Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.067
Filtrar
1.
J Agric Food Chem ; 67(38): 10678-10684, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475535

RESUMO

γ-Hydroxyvalerate (4HV) is an important monomer used to produce various valuable polymers and products. In this study, an engineered 3-hydroxybutyrate dehydrogenase that can convert levulinic acid (LA) into 4HV was co-expressed with a cofactor (NADH) regeneration system mediated by an NAD+-dependent formate dehydrogenase (CbFDH) in the Escherichia coli strain, MG1655. The resulting strain produced 23-fold more 4HV in a shake flask. The 4HV production was not dependent on ATP and required low aeration; all of these are considered beneficial characteristics for the production of target compounds, especially at an industrial scale. Under optimized conditions in a 5 L fermenter, the titer, productivity, and molar conversion efficiency for 4HV reached 100 g/L, 4.2 g/L/h, and 92%, respectively. Our system could prove to be a promising method for the large-scale production of 4HV from LA at low-cost and using a renewable biomass source.


Assuntos
Escherichia coli/metabolismo , Ácidos Levulínicos/metabolismo , Valeratos/metabolismo , Trifosfato de Adenosina/metabolismo , Biotransformação , Escherichia coli/genética , Fermentação , Engenharia Metabólica
2.
Sheng Wu Gong Cheng Xue Bao ; 35(9): 1607-1618, 2019 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-31559743

RESUMO

With the rapid development of modern biotechnology, fermentation process is increasingly important in industrial production. To guarantee the stability of products, fermentation process should be elaborately monitored and controlled. Biomass is an important parameter for on-line monitoring in bioprocesses because biomass can reflect cell growth in a bioreactor directly. In-situ microscope, a non-invasive and image-analysis based technology, can real-time monitor cells in biological process. This review summarizes the development and application of in-situ microscopy in biomass monitoring.


Assuntos
Biomassa , Microscopia , Reatores Biológicos , Biotecnologia , Fermentação
3.
J Agric Food Chem ; 67(37): 10423-10431, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31487168

RESUMO

Plants often produce antifungal peptides and proteins in response to infection. Also wheat, which is the main ingredient of bread dough, contains such components. Here, we show that while some industrial strains of the baker's yeast Saccharomyces cerevisiae can efficiently ferment dough, some other strains show much lower fermentation capacities because they are sensitive to a specific wheat protein. We purified and identified what turned out to be a thaumatin-like protein through a combination of activity-guided fractionation, cation exchange chromatography, reversed-phase HPLC, and LC-MS/MS. Recombinant expression of the corresponding gene and testing the activity confirmed the inhibitory activity of the protein.


Assuntos
Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Triticum/química , Cromatografia Líquida , Fermentação , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
4.
Bioresour Technol ; 293: 122033, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31472408

RESUMO

This study focused on continuous-flow hydrogen production by Thermotoga neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT reduction, the hydrogen yield (HY) immediately dropped, but recovered during prolonged cultivation at constant HRT. The final HY in each operating period decreased from 3.4 (±0.1) to 2.0 (±0.0) mol H2/mol glucose when reducing the HRT from 24 to 7 h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen concentration (H2aq) increased from 82 (±1) to 192 (±4) mL/L/h and from 9.1 (±0.3) to 15.6 (±0.7) mL/L, respectively. Additionally, the effluent glucose concentration increased from 2.1 (±0.1) to above 10 mM. Recirculating H2-rich biogas prevented the supersaturation of H2aq reaching a value of 9.3 (±0.7) mL/L, resulting in complete glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h.


Assuntos
Thermotoga neapolitana , Archaea , Reatores Biológicos , Fermentação , Glucose , Hidrogênio
5.
Bioresour Technol ; 293: 122059, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31476563

RESUMO

To investigate the effects of adding Lactobacilluscasei (LC) and sucrose (S) on the fermentation quality and bacterial community of mulberry leaf silage, two kinds of mulberry leaves were harvested and ensiled with or without LC and S for 1, 7, 14, 30 and 60 days, respectively. Silages treated with LC and S contained more lactic acid (4.46-10.54%DM) and less ammonia-N (0.03-0.13%DM), acetic acid (0.73-3.40%DM) and coliform bacteria (<2.30 log cfu/g FM) and had a lower pH (<4.40) compared with controls. In addition, microbial analysis revealed less diverse bacterial communities and greater abundances of Lactobacillus (52.89-81.27%) and Pseudomonas (2.21-5.21%) in the LC and S silages. Furthermore, the addition of LC and S also inhibited the growth of undesirable Enterobacter. In conclusion, the addition of both LC and S has the capability of improving the silage quality of mulberry leaves.


Assuntos
Lactobacillus casei , Morus , Fermentação , Folhas de Planta , Silagem , Sacarose
6.
Bioresour Technol ; 293: 122036, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31479857

RESUMO

To improve the neutral DES (choline chloride/glycerol) pretreatment performance, three environmentally friendly heteropoly acids (phosphotungstic, phosphomolybdic and silicotungstic acids) were used as catalysts. Pretreatment with silicotungstic acid at 120 °C for 3 h resulted in 97.3% of enzymatic digestibility at an enzyme loading of 15FPU/g substrate, which was approximately eight times more than that of raw samples. More importantly, 80% of glucose yield was obtained within 12 h. Simultaneously, 81.8% of ethanol yield was achieved in the SSSF process. The efficient conversion was ascribed to the significant delignification (89.5%), which resulted in the exposure of more accessible specific surface area. This was attributed to that the proton (H+) from heteropoly acids could significantly contribute to the lignin degradation. Intriguingly, trace acetic acid (0.39 g/L) and HMF (0.21-0.95 g/L) in the pretreatment liquor were produced without any significant deleterious effects. These discoveries provide new insights for efficient biomass conversion under mild conditions.


Assuntos
Etanol , Lignina , Biomassa , Fermentação , Hidrólise , Solventes
7.
Bioresour Technol ; 293: 122082, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493732

RESUMO

Waste activated sludge (WAS) can be used as carbon sources to support biological nutrient removal (BNR). In this study, thermal-alkaline (THALK), ozonation (OZN), electrolysis (EC) and NaClO-promoted electrolysis (EC-AOP) were investigated to facilitate WAS solubilization and production of volatile fatty acids (VFAs). EEMF-PARAFAC and FT-ICR-MS were employed to characterize the transformation of dissolved organic matter (DOM) in WAS fermentation liquors at molecular level. THALK achieved the highest fluorescence intensity of C1 protein after pretreatment. Proteins and lipids were the dominant DOM in the pretreated WAS, while the DOM shifted towards substances with higher H/C and lower O/C after fermentation. The BNR results showed that THALK (100%) and EC-AOP (96.9%) outperformed other groups (78.9-90.3%) in terms of NO3-N removal, indicating the significant impact of DOM compositions. Overall, these results demonstrated that THALK and EC-AOP effectively enhanced release of VFAs and DOM, which subsequently improved NO3-N removal efficiency.


Assuntos
Nitrogênio , Esgotos , Reatores Biológicos , Desnitrificação , Fermentação
8.
Bioresour Technol ; 293: 122085, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31499328

RESUMO

In this study, the potential of oil palm trunk (OPT) sap as a sole substrate for succinic acid (SA) production was evaluated using Actinobacillus succinogenes 130Z. After OPT sap was characterised, the effects of adding carbonate, yeast extract (YE) and minerals to this medium were investigated in an attempt to develop a low-cost fermentation medium. The OPT sap alone, gave comparable SA yield and productivity (0.54 g/g and 0.35 g/L/h) to those supplemented with YE (0.50 g/g and 0.36 g/L/h) and minerals (0.55 g/g and 0.40 g/L/h). The findings showed that OPT sap has sufficient amount of nutrients for SA biosynthesis by A. succinogenes 130Z and could potentially reduce cost without requiring expensive nutrients supplementation.


Assuntos
Actinobacillus , Ácido Succínico , Fermentação , Nitrogênio
9.
Bioresour Technol ; 293: 122088, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31499331

RESUMO

This study presented an innovative method for phosphorus (P) recovery as vivianite from waste activated sludge (WAS) via optimizing iron dosing and pH value during anaerobic fermentation (AF). The optimal conditions for vivianite formation were in the pH range of 6.0-9.0 with initial PO43- >5 mg/L and Fe/P molar ratio of 1.5. Notably, FeCl3 showed advantages over ZVI for the simultaneous release of Fe2+ and PO43- during WAS fermentation, especially in acidic conditions. The FeCl3 dosing at pH 3.0 could contribute to 78.81% Fe2+ release and 85.69% of total PO43- release from WAS. They were ultimately recovered in the form of high-purity vivianite (93.67%). Clostridiaceae (40.25%) was the predominant bacteria in FeCl3-pH3 reactors, which played key roles in inducing dissimilatory iron reduction for Fe2+ formation. Therefore, P recovery as vivianite from WAS fermentation might be a promising and highly valuable approach to relieve the P crisis.


Assuntos
Fósforo , Esgotos , Anaerobiose , Fermentação , Compostos Ferrosos , Concentração de Íons de Hidrogênio , Ferro , Fosfatos , Eliminação de Resíduos Líquidos
10.
Bioresour Technol ; 293: 122098, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31514118

RESUMO

As a stable microbial polysaccharide, scleroglucan has extensive application in the food, medicine, and cosmetics industries. However, its large-scale industrial application is limited by its high production cost, low yield, long production time, etc. This study aims to enhance scleroglucan production by Sclerotium rolfsii WSH-G01. Based on the analysis of batch fermentation kinetics parameters, a pH-shift strategy was adopted. Through systematic kinetics analysis, a 32.4 g/L scleroglucan was accomplished. The kinetic model of the pH-shift batch fermentation process was established using a logistic equation, Luedeking-Piret equation, and a Luedeking-Piret-like equation. As decreased glucose concentration could cause decreased scleroglucan synthesis rates during the batch fermentation process, 30 g/L glucose was fed in the later phase of fermentation. As a result, scleroglucan production increased to 42 g/L, with a productivity of 0.5 g/L·h. Thus, the pH-shift strategy and feeding approach could be useful for industrial scleroglucan production.


Assuntos
Basidiomycota , Glucanos , Fermentação , Concentração de Íons de Hidrogênio , Cinética
11.
Bioresour Technol ; 293: 122060, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31514122

RESUMO

In the present study, Kluyveromyces marxianus was utilized to study the batch fermentation kinetics of biomass production, substrate utilization and bioethanol production from woody stem Prosopis juliflora. The pre-treated substrate was subjected to Simultaneous Saccharification and Fermentation (SSF) under optimised conditions of pH (4.9), temperature (41 °C), substrate concentration 5% (w/v), inoculum concentration 3% (v/v) and the maximum concentration of bioethanol was found to be 21.45 g/l. The experimental data thus obtained from cell growth, substrate utilization and product formation are employed in the determination of kinetic parameters. Biological models such as Logistic model, Hinshelwood model were used for microbial growth and substrate utilization kinetics respectively. In case of product kinetics, Leudking-Piret plot, Gompertz model and Modified Gompertz model were utilised. Based on these models, kinetic parameters like maximum specific growth rate (µm), saturation constant (Ks), growth associated (α), non-growth associated (ß) and yield coefficients (YX/S, YP/S) were estimated.


Assuntos
Kluyveromyces , Prosopis , Etanol , Fermentação , Cinética
12.
Bioresour Technol ; 293: 122129, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31558339

RESUMO

Industrial biotechnology has a potential to tackle harmful CO2 emissions and turn CO2 into a valuable commodity. However, a major technical obstacle in gas fermentations is the limited gas mass transfer rate. Increasing system pressure is a way to increase the driving force for mass transfer. This review presents critical aspects of gas fermentation at elevated pressure, with a specific focus on results obtained at 5-10 bar. While a solid foundation for high pressure fermentations has already been laid in the past, mainly to enhance oxygen transfer rates, it can be concluded that fermentations at moderately elevated pressures using gases such as CO2, CH4, CO, H2, O2 are still underexplored. Microbial growth rates and product formation can be improved at higher pressures, but in general, titers and productivities need to be increased to allow a further industrialization. Hence, more systematic investigations and techno-economic assessments are required.


Assuntos
Dióxido de Carbono , Gases , Biotecnologia , Fermentação , Pressão
13.
Adv Exp Med Biol ; 1148: 55-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482494

RESUMO

Therapeutic enzymes are a commercially minor but clinically important area of biopharmaceuticals. An array of therapeutic enzymes has been developed for a variety of human diseases, including leukaemia and enzyme-deficiency diseases such as Gaucher's disease. Production and testing of therapeutic enzymes is strictly governed by regulatory bodies in each country around the world, and batch-to-batch consistency is crucially important. Manufacture of a batch starts with the fermentation or cell culture stage. After expression of the therapeutic enzyme in a cell culture bioreactor, robust and reproducible protein purification, or downstream processing (DSP) of the target product, is critical to ensuring safe delivery of these medicines. Modern processing technology, including the use of disposable processing equipment, has greatly improved the DSP development pathway in terms of robustness and speed to clinic. Once purified, the drug substance undergoes rigorous quality control (QC) testing according to current regulatory guidance, to enable release to the clinic and patient. QC testing is conducted to ensure the safety, purity, identity, potency and strength of the medicinal product, requiring multiple analytical methods that are rigorously validated and monitored for robust performance. Several case studies, including L-asparaginase and asfotase alfa, are discussed to illustrate the methods described herein.


Assuntos
Enzimas/biossíntese , Enzimas/farmacologia , Controle de Qualidade , Produtos Biológicos , Reatores Biológicos , Fermentação , Humanos
14.
Bioresour Technol ; 291: 121848, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377513

RESUMO

Butyrate is an important precursor for fine chemicals and biofuels. The aim of this study is to investigate butyrate production as affected by transition metal addition of food waste fermentation including, nickel, Raney nickel and copper particles. Performance of fermentation showed nickel particles achieved the highest butyrate concentration, 7.3 g/L, which was 38.5% higher than that in the control trial. Raney nickel also showed similar effect on the enhancement of butyrate production. However, increased dosage of transition metal particle addition led to decreased butyrate production. The theoretical link between metal-assisted dark fermentation and butyrate production was tentatively explored. Redox potential affected by nickel addition was assumed to be an essential factor for butyrate production. Microbial community analysis found Clostridium sensu stricto 11 may be the dominant functional species for butyrate production. The study demonstrates that development on transition metal catalyst may contribute to waste biorefinery for added value products/energy production.


Assuntos
Butiratos/metabolismo , Fermentação , Alimentos , Elementos de Transição/farmacologia , Clostridium/metabolismo , Fermentação/efeitos dos fármacos , Microbiota
15.
Bioresour Technol ; 291: 121849, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31387051

RESUMO

Anaerobic digestion (AD) has been widely applied as an economic option for food waste (FW) treatment. In this study, the group treated with ethanol pre-fermentation (EP) for 12 h (EP12) exhibited the highest cumulative biogas yield (206 mL/g-volatile solid) during AD process and therefore it was used to illuminate the underlying metabolic processes of AD with EP. Carbon isotope labeled glucose was supplemented to FW substrate, and the EP process was found to alleviate the acidification inhibition with conducting extremely high carbon flux towards ethanol formation (43.7%). Then an efficient acetogenesis phase was also observed in EP12 group, because of high carbon conversion rate from ethanol to acetate. Overall, higher carbon conversion rate to methane (90.1%) during methanogenesis was found in the AD system with EP than in the control experiment (80.3%). Thus, we quantitatively confirmed that EP affects the AD metabolism of FW in terms of carbon flow distribution.


Assuntos
Alimentos , Metano/biossíntese , Anaerobiose , Biocombustíveis , Isótopos de Carbono , Etanol/metabolismo , Fermentação , Marcação por Isótopo
16.
Bioresour Technol ; 291: 121573, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31376665

RESUMO

Upgrading lactate/carbohydrate-rich waste biomass into medium-chain carboxylic acids (MCCAs) by chain elongation (CE) technology exhibits economic and environmental benefits. However, the largely dispersive lactate-carbon-flow decreases MCCAs yield. This work discovered appropriate H2 supply could significantly reduce lactate-carbon-flow loss and improve MCCAs production (∼1.65 times) when the system is not operated according to well-defined operating conditions, and revealed corresponding mechanism. Hydrogen (H2) supply largely enhanced electron efficiency and electron transfer capacity, and H2 could reduce propionate (from competing acrylate pathway, which should be prevented, but when not possible, the carbon recovery from propionate is possible) to propanol, which was used as electron donor to elongate acetate and propionate. Moreover, H2 could react with CO2 (from CE process) to sequentially generate acetate and ethanol, which further contributed to caproate/caprylate generation. Comparing with non-H2-supplemented test, the lactate-carbon-flow used for MCCAs production was enhanced by ∼28.4% after H2 supply, and Clostridium spp. were the key discriminative microorganisms.


Assuntos
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Ácido Acético/metabolismo , Biomassa , Reatores Biológicos , Caproatos/metabolismo , Caprilatos/metabolismo , Etanol/metabolismo , Fermentação
17.
Bioresour Technol ; 291: 121844, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31400704

RESUMO

A low-temperature sodium hydroxide (NaOH) pretreatment for sugarcane bagasse (SCB) was obtained via the surface response design in this study. However, a large quantity of water consumption and wastewater generation which have been the common problems for alkaline pretreatment of lignocellulose still exists in this pretreatment. In order to reduce water consumption and wastewater generation, this study attempted to perform enzymatic hydrolysis and fermentation of NaOH-treated SCB without washing process. It showed that after pretreatment and solid-liquid separation, NaOH-treated SCB could be directly hydrolysed by cellulase via pH and solid-liquid adjustment without washing steps, and the maximum enzymatic hydrolysis efficiency could reach to 70.2%. A domesticated Saccharomyces cerevisiae Y2034 which can endure 6-times diluted BL was obtained, and realized 67.5% ethanol yield from the enzymatic hydrolysate of unwashed NaOH-treated SCB. It provided a clue for converting NaOH-treated lignocellulose to ethanol at low water consumption and wastewater generation.


Assuntos
Celulose/química , Etanol/química , Saccharum/química , Hidróxido de Sódio/química , Celulose/metabolismo , Temperatura Baixa , Etanol/metabolismo , Fermentação , Hidrólise , Lignina/química , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo , Águas Residuárias/química
18.
Bioresour Technol ; 291: 121891, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31387049

RESUMO

This work studies a series of strategies in the production of lutein by Scenedesmus obliquus CWL-1 under mixotrophic cultivation. Our experimental results revealed that the optimal conditions associated with light-related strategies were 12 h light period followed by a 12 h dark period and blue to red light under mixotrophic cultivation. Under such conditions, the biomass, lutein content and lutein productivity were maximized to 9.88 (g/L), 1.78 (mg/g) and 1.43 (mg/L/day), respectively. Moreover, the assimilation of 4.5 g/L of calcium nitrate into S. obliquus CWL-1 increased the maximal biomass (12.73 g/L) and the highest maximal lutein productivity (3.06 mg/L/day), while the assimilation of 1.5 g/L of calcium nitrate yielded the highest maximal lutein content of 2.45 mg/g. The highest maximal lutein productivity of 4.96 (mg/L/day) was obtained when fed-batch fermentation was conducted, and this value was approximately 11-folds that obtained using the batch system.


Assuntos
Luteína/biossíntese , Microalgas/metabolismo , Scenedesmus/metabolismo , Biomassa , Fermentação , Luz
19.
World J Microbiol Biotechnol ; 35(9): 136, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31432249

RESUMO

Volatile phenols such as 4-ethylphenol are produced from hydroxycinnamic acids by Dekkera bruxellensis, an important yeast contaminating alcoholic fermentations. 4-ethylphenol results from the decarboxylation and reduction of p-coumaric acid, a compound found in sugarcane musts. In wine, volatile phenols are responsible by sensorial alterations whereas in the context of bioethanol fermentation, little is known about their effects on the main yeast, Saccharomyces cerevisiae. Here we evaluated the interaction of 4-ethylphenol and pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of S. cerevisiae PE-2. A central compound rotational design was utilized to evaluate the effect of 4-ethylphenol, pH, ethanol and sucrose concentration on the yeast maximum specific growth rate (µmax) in microplate experiments in YPS medium (Yeast extract-Peptone-Sucrose), at 30 °C. Following, single-cycle fermentations in YPS medium, pH 4.5, 17% sucrose, at 30 °C, with 4-ethylphenol in concentrations of 10 and 20 mg L-1 being added at the start or after 4 h of fermentation, were carried out. 4-ethylphenol affected µmax of S. cerevisiae in situations that resemble the conditions of industrial bioethanol production, especially the low pH of the fermentation medium and the high ethanol concentration because of the anaerobic sucrose uptake. The addition of 4-ethylphenol on fermentation resulted in significant effect on the cell yeast concentration, pH and alcohol production, with significant decrease from 86% to the range of 65-74% in the fermentative efficiency. The industrial yeast S. cerevisiae PE-2 growth and fermentative capacity were affected by the presence of 4-ethylphenol, a metabolite produced by D. bruxellensis, which may contribute to explain the impact of this yeast on bioethanol industrial production.


Assuntos
Etanol/metabolismo , Fermentação , Microbiologia Industrial , Fenóis/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismo , Meios de Cultura/química , Inibidores do Crescimento/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura Ambiente
20.
Bioresour Technol ; 291: 121873, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377506

RESUMO

Cholinium-glycinate ([Ch][Gly]) and cholinium-alanate ([Ch][Ala]) were investigated on the pretreatment of mulberry stem (MS). It resulted in an increase of glucose from 14% to more than 74% compared to the untreated sample. Pretreatment by reused [Ch][Gly] showed good performance for delignification of >60%, and improved structural polysaccharide digestion. Each fractional component has high potential for lignin purification, and succinic acid fermentation. The extracted lignin with [Ch][Gly] showed >90% purity with good qualities of aromatic unit as confirmed by FT-IR and 1H NMR spectra. The carbohydrate rich material was employed for succinic acid fermentation with the highest yield of succinic acid more than 0.89 gsuccinic acid/gglucose. After purification, poly(butylene) succinate (PBS) was synthesized, and was characterized in comparison to commercial PBS.


Assuntos
Butileno Glicóis/metabolismo , Fermentação , Morus/metabolismo , Polímeros/metabolismo , Ácido Succínico/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Líquidos Iônicos/química , Lignina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA