RESUMO
The role of iron in neurodevelopment has long been recognized, and the adverse effects of early-life iron deficiency on brain development and subsequent function across the lifespan continue to be a subject of research. A greater appreciation of the contribution of maternal preconceptional iron status and fetal iron accretion to offspring, postnatal iron status, and brain health across the lifespan has occurred over the past decade. This paradigm shift in thinking links two previously relatively siloed literatures: neonatal iron deficiency and postnatal iron deficiency. The understanding that iron accretion during the fetal period strongly influences postnatal iron balance has led to an appreciation of the importance and value of ensuring proper fetal iron loading. This article reviews the dynamics of fetal iron metabolism, the role of iron in the developing fetal brain, the short- and long-term neurobehavioral consequences of fetal iron underloading, and the potential mechanisms that account for the long-term effects of fetal/neonatal iron deficiency.
Assuntos
Anemia Ferropriva , Deficiências de Ferro , Gravidez , Recém-Nascido , Feminino , Lactente , Humanos , Anemia Ferropriva/complicações , Ferro/metabolismo , Cuidado Pré-Natal , FetoRESUMO
HIV-associated cognitive dysfunction during combination antiretroviral therapy (cART) involves mitochondrial dysfunction, but the impact of contemporary cART on chronic metabolic changes in the brain and in latent HIV infection is unclear. We interrogated mitochondrial function in a human microglia (hµglia) cell line harboring inducible HIV provirus and in SH-SY5Y cells after exposure to individual antiretroviral drugs or cART, using the MitoStress assay. cART-induced changes in protein expression, reactive oxygen species (ROS) production, mitochondrial DNA copy number, and cellular iron were also explored. Finally, we evaluated the ability of ROS scavengers or plasmid-mediated overexpression of the antioxidant iron-binding protein, Fth1, to reverse mitochondrial defects. Contemporary antiretroviral drugs, particularly bictegravir, depressed multiple facets of mitochondrial function by 20-30%, with the most pronounced effects in latently infected HIV+ hµglia and SH-SY5Y cells. Latently HIV-infected hµglia exhibited upregulated glycolysis. Increases in total and/or mitochondrial ROS, mitochondrial DNA copy number, and cellular iron accompanied mitochondrial defects in hµglia and SH-SY5Y cells. In SH-SY5Y cells, cART reduced mitochondrial iron-sulfur-cluster-containing supercomplex and subunit expression and increased Nox2 expression. Fth1 overexpression or pre-treatment with N-acetylcysteine prevented cART-induced mitochondrial dysfunction. Contemporary cART impairs mitochondrial bioenergetics in hµglia and SH-SY5Y cells, partly through cellular iron accumulation; some effects differ by HIV latency.
Assuntos
Infecções por HIV , Neuroblastoma , Humanos , Microglia/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismoRESUMO
Salmonella is known to survive in raw/pasteurized milk and cause foodborne outbreaks. Lactoferrin, present in milk from all animal sources, is an iron-binding glycoprotein that limits the availability of iron to pathogenic bacteria. Despite the presence of lactoferrins, Salmonella can grow in milk obtained from different animal sources. However, the mechanism by which Salmonella overcomes iron scarcity induced by lactoferrin in milk is not evaluated yet. Salmonella employs the DNA binding transcriptional regulator Fur (ferric update regulator) to mediate iron uptake during survival in iron deplete conditions. To understand the importance of Fur in Salmonella milk growth, we profiled the growth of Salmonella Typhimurium Δfur (ST4/74Δfur) in both bovine and camel milk. ST4/74Δfur was highly inhibited in milk compared to wild-type ST4/74, confirming the importance of Fur mediated regulation of iron metabolism in Salmonella milk growth. We further studied the biology of ST4/74Δfur to understand the importance of iron metabolism in Salmonella milk survival. Using increasing concentrations of FeCl3, and the antibiotic streptonigrin we show that iron accumulates in the cytoplasm of ST4/74Δfur. We hypothesized that the accumulated iron could activate oxidative stress via Fenton's reaction leading to growth inhibition. However, the inhibition of ST4/74Δfur in milk was not due to Fenton's reaction, but due to the 'iron scarce' conditions of milk and microaerophilic incubation conditions which made the presence of the fur gene indispensable for Salmonella milk growth. Subsequently, survival studies of 14 other transcriptional mutants of ST4/74 in milk confirmed that RpoE-mediated response to extracytoplasmic stress is also important for the survival of Salmonella in milk. Though we have data only for fur and rpoE, many other Salmonella transcriptional factors could play important roles in the growth of Salmonella in milk, a theme for future research on Salmonella milk biology. Nevertheless, our data provide early insights into the biology of milk-associated Salmonella.
Assuntos
Lactoferrina , Salmonella typhimurium , Animais , Bovinos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Repressoras/genética , Ferro/metabolismo , Leite/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Ferroportin (Fpn), a member of the major facilitator superfamily (MFS) of transporters, is the only known iron exporter found in mammals and plays a crucial role in regulating cellular and systemic iron levels. MFSs take on different conformational states during the transport cycle: inward open, occluded, and outward open. However, the precise molecular mechanism of iron translocation by Fpn remains unclear, with conflicting data proposing different models. In this work, amber codon suppression was employed to introduce dansylalanine (DA), an environment-sensitive fluorescent amino acid, into specific positions of human Fpn (V46, Y54, V161, Y331) predicted to undergo major conformational changes during metal translocation. The results obtained indicate that different mutants exhibit distinct fluorescence spectra depending on the position of the fluorophore within the Fpn structure, suggesting that different local environments can be probed. Cobalt titration experiments revealed fluorescence quenching and blue-shifts of λmax in Y54DA, V161DA, and Y331DA, while V46DA exhibited increased fluorescence and blue-shift of λmax. These observations suggest metal-induced conformational transitions, interpreted in terms of shifts from an outward-open to an occluded conformation. Our study highlights the potential of genetically incorporating DA into Fpn, enabling the investigation of conformational changes using fluorescence spectroscopy. This approach holds great promise for the study of the alternating access mechanism of Fpn and advancing our understanding of the molecular basis of iron transport.
Assuntos
Proteínas de Transporte de Cátions , Ferro , Animais , Humanos , Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metais/metabolismo , Mamíferos/metabolismoRESUMO
Ferroptosis is a form of regulated cell death induced by iron-dependent lipid peroxidation, and it has been studied extensively since its discovery in 2012. Induced by iron overload and ROS accumulation, ferroptosis is modulated by various cellular metabolic and signaling pathways. The GSH-GPX4 pathway, the FSP1-CoQ10 pathway, the GCH1-BH4 pathway, the DHODH-CoQH2 system and the sex hormones suppress ferroptosis. Mitochondrial iron metabolism regulates ferroptosis and mitochondria also undergo a morphological change during ferroptosis, these changes include increased membrane density and reduced mitochondrial cristae. Moreover, mitochondrial energy metabolism changes during ferroptosis, the increased oxidative phosphorylation and ATP production rates lead to a decrease in the glycolysis rate. In addition, excessive oxidative stress induces irreversible damage to mitochondria, diminishing organelle integrity. ROS production, mitochondrial membrane potential, mitochondrial fusion and fission, and mitophagy also function in ferroptosis. Notably, some ferroptosis inhibitors target mitochondria. Ferroptosis is a major mechanism for cell death associated with the progression of cancer. Metastasis-prone or metastatic cancer cells are more susceptible to ferroptosis. Inducing ferroptosis in tumor cells shows very promising potential for treating drug-resistant cancers. In this review, we present a brief retrospect of the discovery and the characteristics of ferroptosis, then we discuss the regulation of ferroptosis and highlight the unique role played by mitochondria in the ferroptosis of cancer cells. Furthermore, we explain how ferroptosis functions as a double-edged sword as well as novel therapies aimed at selectively manipulating cell death for cancer eradication.
Assuntos
Ferroptose , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Ferro/metabolismo , Neoplasias/metabolismoRESUMO
Iron is a crucial element required to sustain multiple biological processes, including oxygen transport, DNA synthesis, and electron transport. In living cells, iron exists as either ferrous iron (Fe2+) or ferric iron (Fe3+), and its redox forms are regulated by the labile iron pool. Both iron deficiency and excess can lead to a range of pathological conditions, such as anemia, cancer, neurodegenerative disorders, and ischemia and reperfusion injury. Iron overload can cause oxidative damage and even cell death, especially via ferroptosis. Impaired ferroptosis pathways are implicated in the pathogenesis of various diseases and are becoming attractive therapeutic targets. Therefore, developing methods to analyze dynamic iron changes in cells is crucial. In this chapter, we introduce several protocols that use fluorogenic iron probes (e.g., FerroFarRed, Calcein-AM, and FRET iron probe 1) to measure intracellular iron content.
Assuntos
Ferroptose , Ferro , Ferro/metabolismo , Estresse Oxidativo , Morte CelularRESUMO
Ferroptosis is a type of regulated necrosis driven by uncontrolled membrane lipid peroxidation. Mitochondria, which are membrane-bound organelles present in almost all eukaryotic cells and play a central role in energy metabolism and various types of cell death, have a complicated role in ferroptosis. On one hand, mitochondrial-derived iron metabolism and reactive oxygen species (ROS) production may promote ferroptosis. On the other hand, mitochondria also possess a dihydroorotate dehydrogenase (DHODH)-dependent antioxidant system that detoxifies lipid peroxides. This chapter summarizes several methods, such as western blotting, immunofluorescence, cell viability assays, mitochondrial fluorescent probes, adenosine 5'-triphosphate (ATP) assay kits, mitochondrial respiration, and mitophagy tests, that may enable researchers to gain a deeper understanding of the dual role of mitochondria in ferroptosis.
Assuntos
Ferroptose , Ferro/metabolismo , Morte Celular/fisiologia , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Peroxidação de LipídeosRESUMO
Ferroptosis is a unique form of iron-dependent cell death induced by lipid peroxidation and subsequent plasma membrane rupture, which sets it apart from other types of regulated cell death. Ferroptosis has been linked to a diverse range of biological processes, such as aging, immunity, and cancer. Organoids, on the other hand, are three-dimensional (3D) miniaturized model systems of different organs in vitro cultures, which have gained widespread interest for modeling tissue development and disease, drug screening, and cell therapy. Organoids offer tremendous potential for improving our understanding of human diseases, particularly in the search for the field of ferroptosis in pathological processes of organs. Furthermore, cancer organoids are utilized to investigate molecular mechanisms and drug screening in vitro due to the anti-tumor effect of ferroptosis. Currently, the development of liver organoids has reached a relatively mature stage. Here, we present the protocols for the generation of liver organoids and liver cancer organoids, along with the methods for detecting ferroptosis in organoids.
Assuntos
Ferroptose , Neoplasias Hepáticas , Humanos , Morte Celular/fisiologia , Ferro/metabolismo , Peroxidação de Lipídeos , Organoides , Neoplasias Hepáticas/metabolismoRESUMO
Ferroptosis is a regulated form of cell death caused by the excessive accumulation of iron-dependent lipid peroxidation. It has been implicated in various pathological processes and diseases, and its modulation involves multiple proteins associated with iron and lipid metabolism. To better understand these mechanisms and monitor the ferroptosis process, there is a need for reliable and high-throughput methods to evaluate variations in protein expression levels. In-Cell Western assays provide a simple and rapid assay method for detecting biomarkers and signaling proteins in whole cells using antibodies. This assay involves seeding cells in microtiter plates, followed by fixation/permeabilization and subsequent labeling with primary antibodies and infrared-conjugated secondary antibodies. In this chapter, we introduce the protocol for the In-Cell Western assay for detecting intracellular proteins during ferroptosis.
Assuntos
Ferroptose , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Ferro/metabolismo , Peroxidação de LipídeosRESUMO
Ferroptosis is a regulated form of non-apoptotic cell death driven by iron-dependent lipid peroxidation. In the past decade, ferroptosis has been reported to be involved in the pathological role in the central nervous system degenerative diseases (e.g., Alzheimer's disease, Huntington's disease, and Parkinson's disease), stroke, traumatic brain injury, and brain tumor. However, how to reliably detect and classify ferroptosis from other cell death in pathological conditions remains a great challenge, especially in primary brain cells and brain tissues. Here, we summarize the methods and protocols (such as real-time PCR, western blotting, immunofluorescence staining, lipid peroxidation assay kits and probe, immunofluorescence staining, GPX activity and glutathione depletion assay kits, iron detection, and TEM) used in the present study to detect and classify ferroptosis in the brain.
Assuntos
Ferroptose , Acidente Vascular Cerebral , Humanos , Ferroptose/fisiologia , Morte Celular/fisiologia , Peroxidação de Lipídeos/fisiologia , Ferro/metabolismoRESUMO
Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.
Assuntos
Ferro , Minerais , Água do Mar , Ferro/análise , Ferro/química , Ferro/metabolismo , Ligantes , Minerais/análise , Minerais/química , Minerais/metabolismo , Ciclo do Carbono , Conjuntos de Dados como Assunto , Oceano Atlântico , Água do Mar/análise , Água do Mar/química , Bermudas , Fatores de Tempo , Estações do Ano , Soluções/química , InternacionalidadeRESUMO
The excessive nitrite residue may increase cell damage and cancer risk. Limosilactobacillu fermentum RC4 exhibited excellent nitrite degradation ability. Herein, the molecular mechanism of nitrite degradation by L. fermentum RC4 was studied by integrating scanning electron microscopy analysis, transcriptomics, and gene overexpression. The results demonstrated that the gene profile of RC4 cultured in MRS broth with 0, 100, and 300 mg/L NaNO2 varied considerably; RC4 responded to nitrite degradation by regulating pyruvate metabolism, energy synthesis, nitrite metabolism, redox equilibrium, protein protection, and signaling. High nitrite concentrations affected the morphology of RC4 with a longer phenotype, rough and wrinkle cell and reduced cell surface hydrophobicity. Moreover, an up-regulated expression of gene ndh encoding NADH dehydrogenase, which provides electrons for nitrite reduction by catalyzing NADH, was identified when RC4 was exposed to nitrite. Overexpression of ndh in RC4 increased the nitrite degradation rate by 2-9.5% in MRS broth with 100 mg/L NaNO2. Thus, the findings of this study could be helpful for the application of L. fermentum to reduce nitrite residues and improve food safety in fermented food products.
Assuntos
Limosilactobacillus fermentum , Transcriptoma , Nitritos/metabolismo , Limosilactobacillus fermentum/metabolismo , Ferro/metabolismo , Oxirredução , Metabolismo dos Carboidratos , Nitrogênio/metabolismo , Transdução de SinaisRESUMO
Ferritin not only regulates the plant's iron content but also plays a significant role in the plant's development and resistance to oxidative damage. However, the role of the FER family in wheat has not been systematically elucidated. In this study, 39 FERs identified from wheat and its ancestral species were clustered into two subgroups, and gene members from the same group contain relatively conservative protein models. The structural analyses indicated that the gene members from the same group contained relatively conserved protein models. The cis-acting elements and expression patterns analysis suggested that TaFERs might play an important role combating to abiotic and biotic stresses. In the transcriptional analysis, the TaFER5D-1 gene was found to be significantly up-regulated under drought and salt stresses and was, therefore, selected to further explore the biological functions Moreover, the GFP expression assay revealed the subcellular localization of TaFER5D-1 proteins in the chloroplast, nucleus, membrane and cytoplasm. Over-expression of TaFER5D-1 in transgenic Arabidopsis lines conferred greater tolerance to drought and salt stress. According to the qRT-PCR data, TaFER5D-1 gene over-expression increased the expression of genes related to root development (Atsweet-17 and AtRSL4), iron storage (AtVIT1 and AtYSL1), and stress response (AtGolS1 and AtCOR47). So it is speculated that TaFER5D-1 could improve stress tolerance by promoting root growth, iron storage, and stress-response ability. Thus, the current study provides insight into the role of TaFER genes in wheat.
Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Tolerância ao Sal , Secas , Arabidopsis/genética , Estresse Fisiológico/genética , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas , FilogeniaRESUMO
Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.
Assuntos
Hidrogéis , Microbiota , Hidrogéis/metabolismo , Águas Residuárias , Ferro/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Klebsiella/genética , Klebsiella/metabolismoRESUMO
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, ß-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Assuntos
Eritropoese , Talassemia beta , Humanos , Eritropoese/fisiologia , Eritrócitos/metabolismo , Ferro/metabolismo , HemoglobinasRESUMO
Iron-dependent denitrification is a safe and promising technology for nitrogen removal in freshwaters. However, the understanding of microbial physiology and interactions during the process was limited. Denitrifying systems inoculated with freshwater samples were operated with and without iron(II) at a low C/N ratio for 54 days. Iron addition improved nitrogen removal. Batch experiments confirmed that microbially mediated reaction rather than abiotic reaction dominated during the process. Metagenomics recovered genomes of the five most abundant microorganisms, which accounted for over 99% of the community in every triplicate of the iron-based system. Based on codon usage bias, all of them were fast-growing organisms. The total abundance of fast-growing organisms was 38% higher in the system with iron than in the system without iron. Notably, the most abundant organism Diaphorobacter did not have enzymes for asparagine and aspartate biosynthesis, whereas Rhodanobacter could not produce serine and cobalamin. Algoriphagus and Areminomonas lost synthesis enzymes for more amino acids and vitamins. However, they could always obtain these growth-required substances from another microorganism in the community. The two-partner relationship minimized the limitation on microbial reproduction and increased community stability. Our results indicated that iron addition improved nitrogen removal by supplying electron donors, promoting microbial growth, and building up syntrophic interactions among microorganisms with timely communications. The findings provided new insights into the process, with implications for freshwater remediation.
Assuntos
Desnitrificação , Ferro , Ferro/metabolismo , Água Doce , Nitrogênio/metabolismo , Reatores Biológicos , Nitratos/metabolismoRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. ß-amyloid1-42 (Aß1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aß aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aß1-42. This study found that DNIC-COOH protected neuronal cells from Aß-induced cytotoxicity, potentiated neuronal functions, and facilitated Aß1-42 degradation through the NO-sGC-cGMP-AKT-GSK3ß-CREB/MMP-9 pathway.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Óxido Nítrico/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ferro/metabolismo , Peptídeos beta-AmiloidesRESUMO
Current progress in biology and medical science is based on the observation at the level of nanometers via electron microscopy and computation. Of note, the size of most cells in higher species exists in a limited range from 5 to 50 µm. Recently, it was demonstrated that endogenous extracellular nanoparticles play a role in communication among various cellular types in a variety of contexts. Among them, exosomes in serum have been established as biomarkers for human diseases by analyzing the cargo molecules. No life on the earth can survive without iron. However, excess iron can be a risk for carcinogenesis in rodents and humans. Nano-sized molecules may cause unexpected bioeffects, including carcinogenesis, which is a process to establish cellular iron addiction with ferroptosis-resistance. Asbestos and carbon nanotubes are the typical examples, leading to carcinogenesis by the alteration of iron metabolism. Recently, we found that CD63, one of the representative markers of exosomes, is under the regulation of iron-responsive element/iron-regulatory protein system. This is a safe strategy to share excess iron in the form of holo-ferritin between iron-sufficient and -deficient cells. On the other hand, damaged cells may secrete holo-ferritin-loaded exosomes as in the case of macrophages in ferroptosis after asbestos exposure. These holo-ferritin-loaded exosomes can cause mutagenic DNA damage in the recipient mesothelial cells. Thus, there is an iron link between exogenous and endogenous nanoparticles, which requires further investigation for better understanding and the future applications.
Assuntos
Amianto , Sobrecarga de Ferro , Nanopartículas , Nanotubos de Carbono , Humanos , Ferro/metabolismo , Ferritinas , Amianto/metabolismo , CarcinogêneseRESUMO
Sulfate-reducing bacteria (SRB) can immobilize heavy metals in soils through biomineralization, and the parent rock and minerals in the soil are critical to the immobilization efficiency of SRB. To date, there is little knowledge about the fate of Cd associated with the parent rocks and minerals of soil during Cd immobilized by SRB. In this study, we created a model system using clay-size fraction of soil and SRB to explore the role of SRB in immobilizing Cd in soils from stratigraphic successions with high geochemical background. In the system, clay-size fractions (particle size < 2 µm) with concentration of Cd (0.24-2.84 mg/kg) were extracted from soils for bacteria inoculation. After SRB reaction for 10 days, the Cd fraction tended to transform into iron-manganese bound. Further, two clay-size fractions, i.e., the non-crystalline iron oxide (Fe-OX) and the crystalline iron oxide (Fe-CBD), were separated by extraction. The reaction of SRB with them verified the transformation of primary iron-bearing minerals into secondary iron-bearing minerals, which contributed to Cd redistribution. This study shows that SRB could exploit the composition and structure of minerals to induce mineral recrystallization, thereby aggravating Cd redistribution and immobilization in clay-size fractions from stratigraphic successions with high geochemical background.