Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.293
Filtrar
1.
Ecotoxicol Environ Saf ; 204: 111068, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745784

RESUMO

Herein, eight common endocrine disrupting chemicals (EDCs) were exposed to zebrafish (Danio rerio) to investigate the relationship between different EDCs and their activated estrogen receptors. Under acute exposure, we identified five major malformation types whose incidence and deformity modes differed among EDCs. Luciferase analysis divided the EDC receptors into four categories: (i) triclosan (TCS), 17ß-estradiol (E2) and estriol (E3) mainly activated GPER expression; (ii) bisphenol A (BPA), p-(tert-octyl) phenol (POP), 17α-ethynylestradiol (EE2), E2 and E3 activated ERß expression; (iii) E2 and E3 acted on both GPER and ERß; and (iv) estrone (E1) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF) had little effect on the two receptors. In vivo immunofluorescence experiments on 96-hpf larvae provided evidence that TCS and POP acted on GPER and ERß, respectively, while E2 acted on the two receptors simultaneously. Luciferase activities in the promoter regions of gper (-986 to -488) and erß (-1998 to -1496) were higher than those in other regions, identifying these key regions as targets for transcription activity. TCS promoted GPER expression by acting on the JUND transcription factor, while POP promoted ERß expression by activating the Foxl1 transcription factor. In contrast, E2 mainly regulated transcription of GPER and ERß by Arid3a. These findings provide compelling evidence that different EDCs possess varying estrogen receptors, leading to differential regulatory pathways and abnormality symptoms. These results offer an experimental strategy and fundamental information to assess the molecular mechanisms of EDC-induced estrogen effects.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Receptor beta de Estrogênio/metabolismo , Fenóis/toxicidade , Receptores Acoplados a Proteínas-G/metabolismo , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo
2.
PLoS One ; 15(8): e0236633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785249

RESUMO

The induction of general plant defense responses following the perception of external elicitors is now regarded as the first level of the plant immune response. Depending on the involvement or not of these molecules in pathogenicity, this induction of defense is called either Pathogen-Associated Molecular Pattern (PAMP) Triggered Immunity or Pattern Triggered Immunity-both abbreviated to PTI. Because PTI is assumed to be a widespread and stable form of resistance to infection, understanding the mechanisms driving it becomes a major goal for the sustainable management of plant-pathogen interactions. However, the induction of PTI is complex. Our hypotheses are that (i) the recognition by the plant of PAMPs vs non-PAMP elicitors leads to specific defense profiles and (ii) the responses specifically induced by PAMPs target critical life history traits of the pathogen that produced them. We thus analyzed, using a metabolomic approach coupled with transcriptomic and hormonal analyses, the defense profiles induced in potato foliage treated with either a Concentrated Culture Filtrate (CCF) from Phytophthora infestans or two non-PAMP preparations, ß-aminobutyric acid (BABA) and an Ulva spp. Extract, used separately. Each elicitor induced specific defense profiles. CCF up-regulated sesquiterpenes but down-regulated sterols and phenols, notably α-chaconine, caffeoyl quinic acid and rutin, which decreased spore production of P. infestans in vitro. CCF thus induces both defense and counter-defense responses. By contrast, the Ulva extract triggered the synthesis of a large-spectrum of antimicrobial compounds through the phenylpropanoid/flavonoid pathways, while BABA targeted the primary metabolism. Hence, PTI can be regarded as a heterogeneous set of general and pathogen-specific responses triggered by the molecular signatures of each elicitor, rather than as a uniform, non-specific and broad-spectrum set of general defense reactions.


Assuntos
Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Solanum tuberosum/imunologia , Aminobutiratos/farmacologia , Resistência à Doença/efeitos dos fármacos , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fenóis/metabolismo , Phytophthora infestans/imunologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Sesquiterpenos/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Esteróis/metabolismo , Ulva/química
3.
Food Chem ; 333: 127481, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663753

RESUMO

In this study, we tested the exogenous application of phytosulfokine α (PSKα) for delaying the yellowing of broccoli florets during cold storage. Our results showed that the lower yellowing in broccoli florets treated with 150 nM PSKα was probably due to the higher endogenous accumulation of PSKα, leading to the endogenous accumulation of guanosine 3', 5'-cyclic monophosphate (cGMP). Besides, broccoli florets treated with 150 nM PSKα exhibited a higher accumulation of phenols and flavonoids by triggering gene expression and activities of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS). Moreover, the higher expression of L-galactotno-1,4-lactone dehydrogenase (GLDH) gene and the lower expression of ascorbic acid oxidase (AAO) gene in broccoli florets treated with 150 nM PSKα may be the reasons for the higher accumulation of ascorbic acid. In conclusion, the exogenous application of PSKα is a promising strategy in delaying the yellowing and preserving the nutritional quality of broccoli florets during cold storage.


Assuntos
Brassica/efeitos dos fármacos , Brassica/metabolismo , Temperatura Baixa , Qualidade dos Alimentos , Armazenamento de Alimentos , Valor Nutritivo/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Ácido Ascórbico/metabolismo , Fenóis/metabolismo , Pigmentação/efeitos dos fármacos
4.
Food Chem ; 332: 127382, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619943

RESUMO

Sea buckthorn (Hippophaë rhamnoides L.) berries have high biological value as a rich source of phenolic compounds, fatty acids and vitamins A, C, E. Due to the high organic acid content and sour taste, the fruits are rarely used in juice production. Therefore, the study aimed to determine the metabolic activity of Lactobacillus plantarum, Lactobacillus plantarum subsp. argentoratensis and Oenococcus oeni strains along with the dynamics of changes in organic acids, sugars, phenolic compounds, and antioxidant activity during 72-h fermentation of 100% sea buckthorn and mixed with apple (1:1) juices. The strongest malolactic conversion was in mixed juices (to 75.0%). The most efficient strains were L. plantarum DSM 10492, 20174 and 6872. L. plantarum strains caused an increase in flavonols and antioxidant activity of sea buckthorn-apple juices. The results can be used to select conditions and strains in industrial-scale fermentation, to produce novel sea buckthorn products and increase their consumption.


Assuntos
Antioxidantes/química , Sucos de Frutas e Vegetais/análise , Ácido Láctico/metabolismo , Malatos/metabolismo , Fenóis/metabolismo , Açúcares/metabolismo , Fermentação , Flavonóis/química , Flavonóis/metabolismo , Frutas/química , Frutas/metabolismo , Hippophae/química , Hippophae/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Malus/química , Malus/metabolismo , Oenococcus/crescimento & desenvolvimento , Oenococcus/metabolismo , Fenóis/química
5.
Food Chem ; 332: 127415, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619945

RESUMO

This study aimed to investigate the combined effect of storage at 4 °C (10-days) and in vitro gastrointestinal digestion on the phytochemical profile of red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens. The untargeted profiling based on UHPLC-QTOF metabolomics allowed annotating 316 compounds, comprising mainly polyphenols and lipids. An impact of storage on the total phenolic content (TPC) was observed, with a maximum increase at 10-days of storage for both red beet (+1.3-fold) and amaranth (+1.1-fold). On the other hand, in vitro digestion of both red beet and amaranth microgreens produced a significant increase in TPC (36-88%), CUPRAC (27-40%), DPPH (6-43%), and BC (41-57%) to reach the maximum at 10 days of storage. Tyrosinase inhibitory potential also decreased following digestion. The combination of biochemical changes occurring in microgreen immature plants (likely in response to the harvest stress) with changes during digestion, determined the actual functional value of microgreens.


Assuntos
Amaranthus/química , Beta vulgaris/química , Metabolômica/métodos , Amaranthus/metabolismo , Beta vulgaris/metabolismo , Cromatografia Líquida de Alta Pressão , Temperatura Baixa , Digestão , Análise Discriminante , Armazenamento de Alimentos , Análise dos Mínimos Quadrados , Espectrometria de Massas , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Fenóis/química , Fenóis/metabolismo
6.
Food Chem ; 333: 127536, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32707417

RESUMO

Some halophyte plants are currently used in gourmet cuisine due to their unique organoleptic properties. Moreover, they exhibit excellent nutritional and functional properties, being rich in polyphenolics and vitamins. These compounds are associated to strong antioxidant activity and enhanced health benefits. This work compared the nutritional properties and antioxidant potential of three species (Mesembryanthemum nodiflorum, Suaeda maritima and Sarcocornia fruticosa) collected in saltmarshes from Portugal and Spain with those of cultivated plants. The latter were generally more succulent and had higher contents of minerals than plants obtained from the wild and contained less fibre. All species assayed are a good source of proteins, fibres and minerals. Additionally, they are good sources of carotenoids and vitamins A, C and B6 and showed good antioxidant potential particularly S. maritima. Chromatographic analysis of the phenolic profile revealed that ferulic and caffeic acids as the most relevant phenolic compounds detected in the halophytes tested.


Assuntos
Valor Nutritivo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Antioxidantes/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/metabolismo , Fenóis/metabolismo
7.
Ecotoxicol Environ Saf ; 202: 110895, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615496

RESUMO

Halogenated phenols, such as 2,4-dichlorophenol (2,4-DCP) and 4-bromophenol (4-BP) are pollutants generated by a various industrial sectors like chemical, dye, paper bleaching, pharmaceuticals or in an agriculture as pesticides. The use of Horseradish peroxidase (HRP) in the halogenated phenols treatment has already been mentioned, but it is not well understood how the different phenolic substrates can bind in the peroxidase active site nor how these specific interactions can influence in the bioremediation potential. In this work, different removal efficiencies were obtained for phenolic compounds investigated using HRP as catalyst (93.87 and 59.19% to 4BP and 2,4 DCP, respectively). Thus, to rationalize this result based on the interactions of phenols with active center of HRP, we combine computational and experimental methodologies. The theoretical approaches utilized include density functional theory (DFT) calculations, docking simulation and quantum mechanics/molecular mechanics (QM/MM) technique. Michaelis Menten constant (Km) obtained through experimental methodologies were 2.3 and 0.95 mM to 2,4-DCP and 4-BP, respectively, while the specificity constant (Kcat/Km) found was 1.44 mM-1 s-1 and 0.62 mM-1 s-1 for 4-BP and 2,4-DCP, respectively. The experimental parameters appointed to the highest affinity of HRP to 4-BP. According to the molecular docking calculations, both ligands have shown stabilizing intermolecular interaction energies within the HRP active site, however, the 4-BP showed more stabilizing interaction energy (-53.00 kcal mol-1) than 2,4-dichlorophenol (-49.23 kcal mol-1). Besides that, oxidative mechanism of 4-BP and 2,4-DCP was investigated by the hybrid QM/MM approach. This study showed that the lowest activation energy values for transition states investigated were obtained for 4-BP. Therefore, by theoretical approach, the compound 4-BP showed the more stabilizing interaction and activation energy values related to the interaction within the enzyme and the oxidative reaction mechanism, respectively, which corroborates with experimental parameters obtained. The combination between experimental and theoretical approaches was essential to understand how the degradation potential of the HRP enzyme depends on the interactions between substrate and the active center cavity of the enzyme.


Assuntos
Biodegradação Ambiental , Peroxidases/metabolismo , Fenóis/metabolismo , Catálise , Poluentes Ambientais , Peroxidase do Rábano Silvestre/química , Cinética , Simulação de Acoplamento Molecular , Oxirredução
8.
PLoS One ; 15(7): e0235556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614916

RESUMO

To gain a better insight into the selenium nanoparticle (nSe) benefits/toxicity, this experiment was carried out to address the behavior of bitter melon seedlings to nSe (0, 1, 4, 10, 30, and 50 mgL-1) or bulk form (selenate). Low doses of nSe increased biomass accumulation, while concentrations of 10 mgL-1 and above were associated with stem bending, impaired root meristem, and severe toxicity. Responses to nSe were distinct from that of bulk in that the nano-type exhibited a higher efficiency to stimulate growth and organogenesis than the bulk. The bulk form displayed higher phytotoxicity than the nano-type counterpart. According to the MSAP-based analysis, nSe mediated substantial variation in DNA cytosine methylation, reflecting the epigenetic modification. By increasing the concentration of nSe, the expression of the WRKY1 transcription factor linearly up-regulated (mean = 7.9-fold). Transcriptions of phenylalanine ammonia-lyase (PAL) and 4-Coumarate: CoA-ligase (4CL) genes were also induced. The nSe treatments at low concentrations enhanced the activity of leaf nitrate reductase (mean = 52%) in contrast with the treatment at toxic concentrations. The toxic concentration of nSe increased leaf proline concentration by 80%. The nSe supplement also stimulated the activities of peroxidase (mean = 35%) and catalase (mean = 10%) enzymes. The nSe-treated seedlings exhibited higher PAL activity (mean = 39%) and soluble phenols (mean = 50%). The nSe toxicity was associated with a disrupted differentiation of xylem conducting tissue. The callus formation and performance of the explants originated from the nSe-treated seedlings had a different trend than that of the control. This experiment provides new insights into the nSe-associated advantage/ cytotoxicity and further highlights the necessity of designing convincing studies to introduce novel methods for plant cell/tissue cultures and agriculture.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Momordica charantia/metabolismo , Nanopartículas/toxicidade , Selênio/química , Citosina/metabolismo , Momordica charantia/efeitos dos fármacos , Momordica charantia/crescimento & desenvolvimento , Nanopartículas/química , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Prolina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
PLoS One ; 15(6): e0231611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555603

RESUMO

Plants respond to changes in ultraviolet (UV) radiation both morphologically and physiologically. Among the variety of plant UV-responses, the synthesis of UV-absorbing flavonoids constitutes an effective non-enzymatic mechanism to mitigate photoinhibitory and photooxidative damage caused by UV stress, either reducing the penetration of incident UV radiation or acting as quenchers of reactive oxygen species (ROS). In this study, we designed a UV-exclusion experiment to investigate the effects of UV radiation in Silene littorea. We spectrophotometrically quantified concentrations of both anthocyanins and UV-absorbing phenolic compounds in petals, calyces, leaves and stems. Furthermore, we analyzed the UV effect on the photosynthetic activity in hours of maximum solar radiation and we tested the impact of UV radiation on male and female reproductive performance. We found that anthocyanin concentrations showed a significant decrease of about 20% with UV-exclusion in petals and stems, and a 30% decrease in calyces. The concentrations of UV-absorbing compounds under UV-exclusion decreased by approximately 25% in calyces and stems, and 12% in leaves. Photochemical efficiency of plants grown under UV decreased at maximum light stress, reaching an inhibition of 58% of photosynthetic activity, but their ability to recover after light-stress was not affected. In addition, exposure to UV radiation did not affect ovule production or seed set per flower, but decreased pollen production and total seed production per plant by 31% and 69%, respectively. Our results demonstrate that UV exposure produced opposing effects on the accumulation of plant phenolic compounds and reproduction. UV radiation increased the concentration of phenolic compounds, suggesting a photoprotective role of plant phenolics against UV light, yet overall reproduction was compromised.


Assuntos
Fenóis/análise , Silene/química , Raios Ultravioleta , Antocianinas/análise , Antocianinas/metabolismo , Fenóis/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Estações do Ano , Sementes/química , Sementes/metabolismo , Silene/crescimento & desenvolvimento , Silene/efeitos da radiação
10.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G133-G141, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32538141

RESUMO

Xenometabolites from microbial and plant sources are thought to confer beneficial as well as deleterious effects on host physiology. Studies determining absorption and tissue uptake of xenometabolites are limited. We utilized a conscious catheterized pig model to evaluate interorgan flux of annotated known and suspected xenometabolites, derivatives, and bile acids. Female pigs (n = 12, 2-3 mo old, 25.6 ± 2.2 kg) had surgically implanted catheters across portal-drained viscera (PDV), splanchnic compartment (SPL), liver, kidney, and hindquarter muscle. Overnight-fasted arterial and venous plasma was collected simultaneously in a conscious state and stored at -80°C. Thawed samples were analyzed by liquid chromatography-mass spectrometry. Plasma flow was determined with para-aminohippuric acid dilution technology and used to calculate net organ balance for each metabolite. Significant organ uptake or release was determined if net balance differed from zero. A total of 48 metabolites were identified in plasma, and 31 of these had at least one tissue with a significant net release or uptake. All bile acids, indole-3-acetic acid, indole-3-arylic acid, and hydrocinnamic acid were released from the intestine and taken up by the liver. Indole-3-carboxaldehyde, p-cresol glucuronide, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylglycine were also released from the intestines. Liver or kidney uptake was noted for indole-3-acetylglycine, p-cresol glucuronide, atrolactic acid, and dodecanedioic acid. Indole-3-carboxaldehyde, atrolactic acid, and dodecanedioic acids showed net release from skeletal muscle. The results confirm gastrointestinal origins for several known xenometabolites in an in vivo overnight-fasted conscious pig model, whereas nongut net release of other putative xenometabolites suggests a more complex metabolism.NEW & NOTEWORTHY Xenometabolites from microbe origins influence host health and disease, but absorption and tissue uptake of these metabolites remain speculative. Results herein are the first to demonstrate in vivo organ uptake and release of these metabolites. We used a conscious catheterized pig model to confirm gastrointestinal origins for several xenometabolites (e.g., indolic compounds, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylgycine). Liver and kidney were major sites for xenometabolite uptake, likely highlighting liver conjugation metabolism and renal excretion.


Assuntos
Intestinos/fisiologia , Rim/fisiologia , Fígado/metabolismo , Músculo Esquelético/fisiologia , Ácido p-Aminoipúrico/farmacocinética , Animais , Transporte Biológico , Feminino , Fenóis/sangue , Fenóis/metabolismo , Sistema Porta , Suínos , Ácido p-Aminoipúrico/sangue
11.
Food Chem ; 331: 127282, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32559597

RESUMO

Phenolics are important secondary metabolites in plants with strong antioxidant effects. Seeds germination and exogenous stimulation could activate endogenous enzymes to enhance the content of phenolic acids and flavonoids. Barley seeds geminated under NaCl (1-20 mM) treatment to evaluate the accumulation of phenolics in this study. Results showed that NaCl treatment significantly enhanced the growth of seedlings, especially bud length. NaCl treatment up-regulated genes and proteins expression of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), resulting in the enhancement of their activities. As a result, phenolic acids and flavonoids contents increased by 11.19% and 32.54%, respectively, in which gallic acid, protocatechuic, fisetin, myricetin and quercetin were affected mostly. Moreover, NaCl treatment enhanced 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity. Hence, NaCl stimulated the synthesis of phenolic components via enhancing gene, protein expression and the activity of key enzymes.


Assuntos
Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Fenóis/metabolismo , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/análise , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Fenóis/análise , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
12.
Int J Food Microbiol ; 331: 108714, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32544792

RESUMO

Microbiological contamination by spoilage yeasts species are frequent during winemaking, and biological control using antagonistic yeasts is considered a more beneficial alternative to conventional synthetic antimicrobials. Saccharomyces eubayanus killer toxin (SeKT) was produced and purified in a synthetic optimized medium. Purification procedure allowed the identification of SeKT as protein with an apparent molecular mass of 70 kDa and activity at physicochemical conditions suitable for winemaking process. Purified SeKT reduced the levels of volatile phenols produced by the spoilage yeasts Brettanomyces bruxellensis, Pichia membranifaciens, Meyerozyma guilliermondii and Pichia manshurica in wine-like medium. The putative mode of action of SeKT on sensitive yeast strains comprises cell wall disruption through ß-glucanase and chitinase activities as well as necrotic and apoptotic death in a toxin dose dependent manner. Thus, SeKT appears to be a promising biocontrol agent against spoilage yeasts during wine aging and storing.


Assuntos
Microbiologia de Alimentos , Micotoxinas/química , Micotoxinas/toxicidade , Saccharomyces/química , Vinho/microbiologia , Parede Celular/efeitos dos fármacos , Micotoxinas/isolamento & purificação , Fenóis/metabolismo , Saccharomyces/metabolismo , Leveduras/efeitos dos fármacos
13.
Food Chem ; 329: 127191, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505985

RESUMO

The awareness of the functional and nutraceutical properties of olives and olive oil bioactive constituents contributed to oliviculture recent increase. Olives' metabolism and nutritional quality are determined by how the olive-tree is coping to climate change-related episodes, which increasingly occur in the Mediterranean. We characterize the most relevant lipophilic and phenolic compounds of olives from Olea europaea cultivars [Cobrançosa, Cordovil de Castelo Branco and Cordovil de Serpa (C.Serpa)] exposed to drought + heat. Olives from the three cultivars presented a similar qualitative profile but differed in their relative richness. Cobrançosa olives are richer in organic acids, esters and carbohydrates, while C.Serpa olives have higher levels of phenolic compounds, particularly under control conditions. Drought + heat changed the quantitative profile of olives, in a way dependent on the cultivar, and C.Serpa olives showed the highest stress susceptibility. Climate change-related conditions stimulate the accumulation of relevant bioactive compounds in olives, contributing to increasing its nutritional value.


Assuntos
Secas , Lipídeos/análise , Olea/química , Azeite de Oliva/análise , Fenóis/análise , Mudança Climática , Flavonoides/análise , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Iridoides/análise , Limite de Detecção , Olea/metabolismo , Fenóis/metabolismo , Análise de Componente Principal , Temperatura
14.
Food Chem ; 330: 127253, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534157

RESUMO

In this study, the melanin in persimmon and its formation were investigated. Melanin was found to be deposited on the cell walls of the upper epidermis and subepidermal cells in persimmon skin and the isolated pigment appears to have lamellar structures. Diagnostic analysis of the isolated pigment showed results that were similar to those of melanin from other sources. Ultraviolet-visible spectroscopy revealed that the extracted skin pigment displayed a broadband, structureless absorption profile that increased progressively towards shorter wavelengths. The Fourier transform infrared spectroscopy assay revealed that melanin in persimmon skin exhibits many characteristic absorption peaks. The phenolic profile analysis suggested that the precursors of this pigment may include gallic acid, procyanidin B1, procyanidin B2, ferulic acid and epigallocatechin gallate. The PPO activity and DkPPO expression significantly increased during melanin formation, and transient overexpression of DkPPO promoted melanin synthesis. These results indicate that the isolated pigment was a type of melanin and that PPO plays a critical role in its formation.


Assuntos
Catecol Oxidase/metabolismo , Diospyros/enzimologia , Melaninas/biossíntese , Diospyros/anatomia & histologia , Frutas/enzimologia , Microscopia Eletrônica de Varredura , Fenóis/metabolismo
15.
PLoS One ; 15(6): e0233963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530961

RESUMO

Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (ß-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.


Assuntos
Antioxidantes/metabolismo , Eclipta/metabolismo , Eclipta/efeitos da radiação , Hipoglicemiantes/metabolismo , Compostos Fitoquímicos/metabolismo , Antioxidantes/química , Cumarínicos/metabolismo , Eclipta/crescimento & desenvolvimento , Flavonoides/metabolismo , Hipoglicemiantes/química , Luz , Fenóis/metabolismo , Compostos Fitoquímicos/química , Metabolismo Secundário/efeitos da radiação , Técnicas de Cultura de Tecidos
16.
Food Chem ; 329: 126800, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504915

RESUMO

The role of polyphenol oxidase (PPO) in the browning of fresh wet noodle sheets (FWNS) was discussed. To release the chemical formation mechanism of the dark spots formed on FWNS, the reconstituted FWNS and PPO-catechol reaction systems were prepared. Different from the overall color change of FWNS, almost all the melanins in dark spots were indirect products of PPO catalysis. The PPO catalytic dehydrogenation was an essential step for the formation of dark spots, but once the phenol dehydrogenation products were formed, the dark spots could still form through a further polymerization process, even though the PPO was completely deactivated. The optimum pH for the phenolic dehydrogenation in FWNS was about 7, and the alkaline condition was advantageous to the progress of the polymerization. Comprehensively, the maximum amount of dark spots was formed at about pH 9.


Assuntos
Catecol Oxidase/metabolismo , Alimentos , Cor , Farinha/análise , Análise de Alimentos , Concentração de Íons de Hidrogênio , Fenóis/análise , Fenóis/metabolismo , Triticum/química
17.
Food Chem ; 329: 127155, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512393

RESUMO

Melatonin (MLT) has gained increasing attention due to its pleiotropic effects. In present study, 'Kyoho' grapes were immersed in 200 µM of MLT to investigate the role of exogenous melatonin in postharvest metabolism response. Results indicated that berry abscission and rotten index was reduced by 37.50% and 58.37%, respectively, by exogenous MLT treatment, while the amino acid accumulation was greatly enhanced. Furthermore, the endogenous MLT biosynthesis was activated, where the transcript expression of genes, encoding tryptophan decarboxylase, tryptophan decarboxylase, N-acetylserotonin methyltransferase and N-acetyltransferae were upregulated significantly (p < 0.05), in accordance with the increase of endogenous MLT. Phenolic biosynthesis related genes were upregulated significantly, accompanied with the significantly higher phenolics content (p < 0.05). On day 15, the expression level of phenylalanine ammonia-lyase in MLT-treated group was twice of that in control. Therefore, this study provides the first evidence pertinent to the contribution of exogenous melatonin to the phenolics metabolism in postharvest table grape.


Assuntos
Melatonina/química , Fenóis/química , Vitis/química , Frutas/química , Frutas/metabolismo , Melatonina/metabolismo , Fenóis/metabolismo
18.
Food Chem ; 329: 127089, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516705

RESUMO

Schizophyllum commune VE_07 was produced in different culture media containing pine sawdust (PS), grape residue (GR), cotton cake (CC) and jatropha seed cake (JC). The content of phenolics and antioxidant activity were determined for the substrates and mushrooms produced. The content of ß-glucans and the composition of S. commune were also evaluated. The medium formulated with 94% grape residue enabled the highest values of yield, biological efficiency, and productivity. Mushrooms grown in this condition showed the highest value (13.14%) of ß-glucans. The contents of proteins and dietary fibre were 16.59% and 59.61%, respectively. Mushrooms grown in cotton cake showed the highest phenolic content (291.51 ± 1.83 mg GAE/ 100 g mushroom) and antioxidant activity (58.15 ± 0.86 DPPH % scavenging). The results obtained indicate that substrate composition affected the production of S. commune and its chemical composition.


Assuntos
Antioxidantes/química , Biocombustíveis , Schizophyllum/metabolismo , Fibras na Dieta , Glucanos/metabolismo , Fenóis/metabolismo , Schizophyllum/química , Vitis/metabolismo
19.
Food Chem ; 330: 127199, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563929

RESUMO

This study addressed determinations of the glycaemic index (GI), antioxidant capacity (AC), and phenolics content (TPC) of oat, buckwheat, and mixed oat/buckwheat breads. The bioaccessibility of TPC and the AC of breads were studied after in vitro digestion. The lowest values of the GI were determined for oat bread, whereas breads with the highest content of buckwheat flour had the highest AC. The digestion of breads showed that most of the TPC were found in the soluble fraction, but the phenolic compounds were still present also in the insoluble fraction after digestion. It was concluded that the mixed oat-buckwheat breads may serve as products with a medium GI, as a source of TPC, and as products with a high AC. It should be noted that enzymatic digestion or fermentation by microbiota could potentially enhanced breads antioxidant activity during digestion in the gastrointestinal tract.


Assuntos
Avena/metabolismo , Pão/análise , Fagopyrum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Avena/química , Fagopyrum/química , Fermentação , Farinha/análise , Índice Glicêmico , Fenóis/química , Fenóis/metabolismo
20.
J Food Sci ; 85(6): 1717-1724, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406950

RESUMO

This study evaluated the influence of different fluidized-bed drying temperatures (20, 60, and 100 °C) on the cooking properties, in vitro starch digestibility, and phenolic bioaccessibility of black rice. The results indicated that the formation of fissures in the grains dried at or above 60 °C reduced the physical integrity of the grains after cooking, increasing the starch digestion and the rehydration ratio, and reduced the cooking time, the hardness and adhesiveness. Due to the higher digestibility of grains dried at higher temperatures, an increase in the bioaccessibility of ferulic acid, which was previously associated with the polysaccharides, was observed. Caffeic acid was the only phenolic compound whose levels decreased when the drying temperature increased. At high temperatures and in the gastric phase, cyanidin chalcones were formed due to the deglycosylation of cyanidin-3-O-glucoside. PRACTICAL APPLICATION: The results of this study provide information to the food industry about the effects of different fluidized-bed drying temperatures on the rice structure after cooking and that, consequently, affect the availability of bioactive compounds after digestion and the glycemic index of black rice.


Assuntos
Dessecação/métodos , Oryza/química , Fenóis/química , Amido/química , Antocianinas/química , Antocianinas/metabolismo , Culinária , Digestão , Manipulação de Alimentos , Glucosídeos/química , Glucosídeos/metabolismo , Índice Glicêmico , Humanos , Modelos Biológicos , Oryza/metabolismo , Fenóis/metabolismo , Amido/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA