RESUMO
Organic fertilization is a cheaper and highly effective option for profitability and consequent improvement of the soil's physical, chemical, and biological structure. Thus, the objective of this work was to evaluate different types of fertilization: organic (poultry shed litter), mineral, and leaf path on yield parameters of lettuce grown in various types of planting. The treatments consisted of using two planting systems (P1 - Line and P2 - quincunxes) and mineral and organic fertilizers (A1 - mineral fertilization; A2 - mineral fertilization + leaf fertilization; A3 - organic fertilization with poultry shed litter and A4 - fertilization organic + mineral). The experimental units consisted of 36 and 52 plants, respectively, for treatments P1 and P2, and all central plants of the experimental unit were evaluated. Heart height, fresh mass, and leaf number were observed. The mineral and mineral + leaf treatments did not differentiate, either in line or in quincunxes. The treatment that stood out about the analyzed variables was the organic fertilization and quincunxes planting system, reflecting a more significant number of lettuce plants and better use of the area.
A adubação orgânica é uma opção mais barata e de grande eficácia em relação à rentabilidade e consequente melhoria da estrutura física, química e biológica do solo. Desta forma, o objetivo deste trabalho foi avaliar diferentes tipos de adubação: orgânica (cama de frango), mineral e via foliar sobre parâmetros de produtividade de alface cultivada em diferentes tipos de plantio. Os tratamentos consistiram na utilização de dois sistemas de plantio (P1 - Linha e P2 - Quincôncio) e adubações minerais e orgânicas (A1 - adubação mineral; A2 - adubação mineral + adubação foliar; A3 - adubação orgânica com cama de aviário e A4 - adubação orgânica + mineral). As unidades experimentais foram compostas por 36 e 52 plantas, respectivamente, para os tratamentos em linha e em quincôncio, sendo avaliadas todas as plantas centrais da unidade experimental. Foram observados a altura do coração, massa fresca e número de folhas. Os tratamentos mineral e mineral + foliar não diferenciaram entre si, tanto em linha quanto em quincôncio. O tratamento que se destacou em relação às variáveis analisadas foi aquele baseado na adubação orgânica e sistema de plantio em quincôncio, refletindo em maior número de pés de alface e melhor aproveitamento da área.
Assuntos
Cultivos Agrícolas , Alface/crescimento & desenvolvimento , Alface/efeitos dos fármacos , FertilizantesRESUMO
Soil phosphorus (P) deficiency is a major challenge to food security in most parts of sub-Saharan Africa, including Zimbabwe, where farmers largely depend on local organic nutrient resources as fertilizer in the production of crops. Soil microorganisms can contribute to synchronous availability of soil P to plants through regulating immobilization and mineralization cycles of soil P pools but their activity may be influenced by antecedent soil P, P fertilizer application regimes and P uptake by plants. Using soils collected from plots where Crotalaria juncea (high quality), Calliandra calothyrsus (medium quality), cattle manure (variable quality), maize stover and Pinus patula sawdust (both low quality) were applied at the rate of 4 t C ha-1 with 16 kg P ha-1 at the start of every season over 16 seasons. A pot study was conducted to evaluate the influence of increasing inorganic P fertilizer rates (26 and 36 kg P ha-1) on soil microbial dynamics, soil P pools, and maize P uptake. Results indicated that nineteen (19) fungal and forty-two (42) bacterial colonies were identified over the study period. Fungi dominated bacteria on day one, with Aspergillus niger showing a 30-98% abundance that depends on organic resource quality. Overall, microbial diversity peaked activity characterized succession on day 29, which coincided with a significant (P<0.05) increase in P availability. Increasing P rate to 26 kg P ha-1 amplified the microbial diverse peak activity under medium-high quality resources while under the control the peak emerged earlier on day 15. Mucor and Bacillus had peak abundances on day 43 and 57, respectively, across treatments regardless of P rates. Treatment and P rate had a significant (P<0.01) effect on microbial P. Bacteria were more responsive to added P than fungi. Increasing P to 36 kg P ha-1 also stimulated an earlier microbial diverse peak activity under maize stover on day 15. Addition of P alone, without supplying complementary nutrients such as N, did not have a positive effect on maize P uptake. Farmers need to co-apply medium-high quality organic resources with high fertilizer P rates to increase microbial diversity, plant available P and maize growth on sandy soils (Lixisols). Our results suggest that there is a need to reconsider existing P fertilizer recommendations, currently pegged at between 26 and 30 kg P ha-1, for maize production on sandy soils as well as develop new fertilizer formulations to intensify crop production in Zimbabwe.
Assuntos
Fertilizantes , Solo , Animais , Bovinos , Zimbábue , Areia , Aspergillus nigerRESUMO
The production of methylmercury (MeHg) in flooded paddy fields determines its accumulation in rice grains; this, in turn, results in MeHg exposure risks for not only rice-eating humans but also wildlife. Nitrogen (N) fertilizers have been widely applied in rice cultivation fields to supply essential nutrients. However, the effects of N fertilizer addition on mercury (Hg) transformations are not unclear. This limits our understanding of MeHg formation in rice paddy ecosystems. In this study, we spiked three Hg tracers (200HgII, Me198Hg, and 202Hg0) in paddy slurries fertilized with urea, ammonium, and nitrate. The influences of N fertilization on Hg methylation, demethylation, and reduction and the underlying mechanisms were elucidated. The results revealed that dissimilatory nitrate reduction was the dominant process in the incubated paddy slurries. Nitrate addition inhibited HgII reduction, HgII methylation, and MeHg demethylation. Competition between nitrates and other electron acceptors (e.g., HgII, sulfate, or carbon dioxide) under dark conditions was the mechanism underlying nitrate-regulated Hg transformation. Ammonium and urea additions promoted HgII reduction, and anaerobic ammonium oxidation coupled with HgII reduction (Hgammox) was likely the reason. This work highlighted that nitrate addition not only inhibited HgII methylation but also reduced the demethylation of MeHg and therefore may generate more accumulation of MeHg in the incubated paddy slurries. Findings from this study link the biogeochemical cycling of N and Hg and provide crucial knowledge for assessing Hg risks in intermittently flooded wetland ecosystems.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Humanos , Nitratos , Metilação , Ecossistema , Ureia , Fertilizantes , DesmetilaçãoRESUMO
In the twenty-first century Korea, "Pristine Vegetables(ì²ì ì±ì)" refers to organic products grown without the use of pesticides and chemical fertilizers. However, the meaning of "Pristine" was radically different until 1970s. After the Korean War, the infection rate of intestinal parasite reached almost 100 percent in Korean population. Disruption in chemical fertilizers manufacturing pressured farmers to use night-soil, which was contaminated with parasite eggs, causing the vicious cycle of infection. At the same time, rapid urbanization increased the demands of fresh vegetables in the city, leading to a large amount of semi-urban agricultural practices. This was closely linked with the national economy; as most of Korean vegetable products were contaminated with parasites, they were deemed unsuitable for export. In 1957, US Army stationed in Seoul issued a guideline for producing local vegetables acceptable for US troop consumption. This gave rise to the concept of "Pristine Vegetables" that were free of any infectious materials. These practices continued well into the 1970s. Due to the lack of sewage treatment system, the waste of urban population provided necessary fertilizer for these farmers without much cost. In order to secure public health, the Korean government actively encouraged the use of chemical fertilizers, naming the vegetables "Pristine." This effort included the ban of night-soil in urban and semi-urban farms and the establishment of Pristine Vegetable Shops. However, the rapid decline of parasitic diseases in the population and the rising concerns of environmental pollutions reshaped Pristine Vegetables from chemical to organic in the 1980s. Thus, Pristine Vegetable in Korea during late twentieth century exemplifies rapid transformation of the urban environment, showing shifted concept of cleanness and contaminants among the public and policymakers, as well as acceptable risk of the urban environment in Korea.
Assuntos
Militares , Parasitos , Animais , Humanos , Verduras , Solo , Fertilizantes , República da CoreiaRESUMO
To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture.
Assuntos
Micorrizas , Solo , Triticum , Carbono , Fertilizantes , Fósforo , PotássioRESUMO
Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.
Assuntos
Bacteriófagos , Praguicidas , Animais , Bovinos , Suínos , Praguicidas/toxicidade , Fertilizantes , Bacteriófagos/genética , Biodegradação Ambiental , Esterco , SoloRESUMO
BACKGROUND: Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS: The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS: Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.
Assuntos
Brassica napus , Brassica rapa , Fermentação , Solo , Fertilizantes , Rizosfera , Ácidos Graxos , Açúcares , CháRESUMO
BACKGROUND: Soil salinity, soil infertility, and freshwater scarcity are among the major constraints affecting agricultural ecosystems in arid and semi-arid regions of the world. Hence, there is a need to look for salt-tolerant crops and fish that can be successfully cultivated and reared respectively in such harsh environments. The implementation of biosaline integrated aquaculture-agriculture systems (IAAS) utilizing both salt-tolerant crops and fish could improve food and feed production in arid and semi-arid regions. This study, therefore, investigated the influence of salinity on the biometric traits of striped catfish (Pangasianodon hypophthalmus) and barley (Hordeum vulgare) under an IAAS. METHOD: The experiment followed a randomized completely block design of three salinity treatments with three replicates namely, T0: Control (freshwater mixed with chemical fertilizers), T1: 5,000 ppm, T2: 10,000 ppm, and T3: 15,000 ppm. RESULTS: Irrigating barley with saline aquaculture wastewater at different salinities (5,000 ppm, 10,000 ppm, and 15,000 ppm) did not significantly affect the agro-morphological parameters (internode number per plant, stalk diameter, leaf number per plant, leaf area index, and leaf chlorophyll content (SPAD)) of the plants at 90 days after sowing. Moreover, the forage yield and forage quality in terms of fiber fraction, nutrient composition, and in vitro digestibility of the forage biomass were not severely affected by high salinity compared to the control (freshwater and inorganic fertilizers). Our results also showed that rearing striped catfish in saline water not exceeding 10,000 ppm did not negatively impact the growth performance (final weight, body weight gain, feed conversion ratio, specific growth rate, condition factor, and survival) and the health status of the fish. CONCLUSIONS: The integration of striped catfish and barley production in water salinities below 15,000 ppm could be a feasible alternative in safeguarding food and feed security in regions affected by soil salinity, soil infertility, and freshwater scarcity. Moreover, the salinity regime of 5,000 ppm could bring higher economic gains to farmers regarding higher crop yields (fish and forage yield).
Assuntos
Peixes-Gato , Hordeum , Animais , Ecossistema , Fertilizantes , Salinidade , Agricultura , Aquicultura , Solo , BiometriaRESUMO
Understanding the responses of soil bacterial community to long-term fertilization in dryland of yellow soil could provide theoretical basis for establishing scientific fertilization system and cultivating healthy soil. Based on a 25-year long-term fertilization experiment on yellow soil, we collected soil samples from 0-20 cm layer under different fertilization treatments: no fertilization (CK), balanced application of N, P and K fertilizers (NPK), single application of organic fertilizer (M), combined application of constant organic and inorganic fertilizer (MNPK), and 1/2 organic fertilizer instead of 1/2 chemical fertilizer (MNP). Illumina MiSeq high-throughput sequencing technology was used to examine the effects of different fertilization patterns on soil bacterial community structure and soil nutrient content. The main driving factors of soil bacterial community were explored. The results showed that soil pH and organic matter content under treatments with organic fertilizer increased by 11.4%-13.5% and 28.8%-52.0%, respectively, compared to that under NPK treatment. Long-term fertilization did not affect soil bacterial α diversity, but significantly affected soil bacterial ß diversity. Compared with CK and NPK treatment, treatments of M, MNP, and MNPK significantly changed soil bacterial community structure, and increased the relative abundance of Fusobacteria and Anaerobes. Four fertilization treatments increased the relative abundance of Bacteroidetes, and decreased the relative abundance of Actinomyces and Campylobacter, compared to CK. Soil pH was the most important factor affecting soil bacterial community structure. Fertilization-stimulated rare microbial taxa (Pumilomyces and Anaerobes) were more sensitive to changes in different environmental factors and were the main drivers of the formation of community versatility. In conclusion, organic fertilizer improved soil properties and fertility and changed soil bacterial community structure, which are conducive to cultivating healthy soil.
Assuntos
Fertilidade , Fertilizantes , Sequenciamento de Nucleotídeos em Larga Escala , Nutrientes , SoloRESUMO
Nitrogen is an essential nutrient element for crop growth, and biochar is a good material for soil remediation. In this study, a pakchoi (Brassica chinensis L.) pot experiment was conducted to investigate the effects of the combined application of three nitrogen fertilizers, including urea, ammonium sulfate, calcium nitrate, and biochar on pakchoi growth and cadmium (Cd) uptake from cropland soil contaminated by Cd. The results showed that the application of nitrogen fertilizers and biochar prompted pakchoi growth, and the biomass of pakchoi in the treatments of single applications of urea, ammonium sulfate, calcium nitrate, and biochar were significantly increased by 5.02%-32.9%, as compared with that in the control treatment without nitrogen fertilizer application. The biomass of pakchoi in the treatments of the combined application of nitrogen fertilizers and biochar were significantly increased by 8.84%-50.8%, as compared with that in the treatment of the single application of nitrogen fertilizer. Compared with that under the control treatment without nitrogen fertilizer application, the single application of urea significantly reduced soil pH by 0.27 and significantly increased the content of soil available Cd by 30.0%. The single application of ammonium sulfate significantly reduced soil pH by 0.33 and significantly increased Cd content in pakchoi by 29.2%, as compared with that in the control treatment. The single application of calcium nitrate had no significant effect on soil pH or Cd content in pakchoi, whereas the single application of biochar significantly increased soil pH by 0.35 and significantly decreased the content of soil available Cd and content of Cd in pakchoi by 57.4% and 53.7%, respectively, as compared with that in the control treatment. Soil pH in the treatments of the combined application of nitrogen fertilizers and biochar was significantly increased by 0.14-0.28, the contents of soil available Cd were decreased by 16.5%-30.1%, and the contents of Cd in pakchoi were reduced by 15.3%-28.6%, as compared with that in the treatment of single application of nitrogen fertilizers. In general, the application of biochar could adjust the effects of different nitrogen fertilizers on Cd availability in the contaminated soil. During the remediation process of heavy metal-contaminated cropland, nitrogen fertilizer should be selected and applied reasonably to obtain the maximum economic and environmental benefits.
Assuntos
Brassica , Cádmio , Sulfato de Amônio , Fertilizantes , Nitrogênio , Solo , UreiaRESUMO
Cadmium (Cd) heavy metal pollution has posed serious threats to soil health and the safe production utilization of agricultural products. A pot experiment was conducted to study the effects of biochar (BC) and nitrogen fertilizer with three levels, namely 2.6 g·pot-1 (N1), 3.5 g·pot-1 (N2), 4.4 g·pot-1 (N3) biochar combined with nitrogen fertilizer (BCN1, BCN2, and BCN3), on soil Cd fractions, Cd enrichment, the transport of rice, and soil enzyme activity, as well as the changes in microbial community composition and complex interactions between microorganisms through high-throughput sequencing. The results showed that biochar combined with nitrogen fertilizer led to the transformation of Cd from the exchangeable state to the residue state, and the proportion of the exchangeable state was significantly reduced by 6.2%-14.7%; by contrast, the proportion of the residue state increased by 18.6%-26.4% relative to that in CK. In addition, singular treatments of nitrogen fertilizer enhanced the accumulation capacities of Cd in roots, which increased by 22%-33.5% compared with that in CK. By contrast, the BC and BCN treatments reduced Cd accumulation in roots and the transfer capacity from stems to rice husks and husk to rice. Furthermore, the BCN treatments promoted soil enzyme activities (urease, acid phosphatase, invertase, and catalase). MiSeq sequencing showed that BCN treatments increased the abundance of the main species of soil bacterial microbes (such as Acidobacteriales, Solibacterales, Pedosphaerales, and Nitrospirales). Moreover, co-occurrence network analysis showed that the complexity of the soil bacterial network was enhanced under the N, BC, and BCN treatments. Overall, biochar combined with nitrogen fertilizer reduced soil Cd availability, inhibited the capacity of Cd accumulation and the transport of rice, and improved the soil eco-environmental quality. Thus, using BCN could be a feasible practice for the remediation of Cd-polluted agricultural soil.
Assuntos
Cádmio , Oryza , Fertilizantes , Solo , Acidobacteria , NitrogênioRESUMO
The improvement of saline soil with microbial fertilizer has numerous advantages including high efficiency, green environmental protection, etc. At the same time, applying microbial fertilizer is an effective way to safely use brackish water. Based on the moderately saline soil in the Hetao irrigation area, four treatments of F1 (4500 kg·km-2), F2 (7500 kg·km-2), F3 (10500 kg·km-2), and CK without microbial fertilizer were applied under brackish water irrigation using Lycium barbarum as the indicator plants. The aim was to study the effects of different microbial fertilizer application rates on soil ions, soil moisture content, pH value, nutrients, and bacterial community in four key growth stages of L. barbarum (flowering stage, fruit expansion stage, full fruit stage, and deciduous stage). The results showed that, compared with that in CK, F1 only significantly decreased Na+ content in the first two growth stages (P<0.05), whereas F2 and F3 significantly decreased Na+ content in the whole growth period (P<0.05), with an average reduction of 33.66% and 57.98%, respectively, and F3 significantly increased soil moisture content (MC), organic matter (OM), alkaline hydrolysis nitrogen (AN), and available phosphorus (AP) contents (P<0.05) during the whole growth period. In the flourishing period of L. barbarum, the Shannon index of F3 increased by 4.41% compared with that of CK. The dominant bacterial phyla in the soil were Proteobacteria, Bacteroidetes, and Actinobacteria, and the dominant bacterial genera were Sphingomonas and Pseudomonas. The most abundant functions of bacterial communities in the study area were chemoheterotrophy and aerobic chemoheterotrophy, with an average relative abundance of 15.07% and 13.16%, respectively. The application of microbial fertilizer increased the chitinolysis function and chloroplast functions of soil bacteria, which F2 increased to the highest degree. Canonical correlation analysis (CCA) showed that MC, Na+, and OM were important factors affecting the composition of the bacterial community. The correlation heat map showed that MC was positively correlated with Planctomycetes (P<0.01), and Gp6 was positively correlated with AN (P<0.01). Compared with that in CK, the F3 treatment increased the relative abundance of Gp6 and optimized the community structure during the growth period. In conclusion, the application of 10500 kg·km-2 microbial fertilizer (F3 treatment) under brackish water irrigation could significantly reduce soil salinity, increase nutrients, and improve the diversity of the soil bacterial community structure, which is conducive to the safe utilization of brackish water and the maintenance of soil ecological health.
Assuntos
Actinobacteria , Fertilizantes , Bactérias , Bacteroidetes , ProteobactériasRESUMO
To clarify the effect of chemical fertilizer and manure combined with biochar on denitrifying microorganisms and denitrification potential of rhizosphere soil, a pot experiment growing lemon was conducted involving five treatments, namely no fertilization (CK), chemical fertilizer (CF), manure (M), chemical fertilizer combined with biochar (CFBC), and manure combined with biochar (MBC). We determined the characteristics of the rhizosphere soil nirS-, nirK-, and nosZ-type denitrifying bacteria populations; denitrification potential; and soil environmental factors to clarify the effects of chemical and manure combined with biochar on denitrification. Our results showed that compared with that in CK, the CF treatment reduced the rhizosphere soil denitrification potential by 47.7%, whereas the M and MBC treatments increased the denitrification potential by 2192.7% and 1989.9%, respectively. The M and MBC treatments increased the gene copy number of nirS and nosZ, the CF and CFBC treatments decreased the gene copy number of nirS and nosZ, and all four fertilization treatments increased the gene copy number of nirK. Stepwise regression analysis showed that pH was the main factor for the abundance of nirS-type denitrifying bacteria and SOM and NH+4-N were the main factors for the abundance of nirK-type denitrifying bacteria, whereas pH, NO-3-N, and N/P were main factors for the abundance of nosZ-type denitrifying bacteria. The results of partial least squares analysis indicated that the abundance of nirS-and nosZ-type denitrifying bacteria, pH, TN, and N/P were the main factors affecting rhizosphere denitrification potential. Therefore, in acidic purple soil, nirS- and nosZ-type denitrifying bacteria were the main drivers of the soil denitrification process in lemon rhizospheres under chemical fertilizer and pig manure combined with biochar, whereas fertilizer affected the rhizosphere soil denitrification process by regulating soil pH, TN, and N/P.
Assuntos
Citrus , Desnitrificação , Animais , Suínos , Fertilizantes , Esterco , Rizosfera , Bactérias/genética , SoloRESUMO
Humus is a specific kind of organic matter widely distributed in soils. The characteristics of humus have significant impacts on the fate of pollutants in the environment. In this study, we examined the effects of fertilization modes from rice rotation systems on the contents, spectral properties, photochemical activity, and photosensitization of quinclorac (QNC) of humic (HA) and fulvic acids (FA). The results showed that under the rice-vegetable rotation system, organic fertilizer treatment decreased the humification degree and molecular weight of HA, but increased the number of oxygen-containing functional groups and the abilities of photoproducing hydroxyl radical (HO·), singlet oxygen (1O2) and photosensitizing QNC, compared with chemical fertilizer treatment. Under organic fertilization mode, the molecular weight of FA was increased, but the number of redox functional groups and the abilities of photoinducing HO· and 1O2 and photosensitizing QNC were decreased. Under rice-shrimp cultivation system, organic-inorganic fertilizer treatment increased the humification degree, molecular weight, number of redox functional groups and oxygen-containing functional groups, and 1O2 photogeneration of HA, but decreased the abilities of photoproducing HO· and photosensitizing QNC, as compared with chemical fertilizer treatment. The humification degree and molecular weight of FA under organic-inorganic fertilization mode were increased, while the abilities of photoproducing HO· and 1O2 and photosensitizing QNC were decreased. In conclusion, organic fertilization could enhance the photochemical activity and photosensitizing efficiency of humus, and further promote the photodegradation of QNC in the environment.
Assuntos
Oryza , Solo , Fotólise , Fertilizantes , Oxigênio , FertilizaçãoRESUMO
Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.
Assuntos
Macrocystis , Macrocystis/genética , Genômica , Alginatos , Diploide , FertilizantesRESUMO
Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.
Assuntos
Cyamopsis , Micorrizas , Fertilizantes , Antocianinas , Sementes , Folhas de Planta , Poliaminas , AçúcaresRESUMO
The frequent occurrence of extreme weather in recent years poses a significant threat to food production. Ensuring food production and rationalizing the use of agricultural resources require addressing the problem of the improper application of chemical fertilizers. Several effective measures have been implemented in China to reduce agricultural non-point source pollution. Among them, the reduction of excessive nitrogen fertilizer application proves to be the most effective approach in controlling surface pollution from cultivation. Currently, it is crucial to clarify and quantify crop nutrient fertilizer requirements while evaluating the potential for reducing nitrogen fertilizer usage in China. Nitrogen requirements for major crops grown in China were assessed based on the theory of crop nutrient balance, assuming constant grain production as a guarantee. In this paper, we analyze the potential for nitrogen reduction through short-term, medium-term, and long-term scenario predictions. The results show that in the next 3 years, China has a reduction potential of 34.98%, but this potential is not sustainable. Over the next 10 years, there is a reduction potential of 15.04%, with most provinces experiencing a balanced state of soil nitrogen cycling. Hainan, Beijing, Shaanxi, and Fujian have higher reduction potential, with possible reductions of 69.95%, 64.14%, 60.72%, and 54.10%, respectively. However, there are still provinces in China where nitrogen fertilizer is insufficient, leading to soil nitrogen consumption. Specifically, Heilongjiang, Jiangxi, and Shandong Provinces need to increase their nitrogen fertilizer applications by 87.00%, 35.97%, and 8.31%, respectively. The long-term scenario analysis over the next 30 years shows a reduction potential of 40.96%. Among the regions analyzed, Hainan, Beijing, Shaanxi, Fujian, and Ningxia have higher nitrogen fertilizer reduction potentials, with values of 78.97%, 78.48%, 74.25%, 67.87%, and 67.72%, respectively. However, Heilongjiang Province still needs to increase nitrogen fertilizer application by 44.20% to address soil nitrogen depletion. Conversely, Tibet and Qinghai, with high organic fertilizer yields, lower chemical fertilizer usage, and low nitrogen loss coefficients, are well-suited for organic agriculture development. For areas with high organic fertilizers usage and a risk of fertilizer loss, we recommend implementing the organic-inorganic mixed fertilization planting mode.
Assuntos
Monitoramento Ambiental , Fertilizantes , Fazendas , China , Produtos Agrícolas , NitrogênioRESUMO
BACKGROUND: Lodging is a major factor contributing to yield loss and constraining the mechanical harvesting of wheat crops. Genetic improvement through breeding effectively reduced the lodging and improved the grain yield, however, the physiological mechanisms involved in providing resistance to lodging are different in the breeding stage and are not clearly understood. The purpose of this study was to compare the differences in the lodging resistance (LR) of the wheat varieties released during the different decades and to explore the effect of the application of nitrogen (N) fertilizer on the plasticity of LR. RESULTS: A field study was conducted during the cultivation seasons of 2019-2020 and 2020-2021, in soil supplemented with three N levels: N0 (0 kg ha-1), N180 (200 kg ha-1), and N360 (360 kg ha-1) using eight varieties of wheat released for commercial cultivation from 1950 to date. The results obtained showed that genetic improvement had significantly enhanced the LR and grain yield in wheat. In the first breeding stage (from 1950 to 1980s) the lodging resistant index increased by 15.0%, which was primarily attributed to a reduced plant height and increased contents of cellulose, Si, and Zn. In the second breeding stage (the 1990s-2020s) it increased by 172.8%, which was mainly attributed to an increase in the stem diameter, wall thickness, and the contents of K, Ca, Fe, Mn, and Cu. The application of N fertilizer improved the grain yield but reduced the LR in wheat. This was mainly due to an increase in plant height resulting in an elevation of the plant center of gravity, a decrease in the contents of cellulose, and a reduction in the area of large-sized vascular bundles in the stems, even if N supplementation increased the concentrations of K, Ca, and Si. CONCLUSION: Although breeding strategies improved the stem strength, the trade-off between the grain yield and LR was more significantly influenced by the addition of N. Overcoming this peculiar situation will serve as a breakthrough in improving the seed yield in wheat crops in the future.
Assuntos
Fertilizantes , Triticum , Triticum/genética , Estações do Ano , Melhoramento Vegetal , China , Celulose , Produtos Agrícolas , Grão ComestívelRESUMO
Liquid fertilizers are widely used for fertilizing in- and outdoor vegetation. Despite the easy accessibility and widespread use, serious intoxications are rare. This case report describes a 61-year-old woman who was treated for life-threatening hyperkalemia, metabolic acidosis and ECG changes after intentional ingestion of liquid fertilizer. Our case shows that intake of liquid fertilizer, though infrequent, can cause serious, life threatening complications.
Assuntos
Acidose , Hiperpotassemia , Feminino , Humanos , Pessoa de Meia-Idade , Fertilizantes , Hiperpotassemia/induzido quimicamente , Hiperpotassemia/diagnóstico , Hiperpotassemia/terapia , Acidose/induzido quimicamente , Acidose/diagnóstico , Nitrogênio , Fósforo , Potássio , EletrocardiografiaRESUMO
Biochar as agricultural soil amendment has been extensively investigated for its potential to sequester carbon, to mitigate greenhouse gases (GHGs) emissions, to enhance soil fertility and enhance crop yields. In this study, we investigated the impact of varying N fertilization rates in conjunction with biochar on soil properties, crop yield, and GHGs emissions in a rapeseed (Brassica napus L.)-soybean (Glycine max (L.) Merrill) rotation system for one year. Biochar and N fertilizer were applied following a factorial combination design of three biochar (B0: 0 t hm-2, B1: 15 t hm-2, and B2: 60 t hm-2) and three N fertilizer application rates (H: 100%, M: 75%, and L: 50% of the conventional application rates). In general, there was no significant effect of N fertilizer and its interaction with biochar application on soil water content, pH, and total carbon content, but the addition of biochar significantly increased these parameters (P < 0.05). The yield of both crops were significantly augmented by biochar up to 75% compared to using N fertilization alone, potentially due to enhanced N use efficiency. However, biochar significantly increased the cumulative N2O and CH4 emissions by as much as 2.2 times and 19 times, respectively, during the rapeseed season, thereby elevating the global warming potential (GWP) and the yield-scaled GWP. Nevertheless, the significantly increased soil carbon content following biochar addition might boost soil carbon sequestration, which could counterbalance the escalating GWP induced by GHGs. Therefore, we recommend a comprehensive and long-term evaluation of biochar's impact by considering crop yield, GHGs emissions, and carbon sequestration in agricultural systems to ensure sustainable agricultural management.