Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118.738
Filtrar
1.
Yi Chuan ; 42(9): 898-915, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32952124

RESUMO

There is heterogeneity among donor cells of the same source. Many studies have shown that donor cell affects the efficiency of somatic cell nuclear transfer (SCNT). However, the potential influence of donor cell heterogeneity on the efficiency of nuclear transplantation were rarely analyzed at the single-cell level. In this study, single-cell transcriptome sequencing was performed on 52 porcine ear fibroblasts randomly selected from the same source to compare their gene expression patterns. The results showed that 48 cells had similar gene expression patterns, whereas 4 cells (D11_1, D12_1, DW61_2, DW99_2) had significantly different gene expression patterns from those of other cells. There were no two cells with identical gene expression patterns. The gene expression patterns of D11_1, D12_1, DW61_2 and DW99_2 were analyzed, using the 48 cells with similar gene expression patterns as controls. Firstly, we used the R language statistics to select the differentially expressed genes in the 4 single cells, and identified the top 50 most significant differentially expressed genes. Then GO enrichment analysis and KEGG pathway analysis were performed on the differentially expressed genes. Enrichment analysis revealed that the main molecular functions of the differentially expressed genes included energy metabolism, protein metabolism and cell response to stimulation. The main pathways from KEGG enrichment were related to cell cycle, cell metabolism, and DNA replication. Finally, based on the above results and in consideration with the SCNT research progress, we discussed the potential effects of differential gene expression patterns of the 4 single cells on the embryonic development efficiency of nuclear transplantation. This study revealed transcriptional heterogeneity of porcine ear tissue fibroblasts and provided an effective method to analyze elite donor cells, thereby providing new ideas on improving the cloning efficiency of SCNT.


Assuntos
Transcriptoma , Animais , Blastocisto , Clonagem de Organismos , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fibroblastos , Técnicas de Transferência Nuclear , Gravidez , Suínos
2.
Zhongguo Gu Shang ; 33(8): 788-92, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32875774

RESUMO

Joint contracture is one of the common musculoskeletal disorders. It has seriously disturbed patients' activities of daily living in various aspects. The pathogenesis of it is eager to explore to distinct degree. Nowadays the thickeness and fibrosis of joint capsular is redarded as the major reason to joint contracture. It is reported that excessive fibroblasts and myofibroblasts activity, collagen hyperplasia, and extracellular matrix (ECM) deposition in these fibrotic condtions lead to the contracture. In addition, upregulators of myofibroblast and collagen synthesis, transforming growth factor-beta 1 (TGF-ß1), and connective tissue growth factor (CTGF) were shown to be increased. Altered levels of cytokines were also thought to play a role in this process as elevated levelsof tumor necrosis factor-α(TNF-α), matrix metalloproteinases(MMPs) and abnormal distribution tissue inhibitors of MMPs(TIMPs) were demonstrated in contracted capsules. At present, the methods for clinical treatment of joint contracture mainly include two major categories:stretching therapy, physical factor therapy, exercise therapy, botulinum toxin injection and other non-surgical treatments, arthroscopic lysis, open lysis, and other surgical treatments. Surgical treatment is performed when non-surgical treatment is difficult to achieve further improvement. It has a good effect on mild to moderate joint contracture, but it is difficult to completely restore joint activity for serious joint contracture. Although clinical treatment methods are diverse, the clinical effects are staggered and the effectiveness of their treatment is controversial. Joint contracture is an important challenge faced by orthopedics and rehabilitation physicians, therapists and patients. The review summarized the pathogenesisand treatment of joint contracture and provided a theoretical basis for clinical diagnosis and treatment.


Assuntos
Atividades Cotidianas , Contratura , Fibroblastos , Fibrose , Humanos , Cápsula Articular , Fator de Crescimento Transformador beta1
3.
J Endod ; 46(9S): S26-S32, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32950192

RESUMO

Upon traumatic injuries or carious lesions, the elimination of bacteria infiltrating the pulp is recognized as a prerequisite for initiating the regeneration process. Complement is a major system involved in initiating the inflammatory reaction and the subsequent bacteria elimination. This plasma system of above 35 proteins is synthesized by the liver and some immune cells. It is activated by 3 pathways: the classical, alternative, and lectin pathways that can be triggered by physical injuries, infection, and biomaterials. Recent data have shown that the pulp fibroblast represents a unique nonimmune cell type able to synthesize Complement proteins. Indeed, after physical injuries/bacteria stimulation, the pulp fibroblast has been shown to synthesize and to activate the complement system leading to the production of biologically active molecules such as C5a, C3b, and the membrane attack complex. This local secretion represents a rapid and efficient mechanism for eliminating bacteria invading the pulp, thus supporting complement activation from the plasma. Pulp fibroblast-secreted Complement proteins allow cariogenic bacteria direct lysis via membrane attack complex formation on their surface, phagocytic cell recruitment by producing C5a and cariogenic bacteria opsonization by C3b fixation on their surface, stimulating cariogenic bacteria phagocytosis. Overall, this review highlights that, in addition to initiating the inflammatory reaction, pulp fibroblasts also provide a powerful control of this inflammation via local Complement activation. The pathogen elimination capacity by fibroblast-produced complement demonstrates that this system is a strong local actor in arresting bacterial progression into the dental pulp.


Assuntos
Ativação do Complemento , Polpa Dentária , Complexo de Ataque à Membrana do Sistema Complemento , Fibroblastos , Humanos , Inflamação
4.
Nat Commun ; 11(1): 4480, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900992

RESUMO

Macroautophagy initiates by formation of isolation membranes, but the source of phospholipids for the membrane biogenesis remains elusive. Here, we show that autophagic membranes incorporate newly synthesized phosphatidylcholine, and that CTP:phosphocholine cytidylyltransferase ß3 (CCTß3), an isoform of the rate-limiting enzyme in the Kennedy pathway, plays an essential role. In starved mouse embryo fibroblasts, CCTß3 is initially recruited to autophagic membranes, but upon prolonged starvation, it concentrates on lipid droplets that are generated from autophagic degradation products. Omegasomes and isolation membranes emanate from around those lipid droplets. Autophagy in prolonged starvation is suppressed by knockdown of CCTß3 and is enhanced by its overexpression. This CCTß3-dependent mechanism is also present in U2OS, an osteosarcoma cell line, and autophagy and cell survival in starvation are decreased by CCTß3 depletion. The results demonstrate that phosphatidylcholine synthesis through CCTß3 activation on lipid droplets is crucial for sustaining autophagy and long-term cell survival.


Assuntos
Autofagia/fisiologia , Colina-Fosfato Citidililtransferase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Animais , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Meios de Cultura , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfatidilcolinas/metabolismo
5.
Medicine (Baltimore) ; 99(33): e21707, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32872047

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease with its onset closely related to the growth of synovial fibroblasts (SFs), yet the genes involved in are few reported. In our study, we aimed to identify the OA-associated key gene and pathways via the single-cell RNA sequencing (scRNA-seq) analysis on SFs.scRNA-seq data of SFs from OA sufferers were accessed from GEO database, then the genes involved in were subjected to principal component analysis (PCA) and T-Stochastic Neighbor Embedding (TSNE) Analysis. GO and KEGG enrichment analyses were performed to find the most enriched functions and pathways associated with marker genes and a PPI network was constructed to identify the key gene associated with OA occurrence.Findings revealed that marker genes in three cell types identified by TSNE were mainly activated in pathways firmly related to fibroblasts growth, such as extracellular matrix, immune and cell adhesion molecule binding-associated functions and pathways. Moreover, fibronectin1 (FN1) was validated as the key gene that was tightly related to the growth of SFs, as well as had the potential to play a key role in OA occurrence.Our study explored the key gene and pathways associated with OA occurrence, which were of great value in further investigation of OA diagnosis as well as pathogenesis.


Assuntos
Fibroblastos/metabolismo , Fibronectinas/genética , Osteoartrite/genética , Humanos , Osteoartrite/metabolismo , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Análise de Célula Única , Membrana Sinovial/citologia
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(7): 942-948, 2020 Jul 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895159

RESUMO

OBJECTIVE: To investigate the effect of periostin on hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts and the molecular mechanism involved. METHODS: In vitro cultured human periodontal ligament fibroblasts were placed in an anaerobic gas-producing bag for hypoxia treatment for 48 h followed by treatment with periostin at low (25 ng/mL), moderate (50 ng/mL) or high (100 ng/mL) doses. MTT assay was used to measure the cell viability, and the cell apoptosis rate was determined using flow cytometry. The contents of IL-1ß, IL-6 and TNF-α in the cells were determined with ELISA, and ROS levels were measured using a fluorescent plate reader. The intracellular SOD activity was detected using ELISA. The expressions of HIF-1α, P21, cyclin D1, Bax, cleaved caspase-3, Bcl-2, P38MAPK and p-p38 MAPK proteins in the cells were detected with Western blotting. RESULTS: Hypoxia treatment significantly reduced the cell viability (P < 0.05), increased P21, Bax, and cleaved caspase-3 protein levels (P < 0.05), promoted cell apoptosis (P < 0.05), and decreased cyclin D1 and Bcl-2 protein levels (P < 0.05) in the cells. Compared with the hypoxic group, the cells treated with periostin at different concentrations showed significantly increased cell viability (P < 0.05) with significantly lowered apoptotic rates (P < 0.05) and decreased expression levels of Bax and cleaved caspase-3 (P < 0.05) but significantly increased expression levels of cyclin D1 and Bcl-2 (P < 0.05). Hypoxic exposure of the cells resulted in significantly increased expression levels of HIF-1α and p-p38 MAPK (P < 0.05) and increased levels of IL-1ß, IL-6, TNF-α and ROS (P < 0.05) but decreased SOD activity (P < 0.05). Periostin treatment at different concentrations significantly lowered the expression levels of HIF-1α and p-p38 MAPK (P < 0.05) and the levels of IL-1ß, IL-6, TNF-α and ROS (P < 0.05) and significantly increased SOD activity in the hypoxic cells (P < 0.05). CONCLUSIONS: Periostin promotes the proliferation, inhibits apoptosis, enhances cellular antioxidant capacity, and reduces inflammatory damage in human periodontal ligament fibroblasts exposed to hypoxia possibly by inhibiting the activation of the p38 MAPK signaling pathway.


Assuntos
Apoptose , Ligamento Periodontal , Fibroblastos , Humanos , Hipóxia , Estresse Oxidativo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(8): 1119-1126, 2020 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895177

RESUMO

OBJECTIVE: To explore the effect of Danggui Niantong decoction (DGNTD) on cell apoptosis and TNF receptor super family 6 (Fas)/caspase-8 pathway in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). METHODS: FLS isolated from the synovial tissue of RA patients were cultured and identified using immunofluorescence staining. The cells were treated with 10% blank serum (blank control group), 10% sera containing low, moderate or high doses of DGNTD, or 20 µmol/mL KR-33493 (a Fas inhibitor) combined with 10% serum containing high-dose DGNTD. MTT assay was used to detect the proliferation of the cells after the treatments. Apoptosis of the cells was detected at 48 h in each group using Hoechst 33342 staining and flow cytometry with annexin V-FITC/PI staining. The mRNA and protein expressions of Fas, FADD, caspase-8 and caspase-3 in the cells at 48 h were detected using qPCR and Western blotting. RESULTS: Immunofluorescence staining identified the cultured cells as FLS. Treatment with DGNTD-containing sera significantly inhibited the proliferation of FLS, and the inhibitory effects were enhanced as the dose and intervention time increased (P < 0.05). Hoechst 33342 staining and flow cytometry showed that the sera containing different doses of DGNTD significantly promoted apoptosis of FLS (P < 0.05). The expression levels of Fas, FADD, caspase-8, and caspase-3 at both mRNA and protein levels were significantly increased in the cells after treatment with different doses of DGNTD-containing sera (P < 0.05). The application of KR-33493 obviously reversed the effects of DGNTD on the FLS (P < 0.05). CONCLUSIONS: DGNTD can induce apoptosis of the FLS by activating Fas/caspase-8 signaling pathway.


Assuntos
Artrite Reumatoide , Sinoviócitos , Apoptose , Caspase 8 , Proliferação de Células , Células Cultivadas , Fibroblastos , Membrana Sinovial
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(5): 640-646, 2020 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-32897197

RESUMO

OBJECTIVE: To clarify the molecular signaling mechanism underlying the inhibitory effect of metformin on transforming growth factor-ß1 (TGF-ß1)-stimulated collagen I production in rat biliary fibroblasts. METHODS: Primary biliary fibroblasts were isolated under aseptic condition from 50 Sprague-Dawley rats (half male and half female), and microscopic observation identified no obvious difference in the morphology or viability of the cells from rats with different sexes or body weight. The cells were treated with TGF-ß1 (10 ng/mL), Smad3 siRNA+TGF-ß1, CTGF siRNA+TGF-ß1, metformin (10 mmol/L)+ TGF-ß1, or Compound C (10 µmol/L)+metformin+TGF-ß1. The expressions of CTGF and collagen I in the treated cells were determined using ELISA kit or Western blotting; the phorsphorylated and total Smad3 and AMPK expressions were detected using immunoblotting. RESULTS: TGF-ß1 time- and dose-dependently induced collagen I production in rat biliary fibroblasts. The activated AMPK by metformin dose-dependently inhibited TGF-ß1-induced collagen I production. Pre-incubation of cells with the AMPK inhibitor Compound C restored the inhibitory effect of AMPK on TGF-ß1-induced collagen I secretion (P < 0.01). Activation of AMPK by metformin significantly reduced TGF-ß1-induced collagen I production by suppressing Smad3-driven CTGF expression (P < 0.01), and the application of Compound C reversed such changes in the fibroblasts (P < 0.01). CONCLUSIONS: Metformin inhibits TGF-ß1-stimulated collagen I production by activating AMPK and inhibiting Smad3- driven CTGF expression in rat biliary fibroblasts.


Assuntos
Fibroblastos , Animais , Células Cultivadas , Colágeno , Feminino , Masculino , Metformina , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1
9.
Nat Commun ; 11(1): 4589, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917887

RESUMO

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


Assuntos
Acro-Osteólise/metabolismo , Predisposição Genética para Doença/genética , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Acro-Osteólise/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proliferação de Células , Criança , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Homozigoto , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/patologia , Masculino , Mandíbula/diagnóstico por imagem , Proteínas de Membrana/genética , Metaloendopeptidases , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Pele , Sequenciamento Completo do Genoma
10.
Zhonghua Shao Shang Za Zhi ; 36(8): 762-766, 2020 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-32829623

RESUMO

The ubiquitin-proteasome pathway is a protein degradation pathway that relies on ATP and non-lysosomal pathway in eukaryotic cells. It participates in the regulation of multiple biological processes, including cell cycle, apoptosis, DNA repair, antigen presentation, receptor endocytosis, intracellular signal transduction. Recent studies have found that the ubiquitin-proteasome pathway can participate in the formation and development of hypertrophic scar by regulating transforming growth factor beta/Smad signal transduction and proliferation, differentiation, and apoptosis of fibroblasts. This article summarizes the effects of ubiquitin ligase enzyme, proteasome, and deubiquitinating enzyme in ubiquitin-proteasome pathway in hypertrophic scar, in order to provide new idea for the prevention and treatment of hypertrophic scar.


Assuntos
Cicatriz Hipertrófica , Fibroblastos , Humanos , Complexo de Endopeptidases do Proteassoma , Fator de Crescimento Transformador beta , Ubiquitina
11.
Phys Rev Lett ; 125(6): 068101, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845697

RESUMO

Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin, reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain time-dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation curves using an atomic force microscope to access the dependence of cortex fluidity on prestress. We introduce a viscoelastic model that treats the cell as a composite shell and assumes that relaxation of the cortex follows a power law giving access to cortical prestress, area-compressibility modulus, and the power law exponent (fluidity). Cortex fluidity is modulated by interfering with myosin activity. We find that the power law exponent of the cell cortex decreases with increasing intrinsic prestress and area-compressibility modulus, in accordance with previous finding for isolated actin networks subject to external stress. Extrapolation to zero tension returns the theoretically predicted power law exponent for transiently cross-linked polymer networks. In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters independent of indenter geometry and compression velocity.


Assuntos
Actinas/química , Fibroblastos/química , Fibroblastos/citologia , Modelos Biológicos , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Força Compressiva , Cães , Elasticidade , Microscopia de Força Atômica , Miosinas/química , Miosinas/fisiologia , Reologia/métodos , Viscosidade
12.
Nat Commun ; 11(1): 4061, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792541

RESUMO

Adhesions are fibrotic scars that form between abdominal organs following surgery or infection, and may cause bowel obstruction, chronic pain, or infertility. Our understanding of adhesion biology is limited, which explains the paucity of anti-adhesion treatments. Here we present a systematic analysis of mouse and human adhesion tissues. First, we show that adhesions derive primarily from the visceral peritoneum, consistent with our clinical experience that adhesions form primarily following laparotomy rather than laparoscopy. Second, adhesions are formed by poly-clonal proliferating tissue-resident fibroblasts. Third, using single cell RNA-sequencing, we identify heterogeneity among adhesion fibroblasts, which is more pronounced at early timepoints. Fourth, JUN promotes adhesion formation and results in upregulation of PDGFRA expression. With JUN suppression, adhesion formation is diminished. Our findings support JUN as a therapeutic target to prevent adhesions. An anti-JUN therapy that could be applied intra-operatively to prevent adhesion formation could dramatically improve the lives of surgical patients.


Assuntos
Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Animais , Benzofenonas/farmacologia , Sistemas CRISPR-Cas , Células Cultivadas , Doxiciclina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Humanos , Imuno-Histoquímica , Isoxazóis/farmacologia , Lipossomos/metabolismo , Camundongos , Células NIH 3T3 , Parabiose , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
13.
Nat Commun ; 11(1): 4102, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796823

RESUMO

Emerging evidence suggests that intestinal stromal cells (IntSCs) play essential roles in maintaining intestinal homeostasis. However, the extent of heterogeneity within the villi stromal compartment and how IntSCs regulate the structure and function of specialized intestinal lymphatic capillary called lacteal remain elusive. Here we show that selective hyperactivation or depletion of YAP/TAZ in PDGFRß+ IntSCs leads to lacteal sprouting or regression with junctional disintegration and impaired dietary fat uptake. Indeed, mechanical or osmotic stress regulates IntSC secretion of VEGF-C mediated by YAP/TAZ. Single-cell RNA sequencing delineated novel subtypes of villi fibroblasts that upregulate Vegfc upon YAP/TAZ activation. These populations of fibroblasts were distributed in proximity to lacteal, suggesting that they constitute a peri-lacteal microenvironment. Our findings demonstrate the heterogeneity of IntSCs and reveal that distinct subsets of villi fibroblasts regulate lacteal integrity through YAP/TAZ-induced VEGF-C secretion, providing new insights into the dynamic regulatory mechanisms behind lymphangiogenesis and lymphatic remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Fatores de Transcrição/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Fibroblastos/ultraestrutura , Citometria de Fluxo , Imunofluorescência , Hibridização in Situ Fluorescente , Mucosa Intestinal/ultraestrutura , Linfangiogênese/genética , Linfangiogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fator C de Crescimento do Endotélio Vascular/genética
14.
Nat Commun ; 11(1): 4038, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788587

RESUMO

Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.


Assuntos
Aspartato-tRNA Ligase/deficiência , Aspartato-tRNA Ligase/genética , Córtex Cerebral/patologia , Microcefalia/genética , Células-Tronco Neurais/patologia , Organoides/patologia , Aminoacil-RNA de Transferência/genética , Adolescente , Adulto , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Criança , Família , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Mutação/genética , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Linhagem , Adulto Jovem
15.
Braz J Med Biol Res ; 53(9): e9880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756816

RESUMO

Rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) are inflammatory diseases with different bone remodeling patterns. Fibroblast-like synoviocytes (FLS) are cells involved in the transition from an acute and reparable phase to a chronic and persistent stage in these diseases. The distinction of joint phenotypes involves inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-17, and IL-22 directly or through key signaling pathways such as Wnt. To evaluate the role of FLS as the source of Wnt antagonists (sFRP3/FRZB and Dkk1) in the synovia, levels of TNF- α, IL-17, IL-22, Dkk1, and sFRP3 were measured by ELISA directly in the synovial fluid of patients with RA, PsA, or AS. Dkk1 and sFRP3 were also measured in the FLS culture supernatants after different inflammatory stimulus. sFRP3 and Dkk1 are constitutively expressed by FLS. IL-22 and sFRP3 were positively correlated (r=0.76; P<0.01) in synovial fluid. The stimulation of FLS with IL-22, but not TNF-alpha and IL-17, increased the production of sFRP3. No stimulus altered the basal expression of Dkk1. These results showed, for the first time, the ability of IL-22 to increase the expression of sFRP3/FRZB by human FLS in both in vitro and ex vivo models. This finding linked IL-22 to local inhibition of Wnt signaling and possibly to blockade of osteogenesis. Furthermore, FLS presented as a source of this inhibitor in synovial fluid, assigning to this cell a bone injury mechanism.


Assuntos
Interleucinas/metabolismo , Sinoviócitos , Adulto , Células Cultivadas , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Membrana Sinovial , Fator de Necrose Tumoral alfa
16.
Nat Commun ; 11(1): 3953, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769974

RESUMO

Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes.


Assuntos
Diferenciação Celular , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos de Músculo Liso/fisiologia , Pericitos/fisiologia , Animais , Separação Celular , Vasos Coronários/citologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Citometria de Fluxo , Intestinos/irrigação sanguínea , Intestinos/citologia , Masculino , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Músculo Liso Vascular/citologia , Miocárdio/citologia , Miócitos de Músculo Liso/citologia , Pericitos/citologia , RNA-Seq , Análise de Célula Única , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/citologia
17.
Nat Commun ; 11(1): 3945, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770028

RESUMO

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Complexo de Golgi/patologia , Síndrome de Li-Fraumeni/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Síndrome de Li-Fraumeni/patologia , Camundongos , Microtúbulos/metabolismo , Microtúbulos/patologia , Mutação , Cultura Primária de Células , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Transdução de Sinais/genética , Pele/citologia , Pele/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 15(8): e0237015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760098

RESUMO

Graves' orbitopathy (GO) is characterised in early stages by orbital fibroblast inflammation, which can be aggravated by oxidative stress and often leads to fibrosis. Protein tyrosine protein 1B (PTP1B) is a regulator of inflammation and a therapeutic target in diabetes. We investigated the role of PTP1B in the GO mechanism using orbital fibroblasts from GO and healthy non-GO subjects. After 24 hours of transfection with PTPN1 siRNA, the fibroblasts were exposed to interleukin (IL)-1ß, cigarette smoke extract (CSE), H2O2, and transforming growth factor (TGF)-ß stimulations. Inflammatory cytokines and fibrosis-related proteins were analysed using western blotting and/or enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) release was detected using an oxidant-sensitive fluorescent probe. IL-1ß, tumor necrosis factor (TNF)-α, bovine thyroid stimulating hormone (bTSH), high-affinity human stimulatory monoclonal antibody of TSH receptor (M22), and insulin-like growth factor-1 (IGF-1) significantly increased PTP1B protein production in GO and non-GO fibroblasts. PTPN1 silencing significantly blocked IL-1ß-induced inflammatory cytokine production, CSE- and H2O2-induced ROS synthesis, and TGF-ß-induced expression of collagen Iα, α-smooth muscle actin (SMA), and fibronectin in GO fibroblasts. Silencing PTPN1 also decreased phosphorylation levels of Akt, p38, and c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER)-stress response proteins in GO cells. PTP1B may be a potential therapeutic target of anti-inflammatory, anti-oxidant and anti-fibrotic treatment of GO.


Assuntos
Oftalmopatia de Graves/enzimologia , Oftalmopatia de Graves/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Adulto , Animais , Apoptose , Bovinos , Sobrevivência Celular , Citocinas/biossíntese , Estresse do Retículo Endoplasmático , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Inativação Gênica , Oftalmopatia de Graves/patologia , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Nat Commun ; 11(1): 4319, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859923

RESUMO

Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.


Assuntos
Trifosfato de Adenosina/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Trifosfato de Adenosina/genética , Sistemas CRISPR-Cas , Linhagem Celular , Metabolismo Energético , Feminino , Fibroblastos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glicólise/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Células K562 , Metabolômica , Mitocôndrias/metabolismo , Via de Pentose Fosfato , Mutação Puntual
20.
Nat Commun ; 11(1): 4193, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826921

RESUMO

Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration propertiesis required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.


Assuntos
Reação de Cicloadição/métodos , Hidrogéis/química , Luz , Processos Fotoquímicos , Animais , Catálise , Sobrevivência Celular , Fibroblastos , Concentração de Íons de Hidrogênio , Camundongos , Fótons , Polímeros/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA