Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.097
Filtrar
1.
Rev Environ Contam Toxicol ; 249: 153-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30900073

RESUMO

Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.


Assuntos
Chumbo/toxicidade , Fenômenos Fisiológicos Vegetais , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes , Espécies Reativas de Oxigênio
2.
Biol Res ; 52(1): 39, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358053

RESUMO

In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.


Assuntos
Reguladores de Crescimento de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Metabolismo Secundário/fisiologia , Estresse Fisiológico/fisiologia , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas/metabolismo , Transdução de Sinais
3.
Plant Physiol Biochem ; 141: 332-342, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207494

RESUMO

Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/patogenicidade , Raízes de Plantas/parasitologia , Plantas/parasitologia , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Genoma de Planta , Masculino , Doenças das Plantas/parasitologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/genética , Plantas/genética , Plantas Geneticamente Modificadas/parasitologia , Locos de Características Quantitativas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transcriptoma , Virulência/genética
4.
Plant Physiol Biochem ; 141: 353-369, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207496

RESUMO

Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.


Assuntos
Oxirredução , Estresse Oxidativo , Fenômenos Fisiológicos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Aclimatação , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica , Genes de Plantas , Mitocôndrias/metabolismo , Oryza/metabolismo , Oxigênio/metabolismo , Peroxissomos/metabolismo , Fotossíntese , Populus/metabolismo
5.
Nat Commun ; 10(1): 2555, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186418

RESUMO

Functional traits are expected to modulate plant competitive dynamics. However, how traits and their plasticity in response to contrasting environments connect with the mechanisms determining species coexistence remains poorly understood. Here, we couple field experiments under two contrasting climatic conditions to a plant population model describing competitive dynamics between 10 annual plant species in order to evaluate how 19 functional traits, covering physiological, morphological and reproductive characteristics, are associated with species' niche and fitness differences. We find a rich diversity of univariate and multidimensional associations, which highlight the primary role of traits related to water- and light-use-efficiency for modulating the determinants of competitive outcomes. Importantly, such traits and their plasticity promote species coexistence across climatic conditions by enhancing stabilizing niche differences and by generating competitive trade-offs between species. Our study represents a significant advance showing how leading dimensions of plant function connect to the mechanisms determining the maintenance of biodiversity.


Assuntos
Adaptação Fisiológica , Clima , Magnoliopsida/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais , Biodiversidade , Ecossistema , Magnoliopsida/fisiologia , Modelos Teóricos , Fenótipo , Sementes/crescimento & desenvolvimento
6.
J Agric Food Chem ; 67(27): 7561-7568, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246021

RESUMO

The development of botanical applications of nanomaterials has produced a new generation of technologies that can profoundly impact botanical research. Semiconductor quantum dots (QDs) are an archetype nanomaterial and have received significant interest from diverse research communities, owing to their unique and optimizable optical properties. In this review, we describe the most recent progress on QD-based botanical research and discuss the uptake, translocation, and effects of QDs on plants and the potential applications of QDs in botany. A critical evaluation of the current limitations of QD technologies is discussed, along with the future prospects in QD-based botanical research.


Assuntos
Botânica/tendências , Pontos Quânticos , Semicondutores/tendências , Parede Celular/metabolismo , Hidroponia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/genética , Plantas/metabolismo , Solo
7.
Int J Mol Sci ; 20(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096626

RESUMO

Salinity stress is one of the more prevailing abiotic stresses which results in significant losses in agricultural crop production, particularly in arid and semi-arid areas [...].


Assuntos
Produtos Agrícolas/fisiologia , Fenômenos Fisiológicos Vegetais , Tolerância ao Sal/fisiologia , Agricultura/tendências , Secas , Plantas Geneticamente Modificadas , Salinidade , Estresse Salino/fisiologia , Estresse Fisiológico/fisiologia
9.
Plant Sci ; 283: 127-134, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128682

RESUMO

Serine/arginine-rich (SR) proteins are conserved RNA-binding proteins that play major roles in RNA metabolism. They function as molecular adaptors, facilitate spliceosome assembly and modulate constitutive and alternative splicing of pre-mRNAs. Pre-mRNAs encoding SR proteins and many other proteins involved in stress responses are extensively alternatively spliced in response to diverse stresses. Hence, it is proposed that stress-induced changes in splice isoforms contribute to the adaptation of plants to stress responses. However, functions of most SR genes and their splice isoforms in stress responses are not known. Lack of easy and robust tools hindered the progress in this area. Emerging technologies such as CRISPR/Cas9 will facilitate studies of SR function by enabling the generation of single and multiple knock-out mutants of SR subfamily members. Moreover, CRISPR/Cas13 allows targeted manipulation of splice isoforms from SR and other genes in a constitutive or tissue-specific manner to evaluate functions of individual splice variants. Identification of the in vivo targets of SR proteins and their splice variants using the recently developed TRIBE (Targets of RNA-binding proteins Identified By Editing) and other methods will help unravel their mode of action and splicing regulatory elements under various conditions. These new approaches are expected to provide significant new insights into the roles of SRs and splice isoforms in plants adaptation to diverse stresses.


Assuntos
Processamento Alternativo , Fatores de Processamento de Serina-Arginina/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Isoformas de Proteínas
10.
Plant Cell Physiol ; 60(7): 1405-1419, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076771

RESUMO

Coumarins are a family of plant-derived secondary metabolites that are produced via the phenylpropanoid pathway. In the past decade, coumarins have emerged as iron-mobilizing compounds that are secreted by plant roots and aid in iron uptake from iron-deprived soils. Members of the coumarin family are found in many plant species. Besides their role in iron uptake, coumarins have been extensively studied for their potential to fight infections in both plants and animals. Coumarin activities range from antimicrobial and antiviral to anticoagulant and anticancer. In recent years, studies in the model plant species tobacco and Arabidopsis have significantly increased our understanding of coumarin biosynthesis, accumulation, secretion, chemical modification and their modes of action against plant pathogens. Here, we review current knowledge on coumarins in different plant species. We focus on simple coumarins and provide an overview on their biosynthesis and role in environmental stress responses, with special attention for the recently discovered semiochemical role of coumarins in aboveground and belowground plant-microbe interactions and the assembly of the root microbiome.


Assuntos
Cumarínicos/metabolismo , Interações Hospedeiro-Patógeno , Plantas/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/imunologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo
11.
Plant Cell Physiol ; 60(7): 1420-1439, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31093670

RESUMO

Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.


Assuntos
Ferro/metabolismo , Plantas/metabolismo , Cloroplastos/metabolismo , Homeostase , Mitocôndrias/metabolismo , Fenômenos Fisiológicos Vegetais , Plastídeos/metabolismo
12.
Plant Sci ; 282: 49-59, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003611

RESUMO

Plants are autotrophic organisms in which there are linear relationships between the rate at which organic biomass is accumulated and many ambient parameters such as water, nutrients, CO2 and solar radiation. These linear relationships are the result of good feedback regulation between a plants sensing of the environment and the optimization of its performance response. In this review, we suggest that continuous monitoring of the plant physiological profile in response to changing ambient conditions could be a useful new phenotyping tool, allowing the characterization and comparison of different levels of functional phenotypes and productivity. This functional physiological phenotyping (FPP) approach can be integrated into breeding programs, which are facing difficulties in selecting plants that perform well under abiotic stress. Moreover, high-throughput FPP will increase the efficiency of the selection of traits that are closely related to environmental interactions (such as plant water status, water-use efficiency, stomatal conductance, etc.) thanks to its high resolution and dynamic measurements. One of the important advantages of FPP is, its simplicity and effectiveness and compatibility with experimental methods that use load-cell lysimeters and ambient sensors. In the future, this platform could help with phenotyping of complex physiological traits, beneficial for yield gain to enhance functional breeding approaches and guide in crop modeling.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Melhoramento Vegetal , Fenótipo , Fenômenos Fisiológicos Vegetais/genética , Estresse Fisiológico
13.
Planta ; 250(1): 23-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993403

RESUMO

MAIN CONCLUSION: This review will provide evidence for the indispensable function of these elements in regulating plant development and resistance to biotic and abiotic stresses, as well as their evolutionary role in facilitating plant adaptation. Over millions of years of evolution, plant genomes have acquired a complex constitution. Plant genomes consist not only of protein coding sequences, but also contain large proportions of non-coding sequences. These include introns of protein-coding genes, and intergenic sequences such as non-coding RNA, repeat sequences and transposable elements. These non-coding sequences help to regulate gene expression, and are increasingly being recognized as playing an important role in genome organization and function. In this review, we summarize the known molecular mechanisms by which gene expression is regulated by several species of non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) and by transposable elements. We further discuss how these non-coding RNAs and transposable elements evolve and emerge in the genome, and the potential influence and importance of these non-coding RNAs and transposable elements in plant development and in stress responses.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/genética , RNA não Traduzido/genética , Íntrons/genética , MicroRNAs/genética , RNA/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Fisiológico
15.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818835

RESUMO

Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Melatonina/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/farmacologia , Melatonina/biossíntese , Melatonina/química , Reguladores de Crescimento de Planta/farmacologia
16.
Biol Res ; 52(1): 14, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894225

RESUMO

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Triticum/genética , Fenótipo , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/fisiologia , Triticum/metabolismo
17.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823472

RESUMO

Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Fenômenos Fisiológicos Vegetais , Estresse Salino , Cloroplastos/metabolismo , Mitocôndrias/metabolismo
18.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925682

RESUMO

Aluminum (Al) toxicity is one of the major constraints to agricultural production in acid soils. Molecular mechanisms of coping with Al toxicity have now been investigated in a range of plant species. Two main mechanisms of Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the roots. This review focuses on the recent discovery of novel genes and mechanisms that confer Al tolerance in plants and summarizes our understanding of the physiological, genetic, and molecular basis for plant Al tolerance. We hope this review will provide a theoretical basis for the genetic improvement of Al tolerance in plants.


Assuntos
Alumínio/metabolismo , Alumínio/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Adaptação Fisiológica , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Bombas de Íon/genética , Bombas de Íon/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Micorrizas/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas/genética
19.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925807

RESUMO

Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial 'defects' can strongly affect various cell processes, including seed aging, which we discuss in this paper.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Envelhecimento , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
20.
Glob Chang Biol ; 25(6): 1922-1940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884039

RESUMO

Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.


Assuntos
Mudança Climática , Fenômenos Fisiológicos Vegetais , Ecossistema , Desenvolvimento Vegetal , Folhas de Planta/fisiologia , Estações do Ano , Temperatura Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA