RESUMO
Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research. Hence, this study examined DNA-coated Fe3O4NPs (DNA-Fe3O4NPs) as potential transfection vectors for human foreskin fibroblasts (HFFs) and A549 (lung cancer) cell lines, using banana (Musa sp.) as a low-cost, and bioethically unproblematic DNA source. Following coprecipitation synthesis, DNA-Fe3O4NP characterization revealed a ζ-potential of 40.65 ± 4.10 mV, indicating good colloidal stability in aqueous media, as well as a superparamagnetic regime, evidenced by the absence of hysteresis in their magnetization curves. Successful DNA coating on the NPs was confirmed through infrared spectra and surface analysis results, while magnetite content was verified via characteristic X-ray diffraction peaks. Transmission electron microscopy (TEM) determined the average size of the DNA-Fe3O4NPs to be 14.69 ± 5.22 nm. TEM micrographs also showed no morphological changes in the DNA-Fe3O4NPs over a 30-day period. Confocal microscopy of HFF and A549 lung cancer cell lines incubated with fluoresceinamine-labeled DNA-Fe3O4NPs demonstrated their internalization into both the cytoplasm and nucleus. Neither uncoated Fe3O4NPs nor DNA-Fe3O4NPs showed cytotoxicity to A549 lung cancer cells at 1-50 µg/mL and 25-100 µg/mL, respectively, after 24 h. HFFs also maintained viability at 1-10 µg/mL for both NP types. In conclusion, DNA-Fe3O4NPs were successfully internalized into cells and exhibited no cytotoxicity in both healthy and cancerous cells across a range of concentrations. These NPs, capable of binding to various types of DNA and RNA, hold promise for applications in gene therapy.
Assuntos
DNA , Nanopartículas de Magnetita , Musa , Humanos , Nanopartículas de Magnetita/química , Musa/química , Células A549 , Frutas/química , Fibroblastos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transfecção , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular TumoralRESUMO
Purpose: Surgery is the definitive treatment for pterygium; therefore, reliable animal models are required for translational research. The goal of this investigation was to establish a standardized preclinical model of pterygium-like lesion. Methods: A subconjunctival injection of fibroblasts (NIH3T3) and extracellular matrix was administered to 22 New Zealand rabbits. Clinical evaluation was assessed at different points, the severity of the lesion was scored according to four grades and correlated with the area of hyperemia and the histopathological findings on day 23. Results: Thirteen of 22 eyes (60%) developed pterygium-like lesions after 7 days and progressed through different grades. Initially, grade 3, characterized by an elevated and fleshiness conjunctiva with tortuous hyperemia, was evident on day 7. By day 15, lesion decreased to grade 2, with less elevation and hyperemia. Subsequent improvement was noted, with grade 1 on day 18. Finally, day 23 was marked by a whiteâyellow lesion, classified as grade 4. The area of hyperemia increased from grade 2 to grade 3 (P < 0.05) and decreased from grade 3 to grade 4 (P ≤ 0.05). Histopathological analysis revealed a tendency toward increasing inflammation at grades 2, 3, and 4. There was a correlation between clinical features and the degree of inflammation. Conclusions: Subconjunctival injection of NIH3T3 and extracellular matrix induces a pterygium-like lesion that progresses across four grades, beginning with an acute inflammatory process that evolve a chronic form. This study provides a replicable model for simulating pterygium. Translational Relevance: The development of a standardized preclinical model of pterygium to evaluate new pharmacological or surgical treatments.
Assuntos
Túnica Conjuntiva , Modelos Animais de Doenças , Pterígio , Animais , Coelhos , Pterígio/patologia , Pterígio/cirurgia , Túnica Conjuntiva/patologia , Camundongos , Hiperemia/patologia , Matriz Extracelular/patologia , Células NIH 3T3 , Masculino , Fibroblastos/patologia , FemininoRESUMO
The present study aimed to evaluate the anti-staphylococcal, antibiofilm, cytotoxicity and trypanocidal activity, mechanisms of parasite death and immunomodulatory effect of CrataBL encapsulated into liposomes (CrataBL-Lipo). CrataBL-Lipo were prepared by the freeze-thaw technique and characterized. Anti-staphylococcal and antibiofilm activities of CrataBL and CrataBL-Lipo were evaluated against standard and clinical strains of Staphylococcus aureus susceptible and resistant. Thus, broth microdilution method was performed to determine the Minimum Inhibitory Concentration (MIC). Antibiofilm activity at subinhibitory concentrations was evaluated using the crystal violet staining method. Cytotoxicity of CrataBL-Lipo was verified in L929 fibroblasts and J774A.1 macrophages by determining the inhibitory concentration necessary to kill 50 % of cells (IC50). Trypanocidal activities of CrataBL-Lipo was evaluated in Trypanosoma cruzi and the efficacy was expressed as the concentration necessary to kill 50 % of parasites (EC50). The mechanisms of parasite death and immunomodulatory effect of CrataBL-Lipo were evaluated using flow cytometry analysis. CrataBL-Lipo presented Ø of 101.9 ± 1.3 nm (PDI = 0.245), ζ of +33.8 ± 1.3 mV and %EE = 80 ± 0.84 %. CrataBL-Lipo presented anti-staphylococcal activity (MIC = 0.56 mg/mL to 0.72 mg/mL). CrataBL-Lipo inhibited 45.4 %-75.6 % of biofilm formation. No cytotoxicity of CrataBL-Lipo was found (IC50 > 100 mg/L). CrataBL-Lipo presented EC50 of 1.1 mg/L, presenting autophagy, apoptosis and necrosis as death profile. In addition, CrataBL-Lipo reduced the production of IL-10 and TNF-α levels, causing an immunomodulatory effect. CrataBL-Lipo has a therapeutic potential for the treatment of staphylococcal infections and Chagas disease exhibiting a high degree of selectivity for the microorganism, and immunomodulatory properties.
Assuntos
Antibacterianos , Biofilmes , Lipossomos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Tripanossomicidas , Trypanosoma cruzi , Biofilmes/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular , Antibacterianos/farmacologia , Tripanossomicidas/farmacologia , Macrófagos/efeitos dos fármacos , Lectinas/farmacologia , Fibroblastos/efeitos dos fármacos , Concentração Inibidora 50 , Sobrevivência Celular/efeitos dos fármacosRESUMO
OBJECTIVE: For treatment of medication-related osteonecrosis of the jaw, one proposed approach is the use of a topical agent to block entry of these medications in oral soft tissues. We tested the ability of phosphonoformic acid (PFA), an inhibitor of bisphosphonate entry through certain sodium-dependent phosphate contransporters (SLC20A1, 20A2, 34A1-3) as well as Dynasore, a macropinocytosis inhibitor, for their abilities to prevent zoledronate-induced (ZOL) death in human gingival fibroblasts (HGFs). METHODOLOGY: MTT assay dose-response curves were performed to determine non-cytotoxic levels of both PFA and Dynasore. In the presence of 50 µM ZOL, optimized PFA and Dynasore doses were tested for their ability to restore HGF viability. To determine SLC expression in HGFs, total HGF RNA was subjected to quantitative real-time RT-PCR. Confocal fluorescence microscopy was employed to see if Dynasore inhibited macropinocytotic HGF entry of AF647-ZOL. Endosomal acidification in the presence of Dynasore was measured by live cell imaging utilizing LysoSensor Green DND-189. As a further test of Dynasore's ability to interfere with ZOL-containing endosomal maturation, perinuclear localization of mature endosomes containing AF647-ZOL or TRITC-dextran as a control were assessed via confocal fluorescence microscopy with CellProfiler™ software analysis of the resulting photomicrographs. RESULTS: 0.5 mM PFA did not rescue HGFs from ZOL-induced viability loss at 72 hours while 10 and 30 µM geranylgeraniol did partially rescue. HGFs did not express the SLC transporters as compared to the expression in positive control tissues. 10 µM Dynasore completely prevented ZOL-induced viability loss. In the presence of Dynasore, AF647-ZOL and FITC-dextran co-localized in endosomes. Endosomal acidification was inhibited by Dynasore and perinuclear localization of both TRITC-dextran- and AF647-ZOL-containing endosomes was inhibited by 30 µM Dynasore. CONCLUSION: Dynasore prevents ZOL-induced viability loss in HGFs by partially interfering with macropinocytosis and by inhibiting the endosomal maturation pathway thought to be needed for ZOL delivery to the cytoplasm.
Assuntos
Sobrevivência Celular , Difosfonatos , Endossomos , Fibroblastos , Gengiva , Hidrazonas , Imidazóis , Ácido Zoledrônico , Ácido Zoledrônico/farmacologia , Humanos , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Gengiva/citologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Hidrazonas/farmacologia , Células Cultivadas , Fatores de Tempo , Reação em Cadeia da Polimerase em Tempo Real , Conservadores da Densidade Óssea/farmacologia , Reprodutibilidade dos Testes , Microscopia Confocal , Relação Dose-Resposta a Droga , Pinocitose/efeitos dos fármacosRESUMO
OBJECTIVES: Lithium disilicate (LS) ceramic emerges as a compelling option for customized implant abutments. However, ensuring its safety and reliability requires clarification on key aspects, notably its impact on inflammation and potential for cell adhesion. This study delves into these considerations, examining the influence of LS ceramic on cytokine release and the transcriptional profile of human gingival fibroblasts (hGFs) in direct contact with various LS surfaces. METHODS: hGFs were cultured on LS disks featuring three distinct surfaces (unpolished, polished, and polished glaze), while titanium disks served as reference material and cells cultured directly on plates as controls. The surface of the disks was analyzed using a scanning electron microscope. The cell metabolism was analyzed by MTT test, cytokine release by MAGPIX and the expression of genes related to cell adhesion was evaluated by qPCR. RESULTS: The disks exhibited similar topography with smooth surfaces, except for the unpolished LS disks, which had an irregular surface. Contact with LS surfaces did not substantially reduce cell metabolism. Moreover, it generally decreased cytokine release compared to controls, particularly pro-inflammatory mediators like IL-1ß, IL-6, and TNF-α. Significantly increased expression of genes related to cell adhesion to LS was observed, comparable to titanium, the gold standard material for implant abutments. SIGNIFICANCE: This study unveils that LS ceramic not only fails to trigger pro-inflammatory cytokine release, but also significantly enhances gene expression associated with cell adhesion. These mechanisms are closely linked to gene pathways such as PTK2, SRC, MAPK1, and transcription factors ELK-1 and MYC. In summary, the findings underscore LS ceramic's potential as a biocompatible material for implant abutments, shedding light on its favorable inflammatory response and enhanced cell adhesion properties.
Assuntos
Adesão Celular , Cerâmica , Citocinas , Porcelana Dentária , Fibroblastos , Gengiva , Propriedades de Superfície , Humanos , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Porcelana Dentária/química , Cerâmica/química , Células Cultivadas , Citocinas/metabolismo , Microscopia Eletrônica de Varredura , Titânio/química , Inflamação , Teste de MateriaisRESUMO
Diabetes mellitus is associated with chronic wound-healing problems that significantly impact patients' quality of life and substantially increase expenditure on healthcare. Therefore, the identification of compounds that can aid healing is justified. Anredera cordifolia (Ten.) has been used in folk medicine for curative purposes; however, the causal mechanisms underlying its healing effects remain to be elucidated. In this study, the effect of the ethanolic extract of A. cordifolia was evaluated in an in vitro healing model using fibroblasts cultivated under normoglycemic and hyperglycemic environments. The extract was predominantly composed of phytol and exhibited genoprotective activity. Fibroblast migration attenuated the adverse effects of hyperglycemia, favoring cell proliferation. Collagen levels were significantly increased in ruptured fibroblasts under both standard and hyperglycemic environments. The phytogenomic effect of the extract on three genes related to extracellular matrix formation, maintenance, and degradation showed that A. cordifolia increased the expression of genes related to matrix synthesis and maintenance in both normoglycemic and hyperglycemic individuals. Furthermore, it reduced the expression of genes related to matrix degradation. Overall, this is the first study to demonstrate the effectiveness of A. cordifolia in wound healing, elucidating possible causal mechanisms that appear to be based on the genoprotective effect of this plant on the migratory and proliferative phases of the wound healing process; these effects are probably related to phytol, its main constituent.
Assuntos
Movimento Celular , Proliferação de Células , Fibroblastos , Hiperglicemia , Extratos Vegetais , Cicatrização , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Cicatrização/efeitos dos fármacos , Humanos , Hiperglicemia/tratamento farmacológico , Etanol/química , Diabetes Mellitus/tratamento farmacológicoRESUMO
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. The current antichagasic drugs nifurtimox and benznidazole have inconveniences of toxicity; therefore, the search for alternative therapeutic strategies is necessary. The present study reports the synthesis, drug-likeness predictions, and in vitro anti-trypanosome activity of a series of 14 quinazoline 2,4,6-triamine derivatives. All compounds were tested against T. cruzi (epimastigotes and trypomastigotes) and in HFF1 human foreskin fibroblasts. The bioassays showed that compounds 2-4 containing nitrobenzoyl substituents at 6-position of the quinazoline 2,4,6-triamine nucleus were the most potent on its antiprotozoal activity. The effect was observed at 24 h and it was preserved for at least 5 days. Also, compounds 2-4 were not toxic to the human control cells, showing high selectivity index. The quinazoline nitro derivatives have potential use as antichagasic agents.
Assuntos
Quinazolinas , Tripanossomicidas , Trypanosoma cruzi , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Humanos , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Relação Estrutura-Atividade , Fibroblastos/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Estrutura Molecular , Linhagem CelularRESUMO
The imbalance in oxidant production and chronic inflammation are the main mechanisms that lead to the detrimental effects of diabetes on skin wound healing. Thus, administration of antioxidants could improve diabetic wound healing. This study aimed to understand the effects of extra virgin olive oil (EVOO) or hydroxytyrosol (HT) in skin wound healing under diabetic conditions. Skin wounds in streptozotocin-induced diabetic mice were topically treated with HT. Some diabetic animals were fed with a diet rich in EVOO. Wounds were harvested 7 days later. In in vitro assays, fibroblasts and macrophages were treated with high levels of glucose and HT. The EVOO or HT promoted wound closure and collagen deposition in diabetic mouse wounds. The EVOO or HT reduced the number of infiltrated neutrophils, tumour necrosis factor-α, lipid peroxidation, and nuclear factor erythroid 2-related factor 2 in diabetic mouse wounds. The EVOO or HT also increased the number of macrophages with anti-inflammatory phenotype and interleukin-10 in diabetic mouse wounds. In the in vitro assays, HT promoted the fibroblast migration, collagen gel contraction, and switched macrophages to an anti-inflammatory phenotype under high glucose conditions. In conclusion, the diet supplementation with EVOO or topical application of HT promotes skin wound healing under diabetic conditions and can be a possible therapeutic tool for the treatment of those lesions.
Assuntos
Diabetes Mellitus Experimental , Azeite de Oliva , Álcool Feniletílico , Cicatrização , Animais , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Cicatrização/efeitos dos fármacos , Azeite de Oliva/farmacologia , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Antioxidantes/farmacologia , Pele/lesões , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Polifenóis/farmacologiaRESUMO
In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed. In addition, assessment to the biocompatibility, through fibroblasts/keratinocytes and in vitro wound healing essays were performed. The obtained results show that the new 2,3-DHB loaded chitosan/collagen membrane presented high porosity and swelling capacity as well as maximum strength, hydrophilicity, and antioxidant activity higher in relation to the control. The tests of antileishmanial activity and the AFM images demonstrate great efficacy of inhibition growth of the parasite, superior to those from the standard therapeutic agent that is currently used: Amphotericin B. The new membranes are biocompatible and stimulated the proliferation of keratinocytes. SEM images clearly demonstrate that fibroblasts were able to adhere, maintained their characteristic morphology. The healing test evidenced that the membranes have adequate environment for promoting cell proliferation and growth. As the conventional treatments often use drugs with high toxicity, the as-developed new membranes proved to be excellent candidate to treat cutaneous Leishmaniasis and can be clearly indicated for further advanced studies in vivo.
Assuntos
Benzofuranos , Quitosana , Colágeno , Leishmaniose Cutânea , Quitosana/química , Quitosana/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Benzofuranos/farmacologia , Benzofuranos/química , Colágeno/química , Humanos , Membranas Artificiais , Antiprotozoários/farmacologia , Antiprotozoários/química , Fibroblastos/efeitos dos fármacos , Porosidade , Animais , Cicatrização/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Queratinócitos/efeitos dos fármacosRESUMO
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.
Assuntos
Diferenciação Celular , Proliferação de Células , Fibroblastos , Miócitos de Músculo Liso , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos/metabolismo , Diferenciação Celular/genética , Miócitos de Músculo Liso/metabolismo , Proliferação de Células/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Células CultivadasRESUMO
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 µM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Assuntos
Apoptose , Autofagia , Fibroblastos , Glucosilceramidase , Mitocôndrias , Estresse Oxidativo , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Humanos , Fibroblastos/metabolismo , Autofagia/genética , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Pele/metabolismo , Pele/patologia , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , MutaçãoRESUMO
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 µm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Assuntos
Antibacterianos , Bandagens , Quitosana , Escherichia coli , Staphylococcus aureus , Alicerces Teciduais , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Camundongos , Fibroblastos/efeitos dos fármacos , Porosidade , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Reagentes de Ligações Cruzadas/química , HumanosRESUMO
The role of oxidative stress in health and homeostasis has generated interest in the scientific community due to its association with cardiovascular and neurodegenerative diseases, cancer, and other diseases. Therefore, extensive research seeks to identify new exogenous antioxidant compounds for supplementation. Polysaccharides are recognized for their antioxidant properties. However, polysaccharide chemical modifications are often necessary to enhance these properties. Therefore, dextran was conjugated with gallic acid (Dex-Gal) and later combined with fucoidan A (FucA) to formulate blends aimed at achieving superior antioxidant activity compared to individual polysaccharides. A factorial design was employed to combine FucA and Dex-Gal in different proportions, resulting in five blends (BLD1, BLD2, BLD3, BLD4, and BLD5). An analysis of surface graphs from in vitro antioxidant tests, including total antioxidant capacity (TAC), reducing power, and hydroxyl radical scavenging, guided the selection of BLD4 as the optimal formulation. Tests on 3T3 fibroblasts under various conditions of oxidative stress induced by hydrogen peroxide revealed that BLD4 provided enhanced protection compared to its isolated components. The BLD4 formulation, resulting from the combination of Dex-Gal and FucA, showed promise as an antioxidant strategy, outperforming its individual components and suggesting its potential as a supplement to mitigate oxidative stress in adverse health conditions.
Assuntos
Antioxidantes , Dextranos , Ácido Gálico , Estresse Oxidativo , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Ácido Gálico/farmacologia , Ácido Gálico/química , Dextranos/química , Dextranos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células 3T3 , Peróxido de Hidrogênio , Fibroblastos/efeitos dos fármacosRESUMO
BACKGROUND: Low-level Laser Therapy (LLLT) has demonstrated its potential in promoting fiber matrix maturation, collagen synthesis, and fibroblast proliferation, contributing to tissue regeneration. Our study aimed to investigate the impact of LLLT on collagen type I synthesis, cell proliferation, and viability in human ligament fibroblasts derived from the Anterior Cruciate Ligament (ACL). METHODS: Tissue samples were obtained from individuals undergoing arthroscopic ACL reconstruction surgery. Primary human fibroblasts were isolated, and immunohistochemical assays confirmed their characteristics. LLLT at 850 nm was administered in three groups: Low dose (1.0 J/cm²), High dose (5.0 J/cm²), and Control (0.0 J/cm²). Cell viability was calculated using a membrane integrity assay, proliferation was determined by automated counting, and collagen type I concentration in cell culture was measured using an immunoassay. RESULTS: Fibroblasts showed decreased viability after low and high doses of LLLT, increased proliferation at the low dose, and increased collagen synthesis at the high dose on day 10 for both sexes after treatment. CONCLUSION: Our study demonstrated that LLLT may improve the early ligament healing process by increasing cell proliferation at the low dose and enhancing collagen type I synthesis at the high dose in human ligament fibroblasts.
Assuntos
Ligamento Cruzado Anterior , Proliferação de Células , Sobrevivência Celular , Colágeno Tipo I , Fibroblastos , Terapia com Luz de Baixa Intensidade , Cicatrização , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Colágeno Tipo I/metabolismo , Proliferação de Células/efeitos da radiação , Feminino , Masculino , Sobrevivência Celular/efeitos da radiação , Cicatrização/efeitos da radiação , Ligamento Cruzado Anterior/efeitos da radiação , Ligamento Cruzado Anterior/cirurgia , Células Cultivadas , AdultoRESUMO
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Fibroblastos , Fibrose , Lisofosfolipídeos , Músculo Esquelético , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Proteínas de Sinalização YAP , Lisofosfolipídeos/metabolismo , Animais , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Camundongos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Via de Sinalização Hippo , Camundongos Endogâmicos mdx , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Adipogenia/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologiaRESUMO
In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.
Assuntos
Antivenenos , Bothrops , Sobrevivência Celular , Venenos de Crotalídeos , Fibroblastos , Animais , Venenos de Crotalídeos/toxicidade , Antivenenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Humanos , Técnicas de Cultura de Células , Serpentes PeçonhentasRESUMO
Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 µM for Clavanin-A and Clavanin-MO, and 6.25 µM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.
Assuntos
Movimento Celular , Proliferação de Células , Fibroblastos , Regeneração , Pele , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos Antimicrobianos/farmacologia , Células Cultivadas , Peptídeos/farmacologiaRESUMO
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or "inflammaging", which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1ß. The senescent-associated ß-galactosidase (SA-ß-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-ß in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-ß-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis.
Assuntos
Senescência Celular , Fibroblastos , Pulmão , Polifenóis , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Senescência Celular/efeitos dos fármacos , Polifenóis/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células A549 , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metformina/farmacologia , Ácidos Cafeicos/farmacologia , Indóis/farmacologia , Senoterapia/farmacologia , Linhagem Celular , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Sirolimo/farmacologia , Interleucina-8/metabolismo , Interleucina-8/genética , Fator de Crescimento Transformador beta/metabolismo , PiridonasRESUMO
Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-ß (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-ß inhibitor, IC50 114.3 µM), losmapimod (p38 inhibitor, IC50 17.6 µM) and SP600125 (c-Jun inhibitor, IC50 3.9 µM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.
Assuntos
Cardiomiopatia Chagásica , Fibrose , Camundongos Endogâmicos C57BL , Piridonas , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Miocárdio/patologia , Miocárdio/metabolismo , Colágeno/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Doença Crônica , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Masculino , AntracenosRESUMO
Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ± 1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 µg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ± 1.43) using 24 h, 5 °C, 100 µg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ± 1.05) and BC-FTL 1 (21.71 % ± 1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 µg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.