Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.661
Filtrar
1.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011739

Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Animais , Antivirais/química , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cloroquina/química , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Digoxina/química , Digoxina/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pandemias , Fenantrenos/química , Fenantrenos/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
2.
PLoS One ; 15(9): e0238509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32870935

RESUMO

Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.


Assuntos
Bibenzilas/farmacologia , Dendrobium , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Bibenzilas/química , Células Cultivadas , Dendrobium/química , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fatores Imunológicos/química , Monócitos/imunologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fenantrenos/química , Extratos Vegetais/química
3.
Anticancer Res ; 40(9): 4989-4999, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878787

RESUMO

BACKGROUND/AIM: Epithelial to mesenchymal transition (EMT) is a cellular process that facilitates cancer metastasis. Therefore, therapeutic approaches that target EMT have garnered increasing attention. The present study aimed to examine the in vitro effects of ephemeranthol A on cell death, migration, and EMT of lung cancer cells. MATERIALS AND METHODS: Ephemeranthol A was isolated from Dendrobium infundibulum. Non-small cell lung cancer cells H460 were treated with ephemeranthol A and apoptosis was evaluated by Hoechst 33342 staining. Anoikis resistance was determined by soft agar assay. Wound healing assay was performed to test the migration. The regulatory proteins of apoptosis and cell motility were determined by western blot. RESULTS: Treatment with ephemeranthol A resulted in a concentration-dependent cell apoptosis. At non-toxic concentrations, the compound could inhibit anchorage-independent growth of the cancer cells, as indicated by the decreased colony size and number. Ephemeranthol A also exhibited an inhibitory effect on migration. We further found that ephemeranthol A exerts its antimetastatic effects via inhibition of EMT, as indicated by the markedly decrease of N-cadherin, vimentin, and Slug. Furthermore, the compound suppressed the activation of focal adhesion kinase (FAK) and protein kinase B (Akt) proteins, which are key regulators of cell migration. As for the anticancer activity, ephemeranthol A induced apoptosis by decreasing Bcl-2 followed by the activation of caspase 3 and caspase 9. CONCLUSION: The pro-apoptotic and anti-migratory effects of ephemeranthol A on human lung cancer cells support its use for the development of novel anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pulmonares/patologia , Fenantrenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrobium/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Estrutura Molecular , Fenantrenos/química
4.
Chemosphere ; 260: 127588, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683010

RESUMO

A series of CX-TiO2(Carbon Xerogel- TiO2) composites with a hierarchical porous structure were obtained through the sol-gel method followed by drying and carbonization, and have been applied to treating solubilizing wastewater containing a high concentration of phenanthrene (PHE). The characterizations demonstrated that the CX-TiO2 exhibits a hierarchical porous structure, with particles of carbon and P25 being uniformly in the matrix. Removal efficiency of CX-TiO2 on PHE in soil washing eluent (SWE) were evaluated under ultraviolet (UV) irradiation or dark condition, and P25 was employed as the reference. The results revealed that CX-TiO2(0.2) had the best removal effect on PHE, with the efficiency as high as 97.8% under UV illumination within 15 h. It demonstrated that in the process of PHE removal by CX-TiO2 whether it was under UV illumination or not, the adsorption plays a dominant role in the early stage. The kinetic behavior of PHE adsorption was fitted using the pseudo-first-order and pseudo-second-order, and Langmuir model and Freundlich models were applied to describe the PHE adsorption isotherms. The results indicating that it was a chemical adsorption process, which was influenced by the interaction between PHE and CX-TiO2, and PHE is adsorbed on the interface of CX-TiO2(0.2) in a single layer form, instead of agglomerating in the admicelle. A possible mechanism of removal of solubilized PHE in SWE was speculated, in which both hierarchical porous structure and appropriate micropores size of CX-TiO2 were indispensable to the selective adsorption and degradation of PHE. Recycling performance certificated that the selective removal efficiency of PHE could still reach 82.09% after five recycles. Thus the excellent performance testified that the CX-TiO2 have great potential in treating SWE containing solubilized PAHs.


Assuntos
Fenantrenos/isolamento & purificação , Titânio/química , Águas Residuárias/química , Adsorção , Catálise , Cinética , Fenantrenos/química , Fenantrenos/efeitos da radiação , Porosidade , Poluentes do Solo/isolamento & purificação , Raios Ultravioleta
5.
Chemosphere ; 259: 127487, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650165

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) have elicited increasing concern due to their ubiquitous occurrence in coastal marine environments and resultant toxicity in organisms. Due to their lipophilic nature, PAHs tend to accumulate in phytoplankton cells and thus subsequently transfer to other compartments of the marine ecosystem. The intrinsic fluorescence properties of PAHs in the ultraviolet (UV)/blue spectral range have recently been exploited to investigate their uptake modes, localization, and aggregation in various biological tissues. Here, we quantitatively evaluate the sorption of two model PAHs (phenanthrene and pyrene) in three marine phytoplankton species (Chaetoceros tenuissimus, Thalassiosira sp. and Proteomonas sp.) using a combined approach of UV excitation flow cytometry and fluorescence microscopy. Over a 48-h exposure to a gradient of PAHs, Thalassiosira sp. showed the highest proportion of PAH-sorbed cells (29% and 97% of total abundance for phenanthrene and pyrene, respectively), which may be attributed to its relatively high total lipid content (33.87 percent dry weight). Moreover, cell-specific pulse amplitude modulation (PAM) microscope fluorometry revealed that PAH sorption significantly reduced the photosynthetic quantum efficiency (Fv/Fm) of individual phytoplankton cells. We describe a rapid and precise hybrid method for the detection of sorption of PAHs on phytoplankton cells. Our results emphasize the ecologically relevant sub-lethal effects of PAHs in phytoplankton at the cellular level, even at concentrations where no growth inhibition was apparent. This work is the first study to address the cell-specific impacts of fluorescent toxicants in a more relevant toxicant-sorbed subpopulation; these cell-specific impacts have to date been unidentified in traditional population-based phytoplankton toxicity assays.


Assuntos
Fitoplâncton/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Análise de Célula Única/métodos , Absorção Fisico-Química , Ecossistema , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Fenantrenos/química , Fenantrenos/farmacocinética , Fitoplâncton/citologia , Fitoplâncton/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Pirenos/química , Pirenos/farmacocinética , Raios Ultravioleta
6.
J Environ Sci Health B ; 55(8): 704-711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500809

RESUMO

In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Fenantrenos/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Lacase/metabolismo , Metais Pesados/química , Fenantrenos/química , Fenantrenos/metabolismo , Solo/química , Poluentes do Solo/química
7.
AAPS PharmSciTech ; 21(5): 159, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32476076

RESUMO

Cryptotanshinone (CPT) is an efficacious acne treatment, while niosomal hydrogel is a known effective topical drug delivery system that produces a minimal amount of irritation. Three-dimensional (3D) printing technologies have the potential to improve the field of personalized acne treatment. Therefore, this study endeavored to develop a 3D-printed niosomal hydrogel (3DP-NH) containing CPT as a topical delivery system for acne therapy. Specifically, CPT-loaded niosomes were prepared using a reverse phase evaporation method, and the formulation was optimized using a response surface methodology. In vitro characterization showed that optimized CPT-loaded niosomes were below 150 nm in size with an entrapment efficiency of between 67 and 71%. The CPT-loaded niosomes were added in a dropwise manner into the hydrogel to formulate CPT-loaded niosomal hydrogel (CPT-NH), which was then printed as 3DP-CPT-NH with specific drug dose, shape, and size using an extrusion-based 3D printer. The in vitro release behavior of 3DP-CPT-NH was found to follow the Korsmeyer-Peppas model. Permeation and deposition experiments showed significantly higher rates of transdermal flux, Q24, and CPT deposition (p < 0.05) compared with 3D-printed CPT-loaded conventional hydrogel (3DP-CPT-CH), which did not contain niosomes. In vivo anti-acne activity evaluated through an acne rat model revealed that 3DP-CPT-NH exhibited a greater anti-acne effect with no skin irritation. Enhanced skin hydration, wide inter-corneocyte gaps in the stratum corneum and a disturbed lipid arrangement may contribute towards the enhanced penetration properties of CPT. Collectively, this study demonstrated that 3DP-CPT-NH is a promising topical drug delivery system for personalized acne treatments.


Assuntos
Acne Vulgar/tratamento farmacológico , Hidrogéis/química , Fenantrenos/administração & dosagem , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/farmacologia , Masculino , Tamanho da Partícula , Fenantrenos/química , Impressão Tridimensional , Ratos , Pele/metabolismo , Absorção Cutânea
8.
Phytother Res ; 34(10): 2639-2648, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32302031

RESUMO

The incidence of ulcerative colitis (UC) is increasing in recent years. The protective effect of cryptotanshinone, a natural compound from Salvia miltiorrhiza Bunge, on UC was investigated both in vivo and in vitro models. UC model was established by dextran sulfate sodium administration in drinking water and cryptotanshinone was orally administrated. RAW264.7 cells were stimulated by lipopolysaccharide (LPS) with or without cryptotanshinone pretreatment. The body weights and disease activity index (DAI) were recorded. The pathological alterations were evaluated by H&E staining. The levels of pro-inflammatory cytokines in colon tissues and cell culture medium were determined with enzyme-linked immune sorbent assay (ELISA) kits. The protein expression was detected by Western blotting and immunohistochemistry. Results showed that cryptotanshinone significantly increased the body weight and colon length, reduced the score of DAI, and improved pathological changes. Furthermore, the expression of inducible nitric oxide synthase, cyclooxygenase-2, receptor-interacting protein kinase 3, NF-κB p65 and the secretion of tumor necrosis factor-α, IL-6 in colon tissues and LPS-stimulated cells were significantly inhibited by cryptotanshinone. Besides, cryptotanshinone significantly inhibited LPS-triggered toll-like receptor 4 luciferase reporter activity with an IC50 at 7.2 µM. In conclusion, cryptotanshinone ameliorated experimental UC possibly by inhibiting intestinal inflammation.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Fenantrenos/uso terapêutico , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Fenantrenos/química
9.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013211

RESUMO

A series of biobased phosphorus flame retardants has been prepared by converting starch-derived bis-2,5-(hydroxymethyl)furan to the corresponding diacrylate followed by Michael addition of phosphite to generate derivatives with phosphorus moieties attached via P-C bonds. All compounds behave as effective flame retardants in DGEBA epoxy resin. The most effective is the DOPO derivative, 2,5-di[(3-dopyl-propanoyl)methyl]furan. When incorporated into a DGEBA blend at a level to provide 2% phosphorus, a material displaying a LOI of 30, an UL 94 rating of V0 and a 40% reduction in combustion peak heat release rate compared to that for resin containing no additive is obtained. The analogous compounds generated from bisphenol A and tetrabromobisphenol A exhibit similar flame-retarding properties.


Assuntos
Retardadores de Chama , Furanos/química , Compostos Benzidrílicos/química , Retardadores de Chama/isolamento & purificação , Compostos Organofosforados/química , Fenantrenos/química , Fenóis/química , Amido/química
10.
Molecules ; 25(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019202

RESUMO

The importance of the gut microbiota in drug metabolism, especially in that of nonabsorbable drugs, has become known. The aim of this study was to explore the metabolites of triptolide by the gut microbiota. With high-performance liquid chromatography coupled with tandem mass spectrometry and ion trap time-of-flight multistage mass spectrometry (LC-MS/MS and LC/MSn-IT-TOF), four metabolites of triptolide (M1, M2, M3, and M4) were found in the intestinal contents of rats. M1 and M2, were isomeric monocarbonyl-hydroxyl-substituted metabolites with molecular weights of 390. M3 and M4 were isomeric dehydrogenated metabolites with molecular weights of 356. Among the four metabolites, the dehydrogenated metabolites (M3 and M4) were reported in the gut microbiota for the first time. The metabolic behaviors of triptolide in the gut microbiota and liver microsomes of rats were further compared. The monocarbonyl-hydroxyl-substituted metabolites (M1 and M2) were generated in both systems, and another monohydroxylated metabolite (M5) was found only in the liver microsomes. The combined results suggested that the metabolism of triptolide in the gut microbiota was specific, with two characteristic, dehydrogenated metabolites. This investigation might provide a theoretical basis for the elucidation of the metabolism mechanism of triptolide and guide its proper application in clinical administration.


Assuntos
Diterpenos/metabolismo , Microbioma Gastrointestinal , Imunossupressores/metabolismo , Microssomos Hepáticos/metabolismo , Fenantrenos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Diterpenos/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Imunossupressores/química , Masculino , Fenantrenos/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
11.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041136

RESUMO

A series of new hyperbranched aliphatic poly(ß-thioether ester)s were prepared by the enzymatic ring-opening polycondensation of 1,4-oxathiepan-7-one (OTO) and AB2/ABB' comonomer with acid-labile ß-thiopropionate groups. Two kinds of comonomers, methyl 3-((3-hydroxy-2-(hydroxymethyl)propyl)thio)propanoate (HHTP) and methyl 3-((2,3-dihydroxypropyl)thio)propanoate (DHTP), with different primary alcohols and secondary alcohols, were synthesized by thiol-ene click chemistry and thiol-ene Michael addition, respectively. Immobilized lipase B from Candida antarctica (CALB), Novozym 435, was used as the catalyst. The random copolymers were characterized by 1H-NMR, 13C-NMR, GPC, TGA, and DSC. All branched copolyesters had high molecular weights over 15,000 Da with narrow polydispersities in the range of 1.75-2.01 and were amorphous polymers. Their degradation properties under acidic conditions were also studied in vitro. The polymeric nanoparticles of hyperbranched poly(ß-thioether ester)s were successfully obtained and showed good oxidation-responsive properties, indicating their potential for biomedical applications.


Assuntos
Lipase/química , Poliésteres/química , Polímeros/química , Álcoois/química , Materiais Biocompatíveis/química , Candida/enzimologia , Catálise , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Nanopartículas/química , Oxirredução , Fenantrenos/química
12.
Environ Pollut ; 260: 114034, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32014746

RESUMO

The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO2 and N2 adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO2 micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N2-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.


Assuntos
Fenantrenos/química , Fenóis/química , Adsorção , Sedimentos Geológicos
13.
Biopharm Drug Dispos ; 41(1-2): 54-63, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31943245

RESUMO

Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicines in the treatment of cardiovascular and cerebrovascular diseases. Cryptotanshinone (CTS), tanshinone IIA (Tan IIA), dihydrotanshinone I (diTan I), and tanshinone I (Tan I) are the main active compounds in the liposoluble extract of Salvia miltiorrhiza. The differences in the pharmacokinetic and tissue distribution behaviors of the four tanshinones after oral administration of the liposoluble extract of Salvia miltiorrhiza and pure compounds are not clear. This study aims to compare the pharmacokinetics and tissue distribution of the four tanshinones after oral administration of pure tanshinone monomers and the liposoluble extract of Salvia miltiorrhiza. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis method was developed for the determination of the four tanshinones. The results showed that the AUC and Cmax of tanshinones in rats receiving the extract of Salvia miltiorrhiza were significantly increased compared with those receiving the pure tanshinones. In the tissue distribution experiments, the AUC of the four tanshinones in the extract was much greater than the AUC of the monomers in the lung, heart, kidney, liver, and brain, and the coexisting constituents particularly promoted the distribution of tanshinones into tissues that the drug cannot sufficiently penetrate. These findings suggested that the coexisting constituents in the liposoluble extract of Salvia miltiorrhiza play an important role in the alteration of plasma concentration and tissue distribution of the four tanshinones. Understanding these differences could be of significance for the development and application of Salvia miltiorrhiza extract and tanshinone components.


Assuntos
Abietanos/farmacocinética , Fenantrenos/farmacocinética , Extratos Vegetais/química , Salvia miltiorrhiza/química , Abietanos/química , Animais , Área Sob a Curva , Cromatografia Líquida , Meia-Vida , Lipídeos/química , Masculino , Estrutura Molecular , Fenantrenos/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
Chemosphere ; 246: 125761, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927369

RESUMO

A novel nanocomposite of stainless-steel nanotubes with graphene quantum dots (SSNT@GQD) was synthesized to degrade phenanthrene photocatalytically under visible light. Photocatalytic performance of bare stainless-steel nanotubes (SSNT) is not satisfactory due to the fast recombination of photoinduced electron-hole pairs. This phenomenon was effectively overcome by inclusion of GQDs and addition of persulfate as an external electron acceptor to improve charge separation. The pseudo-first-order rate constant of phenanthrene degradation by SSNT@GQD with persulfate under visible light was 0.0211 ± 0.0006 min-1, about 42 times higher than that of persulfate and visible light, 0.0005 ± 0.0000 min-1. Effects of different water quality parameters were investigated, including levels of initial pH, natural organic matters, bicarbonate, and chloride. Sulfate radicals, superoxide radicals, and photo-generated holes were the key reactive species in this photocatalytic process. Based on the analysis of intermediates using purge and trap-GC-MS, possible photocatalytic degradation pathways of phenanthrene in this process were proposed. The SSNT@GQD showed high figure of merit (99.5 without persulfate and 78.7 with persulfate) and quantum yield (1.56 × 10-5 molecules photon-1 without persulfate and 4.64 × 10-5 molecules photon-1 with persulfate), indicating that this material has excellent potential for practical photocatalysis applications.


Assuntos
Grafite/química , Nanotubos/química , Fenantrenos/química , Pontos Quânticos/química , Catálise , Luz , Nanocompostos/química , Processos Fotoquímicos , Aço Inoxidável , Sulfatos , Poluentes Químicos da Água/química
15.
Chemosphere ; 242: 125160, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31669988

RESUMO

Surfactant enhanced remediation (SER) is an effective approach for decontaminating the PAH polluted soils. Solubilization and Cosolubilization of Phenanthrene (Ph), Pyrene (Py) and Perylene (Pe) as single, binary and ternary mixtures have been studied employing cationic (CTAB), anionic (SDS), non-ionic surfactant (Brij 30) and block copolymer (P123) micelles. In the single solute solubilization studies, solubility of Pe follows the order Brij 30 > CTAB > SDS whereas Ph or Py followed the order of CTAB > Brij 30 > SDS. In the cosolubilization studies, an increase, decrease or no change in the mutual solubility of PAHs was observed. Synergism in solubilization was observed most in P123 in both binary and ternary PAH mixture where more PAHs could get solubilized in the dense micellar shell region, thereby enhancing the micellar core volume leading to enhanced solubilization of PAHs. The solubilizates as pairs (Ph-Pe and Py-Pe) were further tested for any possible energy transfer in presence of surfactant based restricted host environments using spectrofluorometry and spectrophotometry. Based on the solubilization and cosolubilization an efficient non-radiative energy transfer (FRET) was observed between Ph/Py (donor) and Pe (acceptor) in the non-ionic surfactant system as well as in CTAB-Brij 58 mixed system. The results of this work may improve the effective utilization of surfactants in their correct evaluation for the removal of PAHs from contaminated soils or aquifers treated with SER technology.


Assuntos
Recuperação e Remediação Ambiental/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Micelas , Hidrocarbonetos Policíclicos Aromáticos/química , Tensoativos/química , Fenantrenos/química , Fenantrenos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Pirenos/química , Pirenos/isolamento & purificação , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Solubilidade , Água
16.
Chemosphere ; 242: 125161, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31683161

RESUMO

Interactions with solid matrices control the persistence and (bio-)degradability of hydrophobic organic chemicals (HOC). Approaches influencing the rate or extent of HOC interactions with matrices are thus longed for. When a direct current (DC) electric field is applied to a matrix immersed in an ionic solution, it invokes transport processes including electromigration, electrophoresis, and electroosmotic flow (EOF). EOF is the surface charge-induced movement of pore fluids. It has the potential to mobilize uncharged organic contaminants and, hence, to influence their interactions with sorbing geo-matrices (i.e. geo-sorbents). Here, we assessed the effects of weak DC electric fields on sorption and desorption of phenanthrene (PHE) in various mineral and carbonaceous geo-sorbents. We found that DC fields significantly changed the rates and extent of PHE sorption and desorption as compared to DC-free controls. A distinct correlation between the Gibbs free energy change (ΔG°) and electrokinetic effects such as the EOF velocity was observed; in case of mineral sorbents EOF limited (or even inhibited) PHE sorption and increased its desorption. In strongly sorbing carbonaceous geo-sorbents, however, EOF significantly increased the rates of PHE sorption and reduced PHE desorption by > 99% for both activated charcoal and exfoliated graphite. Based on our findings, an approach linking ΔG° and EOF velocity was developed to estimate DC-induced PHE sorption and desorption benefits on mineral and carbonaceous sorbents. We conclude that such kinetic regulation gives rise to future technical applications that may allow modulating sorption processes e.g. in response to fluctuating sorbate concentrations in contaminated water streams.


Assuntos
Eletro-Osmose , Minerais/química , Modelos Químicos , Fenantrenos/química , Poluentes Químicos da Água/química , Adsorção , Carvão Vegetal/química , Eletroquímica , Eletrodos , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Rios/química , Propriedades de Superfície
17.
Food Chem ; 309: 125743, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31699563

RESUMO

To reveal the potential effects of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) on catalase (CAT), the interactions of 1-hydroxynaphthalene (1-OHNap), 9-hydroxyphenanthrene (9-OHPhe) and 1-hydroxypyrene (1-OHPyr) with CAT were investigated using multi-spectroscopic and molecular docking techniques. Fluorescence analysis showed that 1-OHNap, 9-OHPhe and 1-OHPyr can form 1:1 complex with CAT, with the binding constant of 6.31 × 103, 1.03 × 104 and 2.96 × 105 L mol-1 at 17 °C. Thermodynamic and docking parameters demonstrated that van der Waals' force, hydrogen bonds and hydrophobic interactions dominated the three binding processes. Molecular docking also revealed the specific binding mode of OH-PAHs with CAT. Synchronous fluorescence and circular dichroism spectral results indicated that the three OH-PAHs induced varied structural changes of CAT. Furthermore, CAT activity was promoted by 9-OHPhe, but inhibited by either 1-OHNap or 1-OHPyr. Under the maximum experimental concentration of OH-PAHs, the percent change of CAT activity induced by 1-OHNap, 9-OHPhe and 1-OHPyr were 8.42%, 4.26% and 13.21%.


Assuntos
Catalase/química , Naftóis/química , Fenantrenos/química , Pirenos/química , Dicroísmo Circular , Humanos , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica
18.
Eur J Med Chem ; 185: 111833, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734024

RESUMO

Herein we present and describe the design and synthesis of novel phenantrene derivatives substituted with either amino or amido side chains and their biological activity. Antiproliferative activities were assessed in vitro on a panel of human cancer cell lines. Tested compounds showed moderate activity against cancer cells in comparison with 5-fluorouracile. Among all tested compounds, some compounds substituted with cyano groups showed a pronounced and selective activity in the nanomolar range of inhibitory concentrations against HeLa and HepG2. The strongest selective activity against HeLa cells was observed for acrylonitriles 8 and 11 and their cyclic analogues 15 and 17 substituted with two cyano groups with a corresponding IC50 = 0.33, 0.21, 0.65 and 0.45 µM, respectively. Compounds 11 showed the most pronounced selectivity being almost non cytotoxic to normal fibroblasts. Additionally, mode of biological action analysis was performed in silico and in vitro by Western blot analysis of HIF-1-α relative expression for compounds 8 and 11.


Assuntos
Antineoplásicos/farmacologia , Fenantrenos/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Estrutura Molecular , Fenantrenos/síntese química , Fenantrenos/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Células Tumorais Cultivadas
19.
Molecules ; 24(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817353

RESUMO

Directly linked donor and acceptor arenes, such as phenanthrene/naphthalene/biphenyl and 1,3-dicyanobenzene were found to work as photoredox catalysts in the photoreactions of indene, 2,3-dimethyl-2-butene, and 4-methoxyphenylacetic acid. The new stable organic photocatalyst forms an intramolecular exciplex (excited complex) when irradiated in a polar solvent and shows redox catalyst activity, even at low concentrations. To the best of our knowledge, this is the first example of an intramolecular exciplex working as a redox catalyst.


Assuntos
Naftalenos/química , Nitrilos/química , Fenantrenos/química , Processos Fotoquímicos , Catálise , Oxirredução
20.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4566-4572, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31872649

RESUMO

Nowadays,the advantages of traditional Chinese medicine(TCM) for treatment of tumors are increasingly prominent.Triptolide shows wide-spectrum and highly effective anti-tumor activity. Moreover,nano-carrier-based triptolide drug delivery system is more powerful in improving water solubility and pharmacokinetic behavior of the drug,but it is easy to cause toxic and side effects that should not be neglected on human body. Because of tumor vascular heterogeneity and PEGylation dilemma,nanoparticulate drug delivery systems need to overcome multiple physiological and pathological barriers from drug administration to functioning. It is difficult for traditional triptolide nanoparticulate drug delivery systems to achieve active accumulation of nano-drug in tumor tissues and specific drug release in tumor target site solely relying on enhanced permeability and retention effect of solid tumor,limiting their application and clinical transformation in treatment of tumors. Based on the traditional nano-preparation system,the new functionalized nano-drug delivery system further enhances the nano-drug enrichment,penetration and controlled release at the tumor sites,which is of great significance in improving bioavailability,anti-tumor efficacy and reducing the side effects of drugs. In this paper,we summarized and analyzed the researches on new triptolide functionalized nano-drug delivery system from four perspectives,including tumor active targeting,tumor microenvironment response,polymer-drug conjugates,and multidrug co-delivery for tumor treatment,expecting to provide ideas for in-depth research and clinical application of triptolide and some other active anti-tumor TCM ingredients.


Assuntos
Diterpenos/química , Sistemas de Liberação de Medicamentos , Nanopartículas , Fenantrenos/química , Compostos de Epóxi/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA