Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.647
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36244570

RESUMO

Aquatic water with carbonate alkalinity presents a survival challenge to aquatic animals. As an economically important crab, large quantities of Eriocheir sinensis are cultured in carbonate-type saline-alkali ponds, while the toxic effect on E. sinensis from carbonate alkalinity is still unclear. In this study, untargeted liquid chromatography-mass spectrometry metabolomics was performed to investigate the metabolic change caused by culture alkalinity, and confirmed distinct physiological response under gradient alkalinities. There were 39 differential metabolites obtained in the low-alkalinity group (4.35 mmol/L) versus control group, and "arachidonic acid metabolism" was enriched as a core response pathway. 93 differential metabolites were identified in the high-alkalinity group (17.43 mmol/L) versus control group, and a complex response net was manifested through integrated analysis, building by "steroid hormone biosynthesis", "phenylalanine, tyrosine and tryptophan biosynthesis", "phosphonate and phosphinate metabolism", "phenylalanine metabolism", "mineral absorption", "purine metabolism" and "carbon metabolism". This indicated the mobilization of energy reserves and the suppression of protein and amino acid catabolism were manifested in E. sinensis gills to defense high alkalinity stress. In addition, the persistently regulation of key metabolites under various alkalinity, including diuretic compound "spironolactone" and the antiphlogistic compound "LXB4", suggested anti-inflammatory action and excretion regulation were initiated to defend the stress.


Assuntos
Braquiúros , Animais , Brânquias/metabolismo , Carbonatos/toxicidade , Metabolômica , Fenilalanina/metabolismo
2.
Food Chem ; 401: 134072, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108381

RESUMO

Plant growth regulator N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) is widely used in fruit production. However, the mechanism in which CPPU affects melon fruit quality, especially aroma compound, remains unclear. Here, gas chromatography-mass spectrometry was performed to detect the sugar, citric acid, and aroma content in CPPU-treated and pollinated melon fruit. Results showed that the application of CPPU decreased the sugar and aroma content in melon fruit. The relative content of several important esters, including isobutyl acetate, ethyl acetate, 2-methylbutyl acetate, methyl acetate, benzyl acetate, and phenethyl acetate, in CPPU-treated fruits was significantly lower than that in honeybee-pollinated fruits. The content of many amino acids (isoleucine, leucine, valine, methionine, and l-phenylalanine), which could be metabolized into aroma compounds, in CPPU-treated fruits was significantly higher than that in honeybee-pollinated fruits. In conclusion, CPPU application interferes with amino-acid metabolism and affects the production of aromatic esters in melon fruit.


Assuntos
Cucurbitaceae , Compostos Orgânicos Voláteis , Abelhas , Animais , Frutas/metabolismo , Cucurbitaceae/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Açúcares/metabolismo , Isoleucina , Leucina/metabolismo , Metionina/metabolismo , Ácido Cítrico/metabolismo , Valina/metabolismo , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Odorantes
3.
Appl Environ Microbiol ; 88(22): e0097822, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326240

RESUMO

Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. Here, we established-for the first time-production of the phenylalanine-derived benzylglucosinolate (BGLS) in Saccharomyces cerevisiae using two different engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain showed a tendency to generate higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced 8.4-fold higher BGLS yield compared to the plasmid-engineered strain. Additionally, we optimized the genome-engineered strain by overexpressing the entry point genes CYP79A2 and CYP83B1, resulting in a 2-fold increase in BGLS production but also a 4.8-fold increase in the level of the last intermediate desulfo-benzylglucosinolate (dsBGLS). We applied several approaches to alleviate the metabolic bottleneck in the step where dsBGLS is converted to BGLS by sulfotransferase, SOT16 dependent on 3'-phosphoadenosine-5'-phosphosulfate (PAPS). BGLS production increased 1.7-fold by overexpressing SOT16 and 1.7-fold by introducing APS kinase, APK1, from Arabidopsis thaliana involved in the PAPS regeneration cycle. Modulating the endogenous sulfur assimilatory pathway through overexpression of MET3 and MET14 resulted in 2.4-fold to 12.81 µmol/L (=5.2 mg/L) for BGLS production. IMPORTANCE Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. In this study, we engineered for the first time the production of phenylalanine-derived benzylglucosinolate in Saccharomyces cerevisiae with two engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain generally showed higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced higher production level of benzylglucosinolate. Based on the genome-engineered strain, the benzylglucosinolate level was improved by optimization. Our study compared different approaches to engineer a multigene pathway for production of the plant natural product benzylglucosinolate. This may provide potential application in industrial biotechnology.


Assuntos
Arabidopsis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosinolatos/metabolismo , Arabidopsis/genética , Plasmídeos/genética , Fenilalanina/metabolismo , Aminoácidos/metabolismo
4.
Metabolomics ; 18(11): 84, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289122

RESUMO

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Assuntos
Isoflavonas , Animais , Camundongos , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Fenilalanina/metabolismo , Metabolômica , Estrogênios , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Ácidos Graxos Monoinsaturados , Esfingolipídeos , Glicerofosfolipídeos , Ácidos Araquidônicos
5.
ACS Chem Neurosci ; 13(21): 3057-3067, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36245095

RESUMO

Vascular dementia (VaD), one of the major consequences after stroke, is the second reason for the cognitive decline in aged people. Chronic cerebral hypoperfusion (CCH) is considered as the main cause for cognitive impairment in VaD patients. In our previous study, a synthetic compound, 4-trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid (AE-18), has been proven to decrease infarct volume and to recover the insufficient blood supply after ischemia-reperfusion in rats, which was reminded that AE-18 may possess the ameliorative effect in CCH. In this study, the bilateral common carotid artery occlusion was performed to establish the CCH model in rats to evaluate the effect and mechanisms of AE-18 in CCH. Results showed that AE-18 (5 and 10 mg/kg, i.g.) could recover the learning and memory and increase the number of neurons in the hippocampus, which may be attributed to its neurogenesis effects and its recovery of cerebral blood flow in CCH rats. In addition, the in vitro studies showed that AE-18 promoted neuronal proliferation, induced differentiation of Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of primary hippocampal neurons through upregulating brain-derived neurotrophic factor via the PI3K/Akt/CREB pathway. In conclusion, AE-18 is a promising candidate for the treatment of cognitive decline after CCH injury by restoring blood supply to the brain and promoting neurogenesis in the hippocampus.


Assuntos
Isquemia Encefálica , Demência Vascular , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fenilalanina/metabolismo , Neurogênese , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto , Modelos Animais de Doenças
6.
Front Cell Infect Microbiol ; 12: 639624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237423

RESUMO

Peritoneal dialysis (PD) is a renal replacement therapy for end-stage renal disease. Gut microbiota-derived uremic solutes, indoxyl sulfate (IS), p-cresyl sulfate (PCS), and trimethylamine-N-oxide (TMAO) accumulate in PD patients. The objective was to explore the gut microbiota and their influence on uremic toxins in PD patients and healthy controls (HC). Fecal samples were collected from PD patients (n = 105) and HC (n = 102). 16S rRNA gene regions were sequenced for gut microbiota analysis. IS, PCS, and TMAO levels were measured using HPLC-MS. PD patients exhibited lower alpha diversity and altered gut microbiota composition compared to HC. At the genus level, PD patients showed increased abundance of opportunistic pathogenic bacteria, and decreased abundance of beneficial bacteria. Three Operational Taxonomic Units discriminated PD patients from HC. Phenylalanine metabolism increased in PD, whereas tryptophan metabolism was unaltered. Low serum PCS did not necessarily mean healthier due to the loss of alpha diversity, increased Proteobacteria and opportunistic pathogenic bacteria. High serum PCS was mainly caused by elevated p-cresol-producing bacteria, enriched amino acid related enzymes, and enhanced sulfur metabolism, rather than declined residual renal function. In patients with different urine volumes, the gut microbiota alpha diversity and composition were unaltered, but serum IS and TMAO were significantly elevated in anuric patients. In conclusion, the gut microbiota abundance, composition, and function were altered in PD patients, which increased the PCS levels. We provided a better understanding of the microbiota-metabolite-kidney axis in PD patients. Targeting certain bacteria could decrease the PCS levels, whereas preserving the residual renal function could reduce the IS and TMAO levels.


Assuntos
Microbioma Gastrointestinal , Diálise Peritoneal , Bactérias/genética , Bactérias/metabolismo , Humanos , Indicã/metabolismo , Metilaminas , Óxidos/metabolismo , Fenilalanina/metabolismo , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Enxofre/metabolismo , Triptofano/metabolismo
7.
Physiol Plant ; 174(5): e13756, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281844

RESUMO

Solanum melongena is a widely consumed vegetable crop comprising health-benefiting phenolic compounds. It has a complex network of biosynthetic enzymes involved in synthesizing nutraceuticals, including anthocyanins. The present study was conducted to investigate the activities of key enzymes involved in biosynthesis and accumulation of anthocyanins in developing genotypes, such as phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL), and anthocyanidin synthase (ANS). As inadequate information is available in this context, fruit and leaf tissues were analyzed for enzyme activities and anthocyanin accumulation. The study included characterization of extracted anthocyanin followed by expression studies for gateway enzyme (ANS) involved in anthocyanin biosynthesis. Delphinidin was a major anthocyanidin present in fruit tissues (1.46-110.49 mg/100 g) of S. melongena. Anthocyanin accumulation is backed up by the correlation between biochemical analysis and expression studies. The study has shown variation for PAL, TAL and ANS enzymes in different tissues at developmental stages. Enzyme activities had a strong positive correlation with anthocyanin biosynthesis.


Assuntos
Antocianinas , Solanum melongena , Antocianinas/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Solanum melongena/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Fenilalanina/genética , Fenilalanina/metabolismo , Tirosina/genética , Tirosina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
PLoS One ; 17(10): e0274908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264897

RESUMO

P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in pleiotropic phenotypes related to severe ER stress. They were recently proposed to function in peptide translocation although their specificity have yet to be confirmed in reconstituted assays using the purified enzyme. A general theme for P-type ATPases is that binding and transport of substrates is coupled to hydrolysis of ATP in a conserved allosteric mechanism, however several independent reports have shown purified Spf1p to display intrinsic spontaneous ATP hydrolytic activity after purification. It has never been determined to what extend this spontaneous activity is caused by uncoupling of the enzyme. In this work we have purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and have observed that the intrinsic ATP hydrolytic activity of the purified and re-lipidated protein can be stimulated by specific detergents (C12E8, C12E10 and Tween20) in mixed lipid/detergent micelles in the absence of any apparent substrate. We further show that this increase in activity correlate with the reaction temperature and the anisotropic state of the mixed lipid/detergent micelles and further that this correlation relies on three highly conserved phenylalanine residues in M1. This suggests that at least part of the intrinsic ATP hydrolytic activity is allosterically coupled to movements in the TM domain in the purified preparations. It is suggested that free movement of the M1 helix represent an energetic constraint on catalysis and that this constraint likely is lost in the purified preparations resulting in protein with intrinsic spontaneous ATP hydrolytic activity. Removal of the N-terminal part of the protein apparently removes this activity.


Assuntos
Micelas , ATPases do Tipo-P , Detergentes , Saccharomyces cerevisiae/genética , ATPases do Tipo-P/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Lipídeos , Fenilalanina/metabolismo
9.
Cells ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36230919

RESUMO

Cell wall integrity (CWI) maintenance is central for plant cells. Mechanical and chemical distortions, pH changes, and breakdown products of cell wall polysaccharides activate plasma membrane-localized receptors and induce appropriate downstream responses. Microbial interactions alter or destroy the structure of the plant cell wall, connecting CWI maintenance to immune responses. Cellulose is the major polysaccharide in the primary and secondary cell wall. Its breakdown generates short-chain cellooligomers that induce Ca2+-dependent CWI responses. We show that these responses require the malectin domain-containing CELLOOLIGOMER-RECEPTOR KINASE 1 (CORK1) in Arabidopsis and are preferentially activated by cellotriose (CT). CORK1 is required for cellooligomer-induced cytoplasmic Ca2+ elevation, reactive oxygen species (ROS) production, mitogen-associated protein kinase (MAPK) activation, cellulose synthase phosphorylation, and the regulation of CWI-related genes, including those involved in biosynthesis of cell wall material, secondary metabolites and tryptophan. Phosphoproteome analyses identified early targets involved in signaling, cellulose synthesis, the endoplasmic reticulum/Golgi secretory pathway, cell wall repair and immune responses. Two conserved phenylalanine residues in the malectin domain are crucial for CORK1 function. We propose that CORK1 is required for CWI and immune responses activated by cellulose breakdown products.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Celulose/metabolismo , Mitógenos/metabolismo , Fenilalanina/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triptofano/metabolismo
10.
Food Res Int ; 161: 111918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192920

RESUMO

Biogenic amines (BA) are often present at high concentrations in fermented meat and cause foodborne illness. The aim of this work was to screen amine-degrading starters for Roucha (a fermented meat) to improve product safety and quality. Firstly, Weissella viridescens F2 and Lactiplantibacillus plantarum His6 with multi-copper oxidase activity and high degradation rates towards histamine and tyramine were selected as single or mixed starters. Additionally, the effect of starters on bacterial community succession, acid production, BA accumulation, free amino acid profiles, and volatile compound profiles were evaluated during the fermentation of Roucha. Results indicated that all starters could effectively reduce the accumulation of BA in Roucha. At the end of fermentation, Lpb. plantarum His6 as a single starter reduced the histamine level (38.15 %), while mixed starters (Lpb. plantarum His6 + W. viridescens F2) possessed a high tyramine-reduction rate (54.95 %) and total BA-reduction rate (46.64 %). Bacterial succession analysis revealed that starters could help establish the dominance of lactobacilli or Weissella quickly, which contributed to the direct degradation of BA and inhibited the growth of amine-producing bacteria. Furthermore, Lpb. plantarum His6 could promote the accumulation of essential amino acids (leucine, phenylalanine, threonine, isoleucine), sweet and umami amino acids (glycine, threonine, glutamate), and volatile compounds of good odor, indicating that this strain greatly contributed to the development of good taste and aroma characteristics in Roucha. Overall, this work shows that the application of amine-degrading starters is an effective strategy to reduce the BA accumulation and improve the quality of Roucha. Thus, these findings can provide foundations for the industrial production of Roucha.


Assuntos
Lactobacillales , Aminoácidos/análise , Bactérias/metabolismo , Aminas Biogênicas/análise , Microbiologia de Alimentos , Glutamatos , Glicina , Histamina/análise , Isoleucina/metabolismo , Lactobacillales/metabolismo , Lactobacillus/metabolismo , Leucina/metabolismo , Fenilalanina/metabolismo , Treonina/metabolismo , Tiramina/análise
11.
Nat Commun ; 13(1): 5879, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202818

RESUMO

Cellular proteins CPSF6, NUP153 and SEC24C play crucial roles in HIV-1 infection. While weak interactions of short phenylalanine-glycine (FG) containing peptides with isolated capsid hexamers have been characterized, how these cellular factors functionally engage with biologically relevant mature HIV-1 capsid lattices is unknown. Here we show that prion-like low complexity regions (LCRs) enable avid CPSF6, NUP153 and SEC24C binding to capsid lattices. Structural studies revealed that multivalent CPSF6 assembly is mediated by LCR-LCR interactions, which are templated by binding of CPSF6 FG peptides to a subset of hydrophobic capsid pockets positioned along adjoining hexamers. In infected cells, avid CPSF6 LCR-mediated binding to HIV-1 cores is essential for functional virus-host interactions. The investigational drug lenacapavir accesses unoccupied hydrophobic pockets in the complex to potently impair HIV-1 inside the nucleus without displacing the tightly bound cellular cofactor from virus cores. These results establish previously undescribed mechanisms of virus-host interactions and antiviral action.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Príons , Proteínas do Capsídeo/metabolismo , Drogas em Investigação , Glicina/metabolismo , HIV-1/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/metabolismo , Príons/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
12.
BMC Plant Biol ; 22(1): 476, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203126

RESUMO

BACKGROUND: Strawberries are an important economic fruit crop world-wide. In strawberry cultivation, continuous cropping (CC) can seriously threaten yield and quality. However, our understanding of the gene expression changes in response to CC and during subsequent defense processes is limited. In this study, we analyzed the impact of CC on the transcriptome of strawberry roots using RNA-Seq technology to elucidate the effect of CC and the subsequent molecular changes. RESULTS: We found that CC significantly affects the growth of strawberry plants. The transcriptome analysis identified 136 differentially expressed genes (DEGs), including 49 up-regulated and 87 down-regulated DEGs. A Gene Ontology (GO) analysis indicated that the up-regulated DEGs were mainly assigned to defense-related GO terms, and most down-regulated DEGs were assigned to nutrient-related GO terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the responsive DEGs were classified in a large number of important biological pathways, such as phenylalanine metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism and plant-pathogen interaction. We also found that four WRKY transcription factors and three peroxidase genes involved in plant defense pathways were up-regulated in the roots of strawberry plants subjected to CC. CONCLUSION: Several unigenes involved in plant defense processes, such as CNGCs, WRKY transcription factors, PR1, and peroxidase genes with highly variable expression levels between non-CC and CC treatments may be involved in the regulation of CC in strawberry. These results indicate that strawberry roots reallocate development resources to defense mechanisms in response to CC. This study will further deepen our understanding of the fundamental regulatory mechanisms of strawberry resource reallocation in response to CC.


Assuntos
Fragaria , Fragaria/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Peroxidases/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Amido/metabolismo , Sacarose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
13.
BMC Genomics ; 23(1): 698, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209069

RESUMO

BACKGROUND: The dried stem of Cistanche, is a famous Chinese traditional medicine. The main active pharmacodynamic components are phenylethanol glycosides (PhGs). Cistanche tubulosa produces higher level of PhGs in its stems than that of Cistanche deserticola. However, the key genes in the PhGs biosynthesis pathway is not clear in C. tubulosa. RESULTS: In this study, we performed the full-length transcriptome sequencing and gene expression profiling of C. tubulosa using PacBio combined with BGISEQ-500 RNA-seq technology. Totally, 237,772 unique transcripts were obtained, ranging from 199 bp to 31,857 bp. Among the unique transcripts, 188,135 (79.12%) transcripts were annotated. Interestingly, 1080 transcripts were annotated as 22 enzymes related to PhGs biosynthesis. We measured the content of echinacoside, acteoside and total PhGs at two development stages, and found that the content of PhGs was 46.74% of dry matter in young fleshy stem (YS1) and then decreased to 31.22% at the harvest stage (HS2). To compare with YS1, 13,631 genes were up-regulated, and 15,521 genes were down regulated in HS2. Many differentially expressed genes (DEGs) were identified to be involved in phenylpropanoid biosynthesis pathway, phenylalanine metabolism pathway, and tyrosine metabolism pathway. CONCLUSIONS: This is the first report of transcriptome study of C. tubulosa which provided the foundation for understanding of PhGs biosynthesis. Based on these results, we proposed a potential model for PhGs biosynthesis in C. tubulosa.


Assuntos
Cistanche , Álcool Feniletílico , Cistanche/genética , Cistanche/metabolismo , Perfilação da Expressão Gênica , Glicosídeos , Fenilalanina/metabolismo , Álcool Feniletílico/metabolismo , Tirosina/metabolismo
14.
BMC Plant Biol ; 22(1): 502, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36289462

RESUMO

BACKGROUND: Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat (Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. RESULTS: In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H2O2, O2-, MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na+ was partitioned in the roots than in the shoots, which had a lower Na+/K+ ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na+ transporter genes were upregulated under salt stress, which repressed the gene expression of the K+ transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5/TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. CONCLUSIONS: These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.


Assuntos
Plântula , Triticum , Triticum/metabolismo , Plântula/genética , Plântula/metabolismo , Osmorregulação , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Estresse Salino/genética , Salinidade , Sódio/metabolismo , Clorofila/metabolismo , Prolina/metabolismo , Carbono/metabolismo , Nutrientes , Solo , Fenilalanina/metabolismo , Aminoácidos/metabolismo , Estresse Fisiológico/genética
15.
Microb Cell Fact ; 21(1): 222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289548

RESUMO

BACKGROUND: The catabolite repressor/activator protein (FruR) is a global regulatory protein known to control the expression of several genes concerned with carbon utilization and energy metabolism. This study aimed to illustrate effects of the FruR mutant on the L-phenylalanine (L-PHE) producing strain PHE01. RESULTS: Random mutagenesis libraries of fruR generated in vitro were first integrated into the chromosome of PHE01 by CRISPR/Cas9 technique, and then the best mutant PHE07 (FruRE173K) was obtained. With this mutant, a final L-PHE concentration of 70.50 ± 1.02 g/L was achieved, which was 23.34% higher than that of PHE01. To better understand the mechanism, both transcriptomes and metabolomes of PHE07 were carried out and compared to that of PHE01. Specifically, the transcript levels of genes involved in gluconeogenesis pathway, pentose phosphate pathway, Krebs cycle, and glyoxylate shunt were up-regulated in the FruRE173K mutant, whereas genes aceEF, acnB, and icd were down-regulated. From the metabolite level, the FruRE173K mutation led to an accumulation of pentose phosphate pathway and Krebs cycle products, whereas the products of pyruvate metabolism pathway: acetyl-CoA and cis-aconic acid, were down-regulated. As a result of the altered metabolic flows, the utilization of carbon sources was improved and the supply of precursors (phosphoenolpyruvate and erythrose 4-phosphate) for L-PHE biosynthesis was increased, which together led to the enhanced production of L-PHE. CONCLUSION: A novel strategy for L-PHE overproduction by modification of the global transcription factor FruR in E. coli was reported. Especially, these findings expand the scope of pathways affected by the fruR regulon and illustrate its importance as a global regulator in L-PHE production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Carbono/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetilcoenzima A/metabolismo , Proteínas Repressoras/metabolismo , Fenilalanina/metabolismo , Glioxilatos/metabolismo , Piruvatos/metabolismo
16.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296459

RESUMO

Deficiency of folates can cause various health problems, and germination is a potential way to enrich folates in grain-based food materials. In the present study, the effects of six amino acids (phenylalanine, tyrosine, tryptophan, glutamate, γ-aminobutyric acid, and p-aminobenzoic acid) on folate accumulation during wheat germination under red light radiation were investigated, and an optimized combination of amino acids for promoting folate enrichment was established. The results showed that applying phenylalanine, tyrosine, tryptophan, glutamate, or p-aminobenzoic acid to wheat seedlings during germination can significantly increase the content of total folates through activating the synthesis of the precursors for folate synthesis (pterin and p-aminobenzoic acid) or condensation of these two moieties. Meanwhile, up-regulation of corresponding genes was observed by measuring their expressions to investigate the mechanism for promoting the accumulation of folates. The highest content of folates (ca. 417 µg/100 g DW) was observed when the germinated wheat was cultured with a mixture of 1.5 mM phenylalanine, 0.5 mM tyrosine, 0.5 mM tryptophan, 0.75 mM p-aminobenzoic acid, and 0.5 mM glutamic acid, which was 50% higher than the control seedlings. This study established a promising and practical approach to enhance the accumulation of folates in wheat seedlings.


Assuntos
Germinação , Plântula , Plântula/metabolismo , Triticum/química , Aminoácidos/metabolismo , Ácido 4-Aminobenzoico , Triptofano/metabolismo , Ácido Fólico/metabolismo , Grão Comestível/metabolismo , Ácido gama-Aminobutírico/metabolismo , Tirosina/metabolismo , Fenilalanina/metabolismo , Glutamatos/metabolismo
17.
Biochemistry ; 61(20): 2229-2240, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197914

RESUMO

α-Carboxyketose synthases, including 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase (DAHPS), are long-standing targets for inhibition. They are challenging targets to create tight-binding inhibitors against, and inhibitors often display half-of-sites binding and partial inhibition. Half-of-sites inhibition demonstrates the existence of inter-subunit communication in DAHPS. We used X-ray crystallography and spatially resolved hydrogen-deuterium exchange (HDX) to reveal the structural and dynamic bases for inter-subunit communication in Escherichia coli DAHPS(Phe), the isozyme that is feedback-inhibited by phenylalanine. Crystal structures of this homotetrameric (dimer-of-dimers) enzyme are invariant over 91% of its sequence. Three variable loops make up 8% of the sequence and are all involved in inter-subunit contacts across the tight-dimer interface. The structures have pseudo-twofold symmetry indicative of inter-subunit communication across the loose-dimer interface, with the diagonal subunits B and C always having the same conformation as each other, while subunits A and D are variable. Spatially resolved HDX reveals contrasting responses to ligand binding, which, in turn, affect binding of the second substrate, erythrose-4-phosphate (E4P). The N-terminal peptide, M1-E12, and the active site loop that binds E4P, F95-K105, are key parts of the communication network. Inter-subunit communication appears to have a catalytic role in all α-carboxyketose synthase families and a regulatory role in some members.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , Isoenzimas , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Sítios de Ligação , Catálise , Comunicação , Cristalografia por Raios X , Deutério , Escherichia coli , Humanos , Isoenzimas/metabolismo , Ligantes , Fenilalanina/metabolismo , Fosfatos
18.
Elife ; 112022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205309

RESUMO

Macrophages and their precursor cells, monocytes, are the first line of defense of the body against foreign pathogens and tissue damage. Although the origins of macrophages are diverse, some common transcription factors (such as PU.1) are required to ensure proper development of monocytes/macrophages. Here, we report that the deficiency of zbtb14, a transcription repressor gene belonging to ZBTB family, leads to an aberrant expansion of monocyte/macrophage population in zebrafish. Mechanistically, Zbtb14 functions as a negative regulator of pu.1, and SUMOylation on a conserved lysine is essential for the repression activity of Zbtb14. Moreover, a serine to phenylalanine mutation found in an acute myeloid leukemia (AML) patient could target ZBTB14 protein to autophagic degradation. Hence, ZBTB14 is a newly identified gene implicated in both normal and malignant myelopoiesis.


Assuntos
Monócitos , Peixe-Zebra , Animais , Diferenciação Celular/genética , Lisina/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenilalanina/metabolismo , Serina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
19.
PLoS One ; 17(10): e0276085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228026

RESUMO

Members of the Bacillus genus are industrial cell factories due to their capacity to secrete significant quantities of biomolecules with industrial applications. The Bacillus paralicheniformis strain Bac84 was isolated from the Red Sea and it shares a close evolutionary relationship with Bacillus licheniformis. However, a significant number of proteins in its genome are annotated as functionally uncharacterized hypothetical proteins. Investigating these proteins' functions may help us better understand how bacteria survive extreme environmental conditions and to find novel targets for biotechnological applications. Therefore, the purpose of our research was to functionally annotate the hypothetical proteins from the genome of B. paralicheniformis strain Bac84. We employed a structured in-silico approach incorporating numerous bioinformatics tools and databases for functional annotation, physicochemical characterization, subcellular localization, protein-protein interactions, and three-dimensional structure determination. Sequences of 414 hypothetical proteins were evaluated and we were able to successfully attribute a function to 37 hypothetical proteins. Moreover, we performed receiver operating characteristic analysis to assess the performance of various tools used in this present study. We identified 12 proteins having significant adaptational roles to unfavorable environments such as sporulation, formation of biofilm, motility, regulation of transcription, etc. Additionally, 8 proteins were predicted with biotechnological potentials such as coenzyme A biosynthesis, phenylalanine biosynthesis, rare-sugars biosynthesis, antibiotic biosynthesis, bioremediation, and others. Evaluation of the performance of the tools showed an accuracy of 98% which represented the rationality of the tools used. This work shows that this annotation strategy will make the functional characterization of unknown proteins easier and can find the target for further investigation. The knowledge of these hypothetical proteins' potential functions aids B. paralicheniformis strain Bac84 in effectively creating a new biotechnological target. In addition, the results may also facilitate a better understanding of the survival mechanisms in harsh environmental conditions.


Assuntos
Bacillus , Antibacterianos/metabolismo , Bacillus/metabolismo , Coenzima A/metabolismo , Ambientes Extremos , Fenilalanina/metabolismo , Açúcares/metabolismo
20.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232367

RESUMO

Angelica glauca Edgew, which is an endangered medicinal and aromatic herb, is a rich source of numerous industrially important bioactive metabolites, including terpenoids, phenolics, and phthalides. Nevertheless, genomic interventions for the sustainable utilization and restoration of its genetic resources are greatly offset due to the scarcity of the genomic resources and key regulators of the underlying specialized metabolism. To unravel the global atlas of the specialized metabolism, the first spatial transcriptome sequencing of the leaf, stem, and root generated 109 million high-quality paired-end reads, assembled de novo into 81,162 unigenes, which exhibit a 61.53% significant homology with the six public protein databases. The organ-specific clustering grouped 1136 differentially expressed unigenes into four subclusters differentially enriched in the leaf, stem, and root tissues. The prediction of the transcriptional-interactome network by integrating enriched gene ontology (GO) and the KEGG metabolic pathways identified the key regulatory unigenes that correspond to terpenoid, flavonoid, and carotenoid biosynthesis in the leaf tissue, followed by the stem and root tissues. Furthermore, the stem and root-specific significant enrichments of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and caffeic acid 3-O-methyltransferase (COMT) indicate that phenylalanine mediated the ferulic acid biosynthesis in the stem and root. However, the root-specific expressions of NADPH-dependent alkenal/one oxidoreductase (NADPH-AOR), S-adenosyl-L-methionine-dependent methyltransferases (SDMs), polyketide cyclase (PKC), and CYP72A15 suggest the "root" as the primary site of phthalide biosynthesis. Additionally, the GC-MS and UPLC analyses corresponded to the organ-specific gene expressions, with higher contents of limonene and phthalide compounds in the roots, while there was a higher accumulation of ferulic acid in the stem, followed by in the root and leaf tissues. The first comprehensive genomic resource with an array of candidate genes of the key metabolic pathways can be potentially utilized for the targeted upscaling of aromatic and pharmaceutically important bioactive metabolites. This will also expedite genomic-assisted conservation and breeding strategies for the revival of the endangered A. glauca.


Assuntos
Angelica , Policetídeos , Angelica/genética , Carotenoides/metabolismo , Cinamatos/metabolismo , Ácidos Cumáricos , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genômica , Limoneno , Metiltransferases/metabolismo , Oxigenases de Função Mista/genética , Anotação de Sequência Molecular , NADP/metabolismo , Oxirredutases/metabolismo , Fenilalanina/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Policetídeos/metabolismo , S-Adenosilmetionina/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...