDI influenced the occurrence of CHIKF in the 1st HRP, so that municipalities in the west demonstrated spatial dependence between lower values of MHDI and MIR. However, this spatial correlation may have occurred due to possible underreporting in the area. These findings can assist in the (re)orientation of resources for surveillance and health care services.
Assuntos
Febre de Chikungunya , Humanos , Cidades/epidemiologia , Febre de Chikungunya/epidemiologia , Incidência , Brasil/epidemiologia , Análise Espacial , Fatores SocioeconômicosRESUMO
INTRODUCTION: This study aims to describe the epidemiological characteristics of imported cases of dengue (DEN), chikungunya (CHIK), and Zika virus (ZIKV) infections in Czech travellers. MATERIALS AND METHODS: This single-centre descriptive study has retrospectively analysed data of patients with laboratory confirmed DEN, CHIK, and ZIKV infections diagnosed at the Department of Infectious, Parasitic and Tropical Diseases of the University Hospital Bulovka in Prague, Czech Republic from 2004 to 2019. RESULTS: The study included a total of 313 patients with DEN, 30 with CHIK, and 19 with ZIKV infections. Most patients travelled as tourists:263 (84.0%), 28 (93.3%), and 17 (89.5%), respectively (p = 0.337). The median duration of stay was 20 (IQR 14-27), 21 (IQR 14-29), and 15 days (IQR 14-43), respectively (p = 0.935). Peaks of imported DEN and ZIKV infections were noted in 2016, and in 2019 in the case of CHIK infection. Most cases of DEN and CHIKV infections were acquired in Southeast Asia:212 (67.7%) and 15 (50%), respectively, while ZIKV infection was most commonly imported from the Caribbean (11; 57,9%). CONCLUSIONS: Arbovirus infections represent an increasingly significant cause of illness in Czech travellers. Comprehensive knowledge of the specific epidemiological profile of these diseases is an essential prerequisite for good travel medicine practice.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/epidemiologia , Febre de Chikungunya/epidemiologia , Estudos Retrospectivos , República Tcheca , Centros de Atenção Terciária , Dengue/epidemiologiaRESUMO
Chikungunya virus (CHIKV) is an arthropod-borne virus that belongs to the genus Alphavirus (family Togaviridae). CHIKV causes chikungunya fever, which is mostly characterized by fever, arthralgia and, sometimes, a maculopapular rash. The bioactive constituents of hops (Humulus lupulus, Cannabaceae), mainly acylphloroglucinols, known as well as α- and ß-acids, exerted distinct activity against CHIKV, without showing cytotoxicity. For fast and efficient isolation and identification of such bioactive constituents, a silica-free countercurrent separation method was applied. The antiviral activity was determined by plaque reduction test and was visually confirmed by a cell-based immunofluorescence assay. All hops compounds demonstrated a promising post-treatment viral inhibition, except the fraction of acylphloroglucinols, in mixture. ß-acids fraction of 125 µg/mL expressed the strongest virucidal activity (EC50 = 15.21 µg/mL), in a drug-addition experiment on Vero cells. Hypothesis for mechanism of action were proposed for acylphloroglucinols based on their lipophilicity and chemical structure. Therefore, inhibition of some steps of the protein kinase C (PKC) transduction cascades was also discussed.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humulus , Animais , Chlorocebus aethiops , Humanos , Antivirais/farmacologia , Células Vero , Replicação ViralRESUMO
BACKGROUND: ASEAN (Association of Southeast Asian Nations) is composed of ten Southeast Asian countries bound by socio-cultural ties that promote regional peace and stability. South Asia, located in the southern subregion of Asia, includes nine countries sharing similarities in geographical and ethno-cultural factors. Chikungunya is one of the most significant problems in Southeast and South Asian countries. Much of the current chikungunya epidemic in Southeast Asia is caused by the emergence of a virus strain that originated in Africa and spread to Southeast Asia. Meanwhile, in South Asia, three confirmed lineages are in circulation. Given the positive correlation between research activity and the improvement of the clinical framework of biomedical research, this article aimed to examine the growth of chikungunya virus-related research in ASEAN and South Asian countries. METHODS: The Scopus database was used for this bibliometric analysis. The retrieved publications were subjected to a number of analyses, including those for the most prolific countries, journals, authors, institutions, and articles. Co-occurrence mapping of terms and keywords was used to determine the current state, emerging topics, and future prospects of chikungunya virus-related research. Bibliometrix and VOSviewer were used to analyze the data and visualize the collaboration network mapping. RESULTS: The Scopus search engine identified 1280 chikungunya-related documents published by ASEAN and South Asian countries between 1967 and 2022. According to our findings, India was the most productive country in South Asia, and Thailand was the most productive country in Southeast Asia. In the early stages of the study, researchers investigated the vectors and outbreaks of the chikungunya virus. In recent years, the development of antivirus agents has emerged as a prominent topic. CONCLUSIONS: Our study is the first to present the growth of chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022. In this study, the evaluation of the comprehensive profile of research on chikungunya can serve as a guide for future studies. In addition, a bibliometric analysis may serve as a resource for healthcare policymakers.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Febre de Chikungunya/epidemiologia , Sudeste Asiático/epidemiologia , Tailândia , Bibliometria , ÍndiaRESUMO
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Assuntos
Anticorpos Monoclonais , Febre de Chikungunya , Vírus Chikungunya , Hiperalgesia , Proteínas do Envelope Viral , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais , Antineoplásicos , Hiperalgesia/tratamento farmacológico , Canais de Cátion TRPV , Proteínas do Envelope Viral/metabolismo , Febre de Chikungunya/tratamento farmacológicoRESUMO
The prevalence and distribution of African alphaviruses such as chikungunya have increased in recent years. Therefore, a better understanding of the local distribution of alphaviruses in vectors across the African continent is important. Here, entomological surveillance was performed from 2014 to 2018 at selected sites in north-eastern parts of South Africa where alphaviruses have been identified during outbreaks in humans and animals in the past. Mosquitoes were collected using a net, CDC-light, and BG-traps. An alphavirus genus-specific nested RT-PCR was used for screening, and positive pools were confirmed by sequencing and phylogenetic analysis. We collected 64,603 mosquitoes from 11 genera, of which 39,035 females were tested. Overall, 1462 mosquito pools were tested, of which 21 were positive for alphaviruses. Sindbis (61.9%, N = 13) and Middelburg (28.6%, N = 6) viruses were the most prevalent. Ndumu virus was detected in two pools (9.5%, N = 2). No chikungunya positive pools were identified. Arboviral activity was concentrated in peri-urban, rural, and conservation areas. A range of Culicidae species, including Culex univittatus, Cx. pipiens s.l., Aedes durbanensis, and the Ae. dentatus group, were identified as potential vectors. These findings confirm the active circulation and distribution of alphaviruses in regions where human or animal infections were identified in South Africa.
Assuntos
Aedes , Alphavirus , Febre de Chikungunya , Animais , Feminino , Humanos , Alphavirus/genética , Filogenia , África do Sul/epidemiologia , Mosquitos VetoresRESUMO
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: enter the cell, promote genome replication, or assemble and release viral progeny. In this study, we analyzed the role of deubiquitinating enzymes (DUBs) during chikungunya virus (CHIKV) infection. HEK293T, Vero-E6, and Huh-7 cells were treated with two DUB inhibitors (PR619 or WP1130). Then, infected cells were evaluated by flow cytometry, and viral progeny was quantified using the plaque assay method. The changes in viral proteins and viral RNA were analyzed using Western blotting and RT-qPCR, respectively. Results indicate that treatment with DUB inhibitors impairs CHIKV replication due to significant protein and viral RNA synthesis deregulation. Therefore, DUB activity may be a pharmacological target for blocking CHIKV infection.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Enzimas Desubiquitinantes , Inibidores Enzimáticos , Replicação Viral , Humanos , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Enzimas Desubiquitinantes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células HEK293 , RNA Viral , Replicação Viral/efeitos dos fármacosRESUMO
INTRODUCTION: Chikungunya fever is a mosquito-borne viral disease that usually presents with prominent arthralgia. An outbreak of chikungunya fever was reported in Tanjung Sepat, Malaysia in 2019. The outbreak was limited in size with a low number of cases being reported. The present study sought to determine the possible variables that could have affected the transmission of the infection. METHODOLOGY: A cross-sectional study involving 149 healthy adult volunteers from Tanjung Sepat was performed soon after the outbreak had subsided. All the participants donated blood samples and completed the questionnaires. Laboratory detection of anti-CHIKV IgM and IgG antibodies was performed using enzyme-linked immunoassays (ELISA). Risk factors associated with chikungunya seropositivity were determined using logistic regression. RESULTS: The majority (72.5%, n = 108) of the study participants tested positive for CHIKV antibodies. Only 8.3% (n = 9) of the participants out of all the seropositive volunteers had an asymptomatic infection. Participants who resided with a febrile (p < 0.05, Exp(B) = 2.2, confidence interval [CI] 1.3-3.6) or a CHIKV-diagnosed person (p < 0.05, Exp(B) = 2.1, CI 1.2-3.6) in the same household were found likely to be tested positive for CHIKV antibodies. CONCLUSIONS: Findings from the study support that asymptomatic CHIKV infections and indoor transmission occurred during the outbreak. Hence, widespread community testing and indoor use of mosquito repellent are among the possible measures that can be implemented to reduce CHIKV transmission during an outbreak.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Adulto , Animais , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Malásia/epidemiologia , Estudos Transversais , Anticorpos Antivirais , Surtos de Doenças , Infecções Assintomáticas/epidemiologia , Estudos Soroepidemiológicos , Imunoglobulina MRESUMO
BACKGROUND: Polyamines are involved in several cellular processes and inhibiting their synthesis affects chikungunya virus (CHIKV) replication and translation, and, therefore, reduces the quantity of infectious viral particles produced. In this study, we evaluated the inhibition of CHIKV replication by N-ω-chloroacetyl-L-ornithine (NCAO), a competitive inhibitor of ornithine decarboxylase, an enzyme which is key in the biosynthesis of polyamines (PAs). METHODS: The cytotoxicity of NCAO was evaluated by MTT in cell culture. The inhibitory effect of CHIKV replication by NCAO was evaluated in Vero and C6/36 cells. The intracellular polyamines were quantified by HPLC in CHIKV-infected cells. We evaluated the yield of CHIKV in titres via the addition of PAs in Vero, C6/36 cells and human fibroblast BJ treated with NCAO. RESULTS: We found that NCAO inhibits the replication of CHIKV in Vero and C6/36 cells in a dose-dependent manner, causing a decrease in the PFU/mL of at least 4 logarithms (p < 0.01) in both cell lines. Viral yields were restored by the addition of exogenous polyamines, mainly putrescine. The HPLC analyses showed that NCAO decreases the content of intracellular PAs, even though it is predominantly spermidines and spermines which are present in infected cells. Inhibition of CHIKV replication was observed in human fibroblast BJ treated with 100 µM NCAO 24 h before and 48 h after the infection at a MOI 1. CONCLUSIONS: NCAO inhibits CHIKV replication by depleting the intracellular polyamines in Vero, C6/36 cells and human fibroblast BJ, suggesting that this compound is a possible antiviral agent for CHIKV.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Replicação Viral , Fibroblastos , Poliaminas/farmacologiaRESUMO
BackgroundTravellers are generally considered good sentinels for infectious disease surveillance.AimTo investigate whether health data from travellers arriving from Africa to Europe could provide evidence to support surveillance systems in Africa.MethodsWe examined disease occurrence and estimated risk of infection among travellers arriving from Africa to Europe from 2015 to 2019 using surveillance data of arthropod-borne disease cases collected through The European Surveillance System (TESSy) and flight passenger volumes from the International Air Transport Association.ResultsMalaria was the most common arthropod-borne disease reported among travellers from Africa, with 34,235 cases. The malaria travellers' infection rate (TIR) was 28.8 cases per 100,000 travellers, which is 36 and 144 times higher than the TIR for dengue and chikungunya, respectively. The malaria TIR was highest among travellers arriving from Central and Western Africa. There were 956 and 161 diagnosed imported cases of dengue and chikungunya, respectively. The highest TIR was among travellers arriving from Central, Eastern and Western Africa for dengue and from Central Africa for chikungunya in this period. Limited numbers of cases of Zika virus disease, West Nile virus infection, Rift Valley fever and yellow fever were reported.ConclusionsDespite some limitations, travellers' health data can efficiently complement local surveillance data in Africa, particularly when the country or region has a sub-optimal surveillance system. The sharing of anonymised traveller health data between regions/continents should be encouraged.
Assuntos
Artrópodes , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Febre de Chikungunya/epidemiologia , Viagem , Europa (Continente)/epidemiologia , Infecção por Zika virus/epidemiologia , África/epidemiologia , Dengue/epidemiologiaRESUMO
Chikungunya fever is an acute infectious disease caused by Chikungunya virus (CHIKV) and transmitted by Aedes mosquito. It is characterized by fever, rash and arthralgia with no effective drugs. Lomerizine (Lom) is a new generation calcium antagonist, which is mainly used in the treatment of migraine. Certain antiviral function of Lom was shown by some research. In our study, a series of new derivatives of Lom were designed and synthesized, and their in-vitro anti-CHIKV activity was tested. The results showed that Lom and its derivatives had potent anti-CHIKV activity and low cytotoxicity. Among them, compounds B1 and B7 showed most potent antiviral activity. Besides, structure-activity relationships, in-silico ADMET properties were also analyzed. Molecular docking study was performed to rationalize the SAR and analyze the possible binding modes between B1 and amino acid residues in the active site of nsP3 protein to enhance the understanding of their action as antiviral agents. These finding provides research basis for the design and synthesis of effective anti-CHIKV drugs with Lom as the lead compound.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Simulação de Acoplamento Molecular , Febre de Chikungunya/tratamento farmacológico , Antivirais/metabolismo , Replicação ViralRESUMO
Chikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology. To obtain more insight into host responses to infection, stable isotope labeling with amino acids in cell culture and liquid chromatography-tandem mass spectrometry were used to assess temporal changes in the cellular phosphoproteome during CHIKV infection. Among the ~3,000 unique phosphorylation sites analyzed, the largest change in phosphorylation status was measured on residue T56 of eukaryotic elongation factor 2 (eEF2), which showed a >50-fold increase at 8 and 12 h p.i. Infection with other alphaviruses (Semliki Forest, Sindbis and Venezuelan equine encephalitis virus (VEEV)) triggered a similarly strong eEF2 phosphorylation. Expression of a truncated form of CHIKV or VEEV nsP2, containing only the N-terminal and NTPase/helicase domains (nsP2-NTD-Hel), sufficed to induce eEF2 phosphorylation, which could be prevented by mutating key residues in the Walker A and B motifs of the NTPase domain. Alphavirus infection or expression of nsP2-NTD-Hel resulted in decreased cellular ATP levels and increased cAMP levels. This did not occur when catalytically inactive NTPase mutants were expressed. The wild-type nsP2-NTD-Hel inhibited cellular translation independent of the C-terminal nsP2 domain, which was previously implicated in directing the virus-induced host shut-off for Old World alphaviruses. We hypothesize that the alphavirus NTPase activates a cellular adenylyl cyclase resulting in increased cAMP levels, thus activating PKA and subsequently eukaryotic elongation factor 2 kinase. This in turn triggers eEF2 phosphorylation and translational inhibition. We conclude that the nsP2-driven increase of cAMP levels contributes to the alphavirus-induced shut-off of cellular protein synthesis that is shared between Old and New World alphaviruses. MS Data are available via ProteomeXchange with identifier PXD009381.
Assuntos
Alphavirus , Febre de Chikungunya , Vírus Chikungunya , Humanos , Alphavirus/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Eucariotos , Fosforilação , Vírus Chikungunya/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Quinase do Fator 2 de Elongação/metabolismoRESUMO
PURPOSE OF REVIEW: Dengue, chikungunya and zika have caused significant epidemics in the Caribbean in recent years. This review highlights their impact in Caribbean children. RECENT FINDINGS: Dengue has been increasingly intense and severe, seroprevalence is 80-100% in the Caribbean, children have increased attributable morbidity and mortality. Severe dengue, especially dengue with haemorrhage was significantly associated with haemoglobin SC disease and multiple organ-systems involved. These included the gastrointestinal and haematologic systems with extremely high lactate dehydrogenases and creatinine phosphokinases and severely abnormal bleeding indices. Despite appropriate interventions, mortality was highest within the first 48âh of admission. Chikungunya, a togavirus, affected 80% of some Caribbean populations. Paediatric presentations included high fever, skin, joint and neurological manifestations. Children less than 5 years of age had the highest morbidity and mortality. This maiden chikungunya epidemic was explosive and overwhelmed public health systems. Zika, another flavivirus, has a seroprevalence of 15% in pregnancy, so the Caribbean remains susceptible. Paediatric complications include pregnancy losses, stillbirths, Congenital Zika syndrome, Guillain-Barre syndrome, acute disseminated encephalomyelitis and transverse myelitis. Neurodevelopment stimulation programs for zika-exposed infants have been effective in improving language and positive behaviour scores. SUMMARY: Caribbean children remain at risk for dengue, chikungunya and zika, with high attributable morbidity and mortality.
Assuntos
Infecções por Arbovirus , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Criança , Humanos , Infecção por Zika virus/complicações , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Dengue/complicações , Dengue/diagnóstico , Dengue/epidemiologia , Estudos Soroepidemiológicos , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/complicações , Região do Caribe/epidemiologiaRESUMO
The distribution of Aedes albopictus across west Africa is well documented. However, little has been done to synthesise data and establish the current distribution of this invasive vector in central and east Africa. In this Viewpoint, we show that A albopictus is establishing across Africa, how this is potentially related to urbanisation, and how establishment poses risks of near-term increases in arbovirus transmission. We then use existing species distribution maps for A albopictus and Aedes aegypti to produce consensus estimates of suitability and make these estimates accessible. Although urban development and increased trade have economic and other societal gains, the resulting potential changes in Aedes-borne virus epidemiology require a discussion of how cross-country collaboration and mitigation could be facilitated. Failure to respond to species invasion could result in increased transmission of Aedes-associated pathogens, including dengue, chikungunya, and Rift Valley fever viruses.
Assuntos
Aedes , Febre de Chikungunya , Dengue , Animais , Humanos , Dengue/epidemiologia , Mosquitos Vetores , África/epidemiologia , Febre de Chikungunya/epidemiologiaRESUMO
Chikungunya virus (CHIKV) and the closely related onyong-nyong virus (ONNV) are arthritogenic arboviruses that have caused significant, often debilitating, disease in millions of people. However, despite their kinship, they are vectored by different mosquito subfamilies that diverged 180 million years ago (anopheline versus culicine subfamilies). Previous work indicated that the nonstructural protein 3 (nsP3) of these alphaviruses was partially responsible for this vector specificity. To better understand the cellular components controlling alphavirus vector specificity, a cell culture model system of the anopheline restriction of CHIKV was developed along with a protein expression strategy. Mosquito proteins that differentially interacted with CHIKV nsP3 or ONNV nsP3 were identified. Six proteins were identified that specifically bound ONNV nsP3, ten that bound CHIKV nsP3 and eight that interacted with both. In addition to identifying novel factors that may play a role in virus/vector processing, these lists included host proteins that have been previously implicated as contributing to alphavirus replication.
Assuntos
Alphavirus , Febre de Chikungunya , Vírus Chikungunya , Culicidae , Humanos , Animais , Culicidae/metabolismo , Mosquitos Vetores , Vírus Chikungunya/metabolismo , Alphavirus/genética , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
BackgroundSuriname, a country endemic for dengue virus (DENV), is a popular destination for Dutch travellers visiting friends and relatives and tourist travellers. Chikungunya and Zika virus (CHIKV, ZIKV) were introduced in 2014 and 2015, respectively. Data on infection risks among travellers are limited.AimWe aimed to prospectively study incidence rate (IR) and determinants for DENV, ZIKV and CHIKV infection in adult travellers to Suriname from 2014 through 2017.MethodsParticipants kept a travel diary and were tested for anti-DENV, anti-ZIKV and anti-CHIKV IgG antibodies (Euroimmun). Selected samples were subjected to an in-house DENV and ZIKV PRNT50. The IR (infections/1,000 person-months of travel) and IR ratio and determinants for infection were calculated.ResultsTravel-acquired infections were found in 21 of 481 participants: 18 DENV, four ZIKV and two CHIKV, yielding an IRDENV of 47.0 (95%â¯CI: 29.6-74.6), IRZIKV of 11.6 (95% CI: 4.4-31.0) and IRCHIKV of 5.6 (95%â¯CI: 1.4-22.2)/1,000 person-months. In nine DENV and three ZIKV infected participants, infections were PRNT50-confirmed, yielding a lower IRDENV of 23.3 (95%â¯CI: 12.1-44.8) and an IRZIKV of 8.4 (95%â¯CI: 2.7-26.1) per 1,000 person-months. Tourist travel was associated with DENV infection. ZIKV and CHIKV infections occurred soon after their reported introductions.ConclusionsDespite an overestimation of serologically confirmed infections, Dutch travellers to Suriname, especially tourists, are at substantial risk of DENV infection. As expected, the risk of contracting ZIKV and CHIKV was highest during outbreaks. Cross-reaction and potential cross-protection of anti-DENV and -ZIKV antibodies should be further explored.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Adulto , Humanos , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia , Estudos Prospectivos , Suriname/epidemiologia , Dengue/epidemiologiaRESUMO
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.