Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.804
Filtrar
1.
J Environ Qual ; 49(2): 256-267, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016414

RESUMO

Fertilizer N losses from agricultural systems have economic and environmental implications. Soil amendment with high C materials, such as coal char, may mitigate N losses. Char, a coal combustion residue, obtained from a sugar factory in Scottsbluff, NE, contained 29% C by weight. A 30-d laboratory study was conducted to evaluate the effects of char addition on N losses via nitrous oxide (N2 O) emission, ammonia (NH3 ) volatilization, and nitrate (NO3 -N) leaching from fertilized loam and sandy loam soils. Char was applied at five different rates (0, 6.7, 10.1, 13.4, and 26.8 Mg C ha-1 ; char measured in C equivalent) to soils fertilized with urea ammonium nitrate (UAN) at 200 kg N ha-1 . In addition, there were two negative-UAN control treatments: no char (no UAN) and char at 26.8 Mg C ha-1 (no UAN). Treatment applied at 6.7 and 10.1 Mg C ha-1 in fertilized sandy loam reduced NH3 volatilization by 26-37% and at 6.7, 10.1, and 13.4 Mg C ha-1 in fertilized loam soils by 24% compared with no char application. Nitrous oxide emissions and NO3 -N leaching losses were greater in fertilized compared with unfertilized soil, but there was no effect of char amendment on these losses. Because NO3 -N leaching loss was greater in sandy loam than in loam, soil residual N was twofold higher in loam than in sandy loam. This study suggests that adding coal char at optimal rates may reduce agricultural reactive N to the atmosphere by decreasing NH3 volatilization from fertilized soils.


Assuntos
Amônia , Solo , Carvão Mineral , Fertilizantes , Volatilização
2.
J Environ Qual ; 49(2): 440-449, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016427

RESUMO

The use of suctions cups is a common practice for estimating nitrate (NO3 -N) leaching under agricultural systems despite the various uncertainties associated with the approach. One major uncertainty is water flux, which is required for calculating NO3 -N leaching loads from measured concentrations. Another problem is the interpolation of NO3 -N concentrations between measurement days. We investigated how differences in water flux, obtained from two different models (EVACROP and APSIM), affect NO3 -N leaching loads. The effect of interpolation of NO3 -N concentrations based on days or drainage was also addressed. The models were set up according to a 2-yr field experiment with spring barley (Hordeum vulgare L. Quinch) with different levels of N fertilization rates on a loamy soil at Flakkebjerg, Denmark. Due to small differences in measured NO3 -N concentrations between sequential samplings, the method of interpolation did not significantly affect NO3 -N leaching in the two periods investigated. Although there is no standard against which leaching losses from different approaches can be tested, results highlight that the modeling of water uptake as affected by N supply influences the amount of drainage and thus calculated NO3 -N leaching. Therefore, for experiments with varying N fertilization levels, the APSIM model, which accounts for N nutrition on crop water use, is likely more accurate. For common fertilization rates, the simpler EVACROP seems appropriate. Thus, when using suction cup data for testing models or for evaluating mitigation options for nitrate leaching, the use of an appropriate model for estimating water fluxes is important.


Assuntos
Fertilizantes/análise , Nitratos/análise , Agricultura , Solo , Sucção
3.
J Environ Qual ; 49(2): 281-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016433

RESUMO

Nitrogen (N) loss from cropping systems has important environmental implications, including contamination of drinking water with nitrate. A 2-yr study evaluated the effects of six N rate, source, and timing treatments, including a variable rate (VR) N treatment based on the N sufficiency index approach using remote sensing, and two irrigation rate treatments, including conventional and reduced rate, on nitrate leaching, residual soil nitrate, and plant N uptake for potato (Solanum tuberosum L. cv. Russet Burbank) production in 2016 and 2017 on a Hubbard loamy sand. Nitrate leaching losses measured with suction-cup lysimeters varied between 2016 and 2017 with flow-weighted mean nitrate N concentrations of 5.6 and 12.8 mg N L-1 , respectively, and increased from 7.1 to 10.4 mg N L-1 as N rate increased from 45 to 270 kg N ha-1 . Despite reductions in N rate of 22 and 44 kg N ha-1 in 2016 and 2017, respectively, for the VR N treatment, there was no significant difference in nitrate leaching compared with the existing N best management practices (BMPs). Reducing irrigation rate by 15% decreased nitrate leaching load by 17% through a reduction in percolation. Residual soil nitrate N in the top 60 cm across all treatments (7.9 mg N kg-1 ) suggests a risk for nitrate leaching during the nongrowing season, and plant N uptake did not explain yearly variation in nitrate leaching and residual soil nitrate. Although existing N BMPs are effective at controlling N losses, development of alternative practices is needed to further reduce the risk of groundwater contamination.


Assuntos
Solanum tuberosum , Agricultura , Fertilizantes , Nitratos , Nitrogênio
4.
J Environ Qual ; 49(2): 483-495, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016434

RESUMO

To manage nitrogen (N) efficiently, organic growers must be able to predict the amount and timing of plant-available N from organic amendments. In this study, we measured N mineralization from a variety of organic amendments, including composted animal manures and plant material, pelleted and granular organic fertilizer formulations, slaughter waste products, and hydrolyzed liquid fertilizers. In a laboratory incubation, we measured net N mineralization from materials mixed with either organically or conventionally managed soil at 23°C and 60% water holding capacity after 0, 7, 21, 42, and 84 d. We found that net mineral N change in the amended soils after 84 d of incubation fell into four categories: immobilization to 5% of applied N for yard trimmings composts, 15-30% for poultry manure composts, 35-55% for granular fertilizers, and 60-90% for quick release products. However, across all amendments the amount of plant-available N after 84 d of incubation was well correlated with the carbon (C)/N ratio (R2  = 0.92). Within amendment types, the C/N ratio predicted N mineralization for yard trimmings composts (R2  = 0.91), manure composts (R2  = 0.81), and specialty fertilizer and slaughter products (R2  = 0.88) but not liquid products (R2  = 0.11). Soil management history did not consistently affect net N mineralization but may have influenced timing.


Assuntos
Compostagem , Nitrogênio/análise , Animais , Fertilizantes , Esterco , Solo
5.
J Environ Qual ; 49(5): 1203-1224, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016450

RESUMO

Phosphorus (P) losses from nonpoint sources into surface water resources through surface runoff and tile drainage play a significant role in eutrophication. Accordingly, the number of studies involving the modeling of agricultural P losses, the uncertainties of such models, and the best management practices (BMPs) supported by the modeling of hypothetical P loss reduction scenarios has increased significantly around the world. Many improvements have been made to these models: separate manure P pools, variable source areas allowing the determination of critical source areas of P loss, analyses of modeling uncertainties, and understanding of legacy P. However, several elements are still missing or have yet to be sufficiently addressed: the incorporation of preferential flow into models, the modification of P sorption-desorption processes considering recent research data (e.g., pedotransfer functions for labile, active, or stable P, along with P sorption coefficients), BMP parameterization, and scale-up issues, as well as stakeholder-scientist and experimentalist-modeler interactions. The accuracy of P loss modeling can be improved by (a) incorporating dynamic P sorption-desorption processes and new P subroutines for direct P loss from manure, fertilizer, and dung, (b) modeling preferential flow, connectivity between field and adjacent water bodies, and P in-stream processes, (c) including an assessment of model uncertainty, (d) integrating field and watershed models for BMP calibration and scaling field results up to larger areas, and (e) building a holistic interaction between stakeholders, experimentalists, and modelers.


Assuntos
Agricultura , Fósforo , Eutrofização , Fertilizantes , Esterco
6.
J Environ Qual ; 49(5): 1347-1358, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016459

RESUMO

Fertilizer management practices that focus on applying N fertilizer at the right rate and time have been proposed as a practical option to reduce NO3 -N losses from subsurface drained agricultural fields. In this study, regression equations were developed to predict NO3 -N losses for a corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotation in southern Minnesota, using fertilizer application timing and rate and growing season precipitation as inputs. The equations were developed using the results of the field-scale hydrologic and N simulation model DRAINMOD-NII, first calibrated and validated for three sites in southern Minnesota, and then run with different combinations of N fertilizer application rates and timings. Fertilizer timing treatments included a single application in the fall or spring and a split-spring application (half applied preplant and the remaining applied as sidedress). The predictive regression equations showed that the split fertilizer application timing could reduce regional N loads by 28% compared with spring or fall applications. Greater reductions were predicted when the split timing was combined with lower N fertilizer rates. Utilizing the split application timing and reducing the fertilizer rate by 10 and 30% showed 33 and 41% reductions in N loads, respectively, compared with current fertilizer management practices. Such reductions in fertilizer application rates could be achieved through the use of variable-rate nitrogen (VRN) fertilizer technologies. Results of this modeling study indicate that synchronizing fertilizer application with crop requirements and utilizing VRN technologies could significantly reduce N loads to surface waters in southern Minnesota.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Minnesota , Nitratos/análise
7.
J Environ Qual ; 49(4): 1032-1043, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33016479

RESUMO

Synthetic fertilizers make up a significant fraction of the energy required to grow switchgrass (Panicum virgatum L.) for ethanol production. A field study compared biosolids and synthetic fertilizers on biomass yield, ethanol production, and nitrous oxide (N2 O) emissions of switchgrass to determine if using an alternative source of nutrient would lower the energy density of the fuel. Minimal N2 O emissions were observed the first year of the study (0.99 ± 1.5 g N2 O ha-1 d-1 for biosolids), with no difference between treatments. Biosolids were added in excess of agronomic rates, and gas samples were collected immediately after irrigation for the subsequent years to examine maximum N2 O emissions. Mean Year 2 emissions increased for fertilizers to 1.8 ± 8 g N2 O ha-1 d-1 (n = 131) and to 3.73 ± 10.2 g N2 O ha-1 d-1 (n = 130) for biosolids-amended soils. Emissions in Year 3 were similar to Year 2. Yield was similar and ranged from 3.7 ± 5 to 11 ± 1.1 and from 5.0 ± 0.2 to 13.4 ± 1.7 Mg ha-1 for biosolids and fertilizer, respectively. The potential ethanol yield was 365 ± 28 L Mg-1 and 374 ± 34 L Mg-1 for the biosolids- and fertilizer-grown grass, respectively. Greenhouse gas emissions associated with fertilizer production were considered for N, P, and K and totaled 1,653 kg carbon dioxide equivalent (CO2 e) ha-1 . The equivalent credits for substitution of biosolids (18 Mg ha-1 ) were -2,492 kg CO2 e ha-1 . Nitrous oxide emissions were calculated based on 1% of total N applied for agronomic applications and were 8,600 and 3,500 g N2 O ha-1 for the biosolids and fertilizer treatments, respectively. Total carbon costs associated with fertilization were 2,700 kg CO2 e ha-1 for fertilizer and 60 kg CO2 e ha-1 for biosolids. Using measured N2 O data would have resulted in lower emissions for both treatments.


Assuntos
Panicum , Biossólidos , Etanol , Fertilizantes , Óxido Nitroso/análise
8.
J Environ Qual ; 49(4): 1054-1061, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33016482

RESUMO

Cadmium (Cd) can accumulate in soil from the application of phosphorus fertilizer. However, there is little information on what happens to soil Cd concentrations when Cd inputs stop. This study used soil and pasture samples collected from a long-term field trial to measure changes in Cd concentrations in soil for 22 yr after Cd inputs from fertilizer had stopped and assessed whether the application of nitrogen (N) (50 kg ha-1  yr-1 ) could increase plant uptake of Cd and reduce soil Cd concentrations. It was found that there was no significant change in total or labile soil Cd (1 M CaCl2 extractable) concentrations after Cd inputs stopped. The application of N did not significantly (P < .05) increase dry matter yield or increase Cd solubility. As a result, N did not enhance plant uptake of Cd. A mass balance that included Cd loss via plant uptake and Cd leaching confirmed they were insufficient to result in a detectable decrease in soil Cd concentration over the 22-yr interval of the trial. It appears that even an acid soil with low amounts of carbon (2.67%), iron/aluminum oxides, and clay can still strongly retain Cd, preventing Cd depletion from the soil, despite stopping Cd inputs and trying to enhance plant uptake of Cd from the application of N fertilizer.


Assuntos
Fertilizantes/análise , Poluentes do Solo/análise , Cádmio/análise , Fósforo , Solo
9.
J Environ Qual ; 49(4): 933-944, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33016483

RESUMO

When fertilizer phosphorus (P) is applied to soils, the P can run off fields and cause harmful algal blooms. Due to its chemistry, much of the added P that does not run off can bind to soil particles and become inaccessible to plants. In natural systems, microbial and faunal decomposers can increase soil P accessibility to plants. We tested the hypothesis that this may also be true in agricultural systems, which could increase P application efficiency and reduce runoff potential. We stimulated soil fauna with sodium (Na+ ) and microbes with carbon (C) by adding corn (Zea mays L.) stover and Na+ solution to plots in conventionally managed corn fields in northwestern Ohio. Stover addition increased microbial biomass by 65 ± 12% and respiration by 400-700%. Application of stover with Na+ increased soil detritivore fauna abundance by 51 ± 20% and likely did not affect the other invertebrate guilds. However, soil biological activity was low compared with natural systems in all treatments and was not correlated with instantaneous measures of P accessibility, though cumulative P accessibility over the course of the growing season was correlated with microbial phosphatase activity (slope = 1.01, p < .01) and respiration (slope = 0.42, p = .02). Therefore, in agricultural systems, treatments to stimulate decomposers already in those systems may be ineffective at increasing soil P accessibility in the short term, but in the long term, higher microbial activities can be associated with higher soil P accessibility.


Assuntos
Fósforo/análise , Solo , Biota , Fertilizantes , Ohio
10.
Sci Total Environ ; 741: 140488, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887004

RESUMO

Nitrogen fertilization significantly increases greenhouse gases (GHGs) emission, when applied from inorganic or organic sources. Minimizing GHGs from agroecosystems without compromising crop yield for stabilization of green production systems remains a challenge. Being an integral component of wheat production technology, the nitrogen (N) application deems to be indispensable. Thus, to reduce the application of N fertilizer and keep in view the minimization of GHGs emission, without compromising soil fertility and wheat production, field experiments were performed with treatments included maize straw mulch (S1: 0, S2: 4500, S3: 9000 kg ha-1) and nitrogen fertilizer (N1: 0, N2: 192 and N3: 240 kg ha-1) during 2015-17. Results showed that the cumulative CO2 and N2O emission from 9000 kg ha-1 of maize straw mulch with 192 kg N ha-1 (S3N2) significantly decreased by 0.67% and 33.7%, respectively, averaged over two years compared with that of 9000 kg ha-1 of maize straw mulch with 240 kg N ha-1 (S3N3). Likewise, the average soil moisture content significantly increased by 10% and 10.6% for S3N2 and S3N3 treatments at 0-10 cm soil depth, respectively, compared to S1N1. Similarly, the S3N2 and S3N3 treatments had lowered the soil temperature by 0.2 and 0.1 °C, respectively, over S1N1 in wheat grown fields. The grain yield of wheat was increased by 45% and 45% under S3N3 and S3N2 treatments than S1N1, respectively. The S3N2 treatment was more economical than S3N3 for wheat crop. Therefore, maize straw mulch (S3) combined with 20% less N fertilizer (N2) from commercial source were considered as a viable production technology to improve crop yield, and reduce soil CO2 and N2O emissions.


Assuntos
Fertilizantes/análise , Triticum , Agricultura , Dióxido de Carbono , China , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Zea mays
12.
Water Sci Technol ; 82(2): 351-363, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941176

RESUMO

The migration of nitrogen (N) and phosphorous (P) from farmland to river not only results in fertilizer inefficiency, but also aggravates water pollution and eutrophication. It is of great significance to construct a reasonable vegetation buffer zone between the river and farmland to protect water quality. By using constructed buffer strips and runoff hydrometric devices, quantitative research was conducted on removal loads of N and P in a field experiment of different vegetated and slope strips. Results showed that removal rates of TN, NH4+-N, and TP by different vegetated strips were 2-3 times higher than the control group. The removal ratios of seepage accounted for 73.6%, 66.9%, 73.9% of total seepage and runoff in three vegetated strips, respectively. On the 2% gradient strips with Cynodon dactylon, the removal ratios of TN, NH4+-N, and TP were 36%, 34%, 37%, which were higher than that with 5% gradient, respectively. And removal ratios from the seepage of 2%, 3%, 4%, and 5% gradient strips were 71.66%, 68.14%, 64.39%, and 61.93% of the total, respectively. The conclusion can provide the basis of vegetation and slope optimization for the design and construction of a riparian buffer zone, so as to control non-point source pollution effectively.


Assuntos
Nitrogênio/análise , Fósforo , Fertilizantes , Rios , Poluição da Água
13.
Sci Total Environ ; 737: 140245, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783848

RESUMO

Zinc (Zn) fertilizer application can certainly improve the production and nutritional quality of cereal crops. However, Zn accumulation in the soil may lead to some deleterious environmental impacts in agroecosystems. The effects of long-term Zn application on soil microbial properties remain unclear, but it is imperative to understand such effects. In this study, we collected soil samples from a nine-year field experiment in a wheat-maize system that continuously received Zn applied at various rates (0, 2.3, 5.7, 11.4, 22.7 and 34.1 kg ha-1) to evaluate the soil enzymes, microbial biomass and microbial community structure. The results showed that Zn application at the rate of 5.7 kg ha-1 significantly increased the activities of urease, invertase, alkaline phosphatase and catalase in the soil, while the rate of 34.1 kg ha-1 significantly decreased the evaluated enzyme activities. The microbial biomass carbon (C) and nitrogen (N) were not affected by Zn application rates, although an increase in the microbial biomass C was observed in the 11.4 kg ha-1 treatment. Moreover, the alpha diversity of the bacterial and fungal communities did not vary among the nil Zn, optimal Zn (5.7 kg ha-1) and excess Zn (34.1 kg ha-1) treatments. However, the bacterial communities in the soil receiving the optimal and excess Zn application rates were slightly changed. Compared to the nil Zn treatment, the other Zn application rates increased the relative abundances of the Rhodospirillales, Gaiellales and Frankiales orders and decreased the abundance of the Latescibacteria phylum. The redundancy analysis further indicated that the soil bacterial community composition significantly correlated with the concentrations of soil DTPA-Zn and total Zn. These results highlight the importance of optimal Zn application in achieving high production and high grain quality while concurrently promoting soil microbial activity, improving the bacterial community and further maintaining the sustainability of the agroecological environment.


Assuntos
Microbiota , Solo , Biomassa , Fertilizantes , Nitrogênio/análise , Microbiologia do Solo , Zinco
14.
Ecotoxicol Environ Saf ; 202: 110950, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800226

RESUMO

Human exposure to methylmercury (MeHg) through rice consumption is raising health concerns. It has long been recognized that MeHg found in rice grain predominately originated from paddy soil. Anaerobic conditions in paddy fields promote Hg methylation, potentially leading to high MeHg concentrations in rice grain. Understanding the transformation and migration of Hg in the rice paddy system, as well as the effects of farming activities, are keys to assessing risks and developing potential mitigation strategies. Therefore, this review examines the current state of knowledge on: 1) sources of Hg in paddy fields; 2) how MeHg and inorganic Hg (IHg) are transformed (including abiotic and biotic processes); 3) how IHg and MeHg enter and translocate in rice plants; and 4) how regular farming activities (including the application of fertilizer, cultivation methods, choice of cultivar), affect Hg cycling in the paddy field system. Current issues and controversies on Hg transformation and migration in the paddy field system are also discussed.


Assuntos
Produção Agrícola/métodos , Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Oryza/efeitos dos fármacos , Poluentes do Solo/análise , Fertilizantes/análise , Humanos , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Solo/química , Poluentes do Solo/metabolismo
15.
J Environ Manage ; 271: 111033, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778313

RESUMO

In semi-arid regions, soil phosphorus (P) dynamics in cereal-legume intercropping are not yet fully elucidated, particularly in relation to integrated application of fertilizers. To this aim, we investigate the effects of different fertilizers on various P fractions in relation to the rhizosphere-microbial processes in a cowpea/maize intercropping system. Field experiments were conducted during two consecutive years (2016-2017) in a split-plot design by establishing cowpea/maize alone or intercropped onto the main plot, while the sub-plot was treated with four types of fertilization, i.e. no fertilizer addition (control), organic amendment (compost), mineral fertilizers (NPK) and multi-nutrient enriched compost (NPKEC). Our results showed that NPKEC fertilizer increased NaHCO3-Pi by 69% in maize, 62% in cowpea and 93% in intercropped plots compared to control plots. Similarly, a significant increase in the NaHCO3-Po fraction was also recorded with NPKEC treatment in all cropping systems. In case of moderately labile P, NPKEC fertilizer caused the highest increase of NaOH-Po (12.87 ± 0.50 mg P kg-1 soil) and NaOH-Pi (22.29 ± 0.83 mg P kg-1 soil) fractions in intercropped plots. Except for intercropping, NPK application caused an increase in the non-available P fraction (HCl-Pi), while the use of NPKEC decreased the HCl-Pi concentration in all cropping systems, suggesting stronger merits both for intercropping and NPKEC. Surprisingly, maize exhibited substantially higher phosphatases activity compared to cowpea in monoculture amended with compost, implying distinct crop strategies for adaptation under low P conditions. Based on the multi-factor analysis, the close association of NaHCO3-P with P solubilizing bacteria, root carboxylates and pH indicated that rhizosphere processes are the strongest predictors of immediately available P. Since alkaline phosphatase (ALP) is a P-degrading enzyme of microbial origin, rhizosphere related ALP association may have originated from root-associated microflora promoting P mobilization. Furthermore, the strong association of microbial biomass P (MBP) and acid phosphates (ACP) with NaOH-P fraction indicated moderately available P cycle in soil was mainly driven by microbial-related processes. Factor analysis map and two-way ANOVA confirmed that fertilization regime had a stronger effect on all tested variables compared to cropping system. Altogether, our results suggest that a combination of microbial-rhizosphere processes controls the dynamics of P fertility in semi-arid soils. In the broader context of improving soil P fertility, it is highly recommended the use of environmentally sustainable sources of fertilizer, such as NPKEC, which can enhance the competitive performance of legume-cereal intercropping under semi-arid agroecosystems.


Assuntos
Rizosfera , Solo , Agricultura , Fertilizantes , Fósforo , Zea mays
16.
Sci Total Environ ; 738: 140345, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806339

RESUMO

Although fumigants can effectively control soil-borne diseases they are typically harmful to beneficial microorganisms unless methods are developed to encourage their survival after fumigation. The soil fumigant 1,3-dichloropropene (1,3-D) is widely used because of its effective management of pathogenic nematodes and weeds. After fumigation with 1,3-D, Bacillus subtilis and Trichoderma harzianum fertilizer (either singularly or together) or humic acid were added to soil that had been used to produce tomatoes under continuous production for >20 years. We evaluated changes to the soil's physicochemical properties and enzyme activity in response to these fertilizer treatments, and the effects of these changes on beneficial bacteria. Fertilizer applied after fumigation increased the content of ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium and organic matter, and it promoted an increase in pH and electrical conductivity. The activity of urease, sucrase and catalase enzymes in the soil increased after fumigation. Taxonomic identification of bacteria using genetic analysis techniques showed that fertilizer applied after fumigation increased the abundance of Actinobacteria and the relative abundance of the biological control genera Sphingomona, Pseudomonas, Bacillus and Lysobacter. The abundance of these beneficial bacteria increased significantly when B. subtilis and T. harzianum were applied together. These results showed that fertilizer applied after fumigation can increase the abundance of beneficial microorganisms in the soil within a short period of time, which improved the soil's fertility, ecological balance and potentially crop quality and yield.


Assuntos
Fertilizantes , Fumigação , Compostos Alílicos , Bactérias , Hidrocarbonetos Clorados , Solo , Microbiologia do Solo
17.
Environ Pollut ; 265(Pt B): 115065, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806458

RESUMO

Potassium (K) fertilizer plays an important role in increasing crop yield, quality, and nitrogen use efficiency. However, little is known about its environmental impacts, such as its effects on emissions of the greenhouse gas nitrous oxide (N2O). A nitrogen-15 (15N) tracer laboratory experiment was therefore performed in an acidic agricultural soil in the suburbs of Wuhan, central China, to determine the effects of K fertilizer on N2O emissions and nitrification/denitrification product ratios under N fertilization. During 15-d incubation periods with a fixed initial N concentration (80 mg kg-1), K application increased average N2O emission rates significantly (1.6-10.8-fold) compared to the control treatment. N2O emissions derived from nitrification and denitrification both increased in K-treated soil, and denitrification contributed more to the increase; its contribution ratio rose from 32% without K fertilizer to 53% with 300 mg kg-1 of K applied. The increase in N2O emissions under K fertilization is probably due to an increase in the activity of denitrifying microorganisms and acid-resistant nitrifying microorganisms caused by higher K+ concentrations and lower soil pH. Combined treatment with potassium chloride (KCl) and N fertilizer produced lower N2O emissions than combined treatment with potassium sulfate (K2SO4) and N fertilizer during 15-d incubation periods. Our results imply that there are significant interaction effects between N fertilizers and K fertilizers on N2O emissions. In particular, combining N fertilizers with fertilizers that reduce soil acidity or contain Cl or K ions may significantly affect agricultural N2O emissions.


Assuntos
Fertilizantes/análise , Solo , China , Desnitrificação , Nitrificação , Potássio
18.
Waste Manag ; 115: 95-112, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32736033

RESUMO

This paper reviews relevant knowledge about the production and uses of fertilizers from fish and fish waste (FW) that may be applicable for certified organic farming, with a focus on crop and horticultural plants. Fish industries generate a substantial amount of FW. Depending on the level of processing or type of fish, 30-70% of the original fish is FW. Circular economy and organic farming concepts were used to evaluate the potential of production of fertilizers from captured fish. Fertilizers produced from captured fish promote the recycling of nutrients from the sea and back to terrestrial environments. Nutritional composition of FW is assessed to determine the potential to supply plant nutrients such as nitrogen, or a combination of nitrogen and phosphorous, or to enrich a compost. Methods used in processing of FW to produce fish- emulsion, fish hydrolysate/fish silage, fish-compost and digestate from anaerobic digestion/co-digestion are presented. Using information about commercially available fish-based fertilizers listed by the Organic Materials Review Institute (OMRI), we present a scenario for establishing fish/FW-based fertilizers industry and research in Europe. With Norway's 9th position among top ten global capture producers and focus in Norway on developing organic farming, we brief how FW is currently utilized and regulated, and discuss its availability for possible production of FW-based organic fertilizers. The amount of FW available in Norway for production of fertilizers may facilitate the establishment of an industrial product that can replace the currently common use of dried poultry manure from conventional farming in organic farming.


Assuntos
Fertilizantes , Agricultura Orgânica , Agricultura , Animais , Europa (Continente) , Esterco , Nitrogênio/análise , Noruega
19.
Bull Environ Contam Toxicol ; 105(2): 283-290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32734360

RESUMO

The current study investigated the efficiency of sepiolite (SE), sodium humate (HS), microbial fertilizer (JF) and SE combined with JF/HS in a ratio of 2:1 (w/w) (JF-2SE and HS-2SE) on Cd, Pb and As bioavailability in field trials with rice (Oryza sativa L.). The results showed that all the amendments remarkably decreased (p < 0.05) the contents of available Cd and available Pb in soil. Only JF-2SE treatment reduced available As concentration in soil. All the amendments were found to effectively reduce (p < 0.05) the contents of As in brown rice. Both JF-2SE and HS-2SE co-applications reduced the concentrations of Cd in brown rice to 0.108 and 0.135 mg kg-1, and that of Pb reduced to 0.2 and 0.175 mg kg-1, which met the national standard limit of China. Thus, the co-application of JF/HS-2SE can be a promising remediation strategy in Cd, Pb and As co-contaminated paddy soil.


Assuntos
Cádmio/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Disponibilidade Biológica , Cádmio/análise , China , Poluição Ambiental , Fertilizantes , Chumbo/análise , Silicatos de Magnésio , Oryza , Solo/química , Poluentes do Solo/análise
20.
J Environ Manage ; 272: 111072, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854882

RESUMO

Animal manure is an important source of nutrients for crop production, but environmental issues can restrict its direct use. Thermochemical processing these manures may be an alternative to concentrate nutrients and reduce the final volume for agriculture application. We aimed here to evaluate the viability of extracting nutrients from chicken manure using a thermochemical process which reduces the volume of transported nutrients, targeting phosphorus (P) recovery as precipitated struvite, without add external source of P. The extraction of nutrients from poultry manure was performed in water, followed by a thermochemical treatment of the solid phase by incineration and acidulation of the resulting ash. Struvite was produced from the acidified ash extract after supplementation with Mg and regulating the pH (~8.5) by KOH addition. The recovery efficiency of P from the poultry manure and incorporation into struvite was 90%. The final product was a multi-nutrient fertilizer with high macronutrient levels (P, K, Mg and S) and low micronutrient content when compared to fresh manure, as well as lower levels of heavy metals, potentially harmful for the environment. The precipitated product obtained here is composed of struvite-NH4 and struvite-K, alongside appreciable quantities of potassium sulphate and hydroxyapatite carbonate. Overall, we conclude that poultry manure represents a viable source of P and N for struvite production resulting in a nutrient-rich, pathogen-free inorganic fertiliser suitable for widespread use in agriculture.


Assuntos
Fertilizantes , Esterco , Animais , Minerais , Nitrogênio/análise , Fosfatos , Fósforo , Aves Domésticas , Estruvita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA