Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.199
Filtrar
1.
Nat Commun ; 11(1): 4589, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917887

RESUMO

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


Assuntos
Acro-Osteólise/metabolismo , Predisposição Genética para Doença/genética , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Acro-Osteólise/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proliferação de Células , Criança , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Homozigoto , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/patologia , Masculino , Mandíbula/diagnóstico por imagem , Proteínas de Membrana/genética , Metaloendopeptidases , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Pele , Sequenciamento Completo do Genoma
2.
Nat Commun ; 11(1): 4038, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788587

RESUMO

Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development.


Assuntos
Aspartato-tRNA Ligase/deficiência , Aspartato-tRNA Ligase/genética , Córtex Cerebral/patologia , Microcefalia/genética , Células-Tronco Neurais/patologia , Organoides/patologia , Aminoacil-RNA de Transferência/genética , Adolescente , Adulto , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Criança , Família , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Mutação/genética , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Linhagem , Adulto Jovem
3.
PLoS One ; 15(8): e0237015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760098

RESUMO

Graves' orbitopathy (GO) is characterised in early stages by orbital fibroblast inflammation, which can be aggravated by oxidative stress and often leads to fibrosis. Protein tyrosine protein 1B (PTP1B) is a regulator of inflammation and a therapeutic target in diabetes. We investigated the role of PTP1B in the GO mechanism using orbital fibroblasts from GO and healthy non-GO subjects. After 24 hours of transfection with PTPN1 siRNA, the fibroblasts were exposed to interleukin (IL)-1ß, cigarette smoke extract (CSE), H2O2, and transforming growth factor (TGF)-ß stimulations. Inflammatory cytokines and fibrosis-related proteins were analysed using western blotting and/or enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) release was detected using an oxidant-sensitive fluorescent probe. IL-1ß, tumor necrosis factor (TNF)-α, bovine thyroid stimulating hormone (bTSH), high-affinity human stimulatory monoclonal antibody of TSH receptor (M22), and insulin-like growth factor-1 (IGF-1) significantly increased PTP1B protein production in GO and non-GO fibroblasts. PTPN1 silencing significantly blocked IL-1ß-induced inflammatory cytokine production, CSE- and H2O2-induced ROS synthesis, and TGF-ß-induced expression of collagen Iα, α-smooth muscle actin (SMA), and fibronectin in GO fibroblasts. Silencing PTPN1 also decreased phosphorylation levels of Akt, p38, and c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER)-stress response proteins in GO cells. PTP1B may be a potential therapeutic target of anti-inflammatory, anti-oxidant and anti-fibrotic treatment of GO.


Assuntos
Oftalmopatia de Graves/enzimologia , Oftalmopatia de Graves/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Adulto , Animais , Apoptose , Bovinos , Sobrevivência Celular , Citocinas/biossíntese , Estresse do Retículo Endoplasmático , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Inativação Gênica , Oftalmopatia de Graves/patologia , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Ecotoxicol Environ Saf ; 204: 111070, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763567

RESUMO

Silver nanoparticles (AgNPs) are widely used as antimicrobial agents and resulted in their accumulation in environment. The purpose of this study was to investigate the detailed molecular mechanisms underlying AgNP-induced lung cellular senescence which has been proposed as a pathogenic driver of chronic lung disease. Herein, we demonstrate that exposure to AgNPs elevates multiple senescence biomarkers in lung cells, with cell cycle arrest in the G2/M phase, and potently activates genes of the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cell line MRC5. Fluorescence-based assay also reveals that apoptosis induced by AgNPs is associated with senescence. Furthermore, we show that AgNPs cause premature senescence through an increase in transcription factor nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX2) expression and over-production of prostaglandin E2 (PGE2) in lung cells. Inhibition of COX2 reduces AgNPs-induced senescence to a normal level. Moreover, AgNPs also induce upregulation of COX2 and accelerate lung cellular senescence in vivo and cause mild fibrosis in the lung tissue of mice. Taken together, our studies support a critical role of AgNPs in the induction of lung cellular senescence via the upregulation of the COX2/PGE2 intracrine pathway, and suggest the adverse effects to the human respiratory system.


Assuntos
Senescência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Prata/metabolismo
5.
PLoS Pathog ; 16(8): e1008781, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810179

RESUMO

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays.


Assuntos
Doença de Chagas/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ativação de Neutrófilo , Neutrófilos , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/patologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/patologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Anticancer Res ; 40(7): 3743-3749, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620613

RESUMO

BACKGROUND/AIM: The antiproliferative effects of cold atmospheric plasma (CAP) make it a promising application option in oncology. The aim of the present study was to examine whether short-term CAP treatment leads to an initial partial elimination of the treated cells or to long-term impairement and inhibition of cell growth. MATERIALS AND METHODS: Cells were treated with CAP and biostatistical modelling was used to estimate growth rates over the incubation time. Four cell lines (U2-OS and MNNG osteosarcoma cells, 3T3 fibroblasts, HaCaT keratinocytes) and three CAP sources (MiniJet-R, kINPen MED, Maxium) were used. RESULTS: The antiproliferative efficacy of CAP was due to a significant reduction in cell count during treatment and the long-lasting inhibition of growth rate in the remaining cells, detectable in all cell lines and after treatment using all three CAP devices. CONCLUSION: Induction of cell death and inhibition of cell growth are part of a general mechanism of biological CAP efficacy. However, data contradict the hypothesis that cancer cells respond more sensitively to CAP treatment compared to non-malignant cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Plasmócitos/patologia , Gases em Plasma/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Cinética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Plasmócitos/efeitos dos fármacos
7.
Dermatol Online J ; 26(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32609447

RESUMO

A widespread form of eruptive collagenomas in a 12-year-old man is presented for the impressive iconography, challenging differential diagnosis, and histopathological considerations associated with such rare connective tissue disorders. Syndromic forms should be carefully investigated for the different course and prognosis. Treatment is a major unsolved issue as aesthetic concerns are significant, especially in young adults.


Assuntos
Doenças do Tecido Conjuntivo/patologia , Derme/patologia , Nevo/patologia , Neoplasias Cutâneas/patologia , Dorso/patologia , Biópsia/métodos , Corantes , Fibroblastos/patologia , Humanos , Masculino , Adulto Jovem
8.
Nat Commun ; 11(1): 3715, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709844

RESUMO

Esophageal squamous cell carcinoma (ESCC) is prevalent in some geographical regions of the world. ESCC development presents a multistep pathogenic process from inflammation to invasive cancer; however, what is critical in these processes and how they evolve is largely unknown, obstructing early diagnosis and effective treatment. Here, we create a mouse model mimicking human ESCC development and construct a single-cell ESCC developmental atlas. We identify a set of key transitional signatures associated with oncogenic evolution of epithelial cells and depict the landmark dynamic tumorigenic trajectories. An early downregulation of CD8+ response against the initial tissue damage accompanied by the transition of immune response from type 1 to type 3 results in accumulation and activation of macrophages and neutrophils, which may create a chronic inflammatory environment that promotes carcinogen-transformed epithelial cell survival and proliferation. These findings shed light on how ESCC is initiated and developed.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T , Fatores de Transcrição , Microambiente Tumoral
9.
Nature ; 582(7811): 259-264, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499639

RESUMO

The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint1,2. It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity3-5; however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptor Notch3/metabolismo , Transdução de Sinais , Membrana Sinovial/patologia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Células Endoteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Receptor Notch3/antagonistas & inibidores , Receptor Notch3/deficiência , Receptor Notch3/genética , Antígenos Thy-1/metabolismo
10.
Int J Nanomedicine ; 15: 3363-3376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494135

RESUMO

Introduction: Myocardial infarction (MI) is the leading cause of congestive heart failure and mortality. Hypoxia is an important trigger in the cardiac remodeling of the myocardium in the development and progression of cardiac diseases. Objective: Thus, we aimed to investigate the effect of hypoxia-induced exosomes on cardiac fibroblasts (CFs) and its related mechanisms. Materials and Methods: In this study, we successfully isolated and identified the exosomes from hypoxic cardiomyocytes (CMs). Exosomes derived from hypoxic CMs promoted apoptosis and inhibited proliferation, migration, and invasion in CFs. RNA-Seq assay suggested that long noncoding RNA AK139128 (lncRNA AK139128) was found to overexpress in both hypoxic CMs and CMs-secreting exosomes. After coculturing with CFs, hypoxic exosomes increased the expression of AK139128 in recipient CFs. Moreover, exosomal AK139128 derived from hypoxic CMs stimulated CFs apoptosis and inhibited proliferation, migration, and invasion. Furthermore, the effect of exosomal AK139128 derived from hypoxic CMs could also exacerbate MI in the rat model. Conclusion: Taken together, hypoxia upregulated the level of AK139128 in CMs and exosomes and exosomal AK139128 derived from hypoxic CMs modulated cellular activities of CFs in vitro and in vivo. This study provides a new understanding of the mechanism underlying hypoxia-related cardiac diseases and insight into developing new therapeutic strategies.


Assuntos
Apoptose , Exossomos/metabolismo , Fibroblastos/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Hipóxia Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Endocitose , Exossomos/ultraestrutura , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley
11.
Nat Commun ; 11(1): 2795, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493933

RESUMO

The transcription factor JUN is highly expressed in pulmonary fibrosis. Its induction in mice drives lung fibrosis, which is abrogated by administration of anti-CD47. Here, we use high-dimensional mass cytometry to profile protein expression and secretome of cells from patients with pulmonary fibrosis. We show that JUN is activated in fibrotic fibroblasts that expressed increased CD47 and PD-L1. Using ATAC-seq and ChIP-seq, we found that activation of JUN rendered promoters and enhancers of CD47 and PD-L1 accessible. We further detect increased IL-6 that amplified JUN-mediated CD47 enhancer activity and protein expression. Using an in vivo mouse model of fibrosis, we found two distinct mechanisms by which blocking IL-6, CD47 and PD-L1 reversed fibrosis, by increasing phagocytosis of profibrotic fibroblasts and by eliminating suppressive effects on adaptive immunity. Our results identify specific immune mechanisms that promote fibrosis and suggest a therapeutic approach that could be used alongside conventional anti-fibrotics for pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Imunidade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Animais , Antígeno B7-H1/metabolismo , Lavagem Broncoalveolar , Antígeno CD47/metabolismo , Fibroblastos/patologia , Humanos , Imunossupressão , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Fenótipo , Linfócitos T/imunologia
12.
Medicine (Baltimore) ; 99(24): e20253, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32541451

RESUMO

This study is to explore the molecular mechanism of benign bile duct hypertrophic scar formation.Differential proteins between the normal fibroblast (NFB) and scar fibroblast (SCFB) were screened by protein chip assay, and analyzed by pathway-enrichment analysis and function-enrichment analysis. The differential proteins were further tested by ELISA. SiRNA-Act B was transfected to SCFB to down-regulate the expression of Act B. NFB was incubated with rh-Act B. The cell apoptosis and cell cycle were determined by flow cytometry. The expression of Act B, Smad2/3, transforming growth factor-ß1 (TGF-ß1), endothelin-1 (ET-1), thrombospondin-1 (Tsp-1), and Oncostatin M (OSM) were detected by Western blot.A total of 37 differential proteins were identified in SCFBs by microarray (P < .05), including 27 up-regulated proteins and 10 down-regulated proteins (P < .05). Their function were associated with Activin signaling, synthesis and degradation of extracellular matrix, formation and activation of cytokine, inflammatory reaction, immunoreaction, tissue damage reaction, cell cycle, migration, apoptosis, and secretion, etc. ELISA results showed that the expression of Act B, TGF-ß1, ET-1 were higher in SCFBs, while the expression of Tsp-1 and OSM were lower in SCFBs (P < .05). After interfered by siRNA-Act B, the expression of Act B mRNA decreased (P < .05). The percentage of early apoptosis increased (P < .05). The expression of Act B, Smad2/3, TGF-ß1 were decreased and Tsp-1, OSM were increased (P < .05). After treatment with rh-Act B, the percentage of G0/G1 phase of NFBs was decreased and that of S phase was increased without significance (P > .05). The expression of Act B, Smad2/3, TGF-ß1 were increased (P < .05) and Tsp-1, OSM were decreased (P < .01).There are differentially expressed proteins between SCFBs and NFBs. Activin B signal plays an important role in the process of NFB transforming to SCFB, and TGF-ß1, Smad2/3, Tsp-1, and OSM are important participants.


Assuntos
Ativinas/metabolismo , Ductos Biliares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais/fisiologia , Adulto , Apoptose/fisiologia , Ciclo Celular/fisiologia , Cicatriz Hipertrófica , Endotelina-1/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oncostatina M/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad2/metabolismo , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
PLoS Pathog ; 16(6): e1008647, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559251

RESUMO

A trimeric glycoprotein complex on the surface of human cytomegalovirus (HCMV) binds to platelet-derived growth factor (PDGF) receptor α (PDGFRα) to mediate host cell recognition and fusion of the viral and cellular membranes. Soluble PDGFRα potently neutralizes HCMV in tissue culture, and its potential use as an antiviral therapeutic has the benefit that any escape mutants will likely be attenuated. However, PDGFRα binds multiple PDGF ligands in the human body as part of developmental programs in embryogenesis and continuing through adulthood. Any therapies with soluble receptor therefore come with serious efficacy and safety concerns, especially for the treatment of congenital HCMV. Soluble virus receptors that are orthogonal to human biology might resolve these concerns. This engineering problem is solved by deep mutational scanning on the D2-D3 domains of PDGFRα to identify variants that maintain interactions with the HCMV glycoprotein trimer in the presence of competing PDGF ligands. Competition by PDGFs is conformation-dependent, whereas HCMV trimer binding is independent of proper D2-D3 conformation, and many mutations at the receptor-PDGF interface are suitable for functionally separating trimer from PDGF interactions. Purified soluble PDGFRα carrying a targeted mutation succeeded in displaying wild type affinity for HCMV trimer with a simultaneous loss of PDGF binding, and neutralizes trimer-only and trimer/pentamer-expressing HCMV strains infecting fibroblasts or epithelial cells. Overall, this work makes important progress in the realization of soluble HCMV receptors for clinical application.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Estrutura Quaternária de Proteína , Receptores Virais , Linhagem Celular , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Mutação , Domínios Proteicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo
14.
Nat Commun ; 11(1): 2761, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487994

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite. Previous studies have shown that circulating microparticles during P. vivax acute attacks are indirectly associated with severity. Extracellular vesicles (EVs) are therefore major components of circulating plasma holding insights into pathological processes. Here, we demonstrate that plasma-derived EVs from Plasmodium vivax patients (PvEVs) are preferentially uptaken by human spleen fibroblasts (hSFs) as compared to the uptake of EVs from healthy individuals. Moreover, this uptake induces specific upregulation of ICAM-1 associated with the translocation of NF-kB to the nucleus. After this uptake, P. vivax-infected reticulocytes obtained from patients show specific adhesion properties to hSFs, reversed by inhibiting NF-kB translocation to the nucleus. Together, these data provide physiological EV-based insights into the mechanisms of human malaria pathology and support the existence of P. vivax-adherent parasite subpopulations in the microvasculature of the human spleen.


Assuntos
Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , NF-kappa B/metabolismo , Plasma , Plasmodium vivax/fisiologia , Reticulócitos/metabolismo , Baço/metabolismo , Animais , Adesão Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Vesículas Extracelulares/parasitologia , Fibroblastos/patologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Malária Vivax/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/parasitologia , Proteômica , Reticulócitos/parasitologia , Baço/patologia
15.
Nat Commun ; 11(1): 2749, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488012

RESUMO

The tumour microenvironment (TME) forms a major obstacle in effective cancer treatment and for clinical success of immunotherapy. Conventional co-cultures have shed light onto multiple aspects of cancer immunobiology, but they are limited by the lack of physiological complexity. We develop a human organotypic skin melanoma culture (OMC) that allows real-time study of host-malignant cell interactions within a multicellular tissue architecture. By co-culturing decellularized dermis with keratinocytes, fibroblasts and immune cells in the presence of melanoma cells, we generate a reconstructed TME that closely resembles tumour growth as observed in human lesions and supports cell survival and function. We demonstrate that the OMC is suitable and outperforms conventional 2D co-cultures for the study of TME-imprinting mechanisms. Within the OMC, we observe the tumour-driven conversion of cDC2s into CD14+ DCs, characterized by an immunosuppressive phenotype. The OMC provides a valuable approach to study how a TME affects the immune system.


Assuntos
Plasticidade Celular/fisiologia , Células Dendríticas/metabolismo , Melanoma/metabolismo , Microambiente Tumoral/fisiologia , Comunicação Celular , Sobrevivência Celular , Técnicas de Cocultura , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Melanoma/imunologia , Melanoma/patologia , Pele/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral/imunologia
16.
Am J Pathol ; 190(9): 1909-1920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533926

RESUMO

Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.


Assuntos
Adipócitos/patologia , Fibroblastos/patologia , Osteoartrite/patologia , Tecido Adiposo/patologia , Animais , Linhagem da Célula , Articulação do Joelho/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco
17.
Int J Legal Med ; 134(4): 1275-1284, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32500199

RESUMO

Autopsies of deceased with a confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can provide important insights into the novel disease and its course. Furthermore, autopsies are essential for the correct statistical recording of the coronavirus disease 2019 (COVID-19) deaths. In the northern German Federal State of Hamburg, all deaths of Hamburg citizens with ante- or postmortem PCR-confirmed SARS-CoV-2 infection have been autopsied since the outbreak of the pandemic in Germany. Our evaluation provides a systematic overview of the first 80 consecutive full autopsies. A proposal for the categorisation of deaths with SARS-CoV-2 infection is presented (category 1: definite COVID-19 death; category 2: probable COVID-19 death; category 3: possible COVID-19 death with an equal alternative cause of death; category 4: SARS-CoV-2 detection with cause of death not associated to COVID-19). In six cases, SARS-CoV-2 infection was diagnosed postmortem by a positive PCR test in a nasopharyngeal or lung tissue swab. In the other 74 cases, SARS-CoV-2 infection had already been known antemortem. The deceased were aged between 52 and 96 years (average 79.2 years, median 82.4 years). In the study cohort, 34 deceased were female (38%) and 46 male (62%). Overall, 38% of the deceased were overweight or obese. All deceased, except for two women, in whom no significant pre-existing conditions were found autoptically, had relevant comorbidities (in descending order of frequency): (1) diseases of the cardiovascular system, (2) lung diseases, (3) central nervous system diseases, (4) kidney diseases, and (5) diabetes mellitus. A total of 76 cases (95%) were classified as COVID-19 deaths, corresponding to categories 1-3. Four deaths (5%) were defined as non-COVID-19 deaths with virus-independent causes of death. In eight cases, pneumonia was combined with a fulminant pulmonary artery embolism. Peripheral pulmonary artery embolisms were found in nine other cases. Overall, deep vein thrombosis has been found in 40% of the cases. This study provides the largest overview of autopsies of SARS-CoV-2-infected patients presented so far.


Assuntos
Betacoronavirus , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Pulmão/patologia , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Autopsia , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Comorbidade , Infecção Hospitalar/mortalidade , Exsudatos e Transudatos , Feminino , Fibroblastos/patologia , Fibrose/patologia , Alemanha/epidemiologia , Células Gigantes/patologia , Humanos , Masculino , Megacariócitos/patologia , Pessoa de Meia-Idade , Casas de Saúde/estatística & dados numéricos , Tamanho do Órgão , Sobrepeso/epidemiologia , Pandemias , Reação em Cadeia da Polimerase , Embolia Pulmonar/patologia , Instituições Residenciais/estatística & dados numéricos , Distribuição por Sexo , Doença Relacionada a Viagens , Trombose Venosa/patologia
18.
Nucleic Acids Res ; 48(12): 6672-6684, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504494

RESUMO

Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Enzimas Reparadoras do DNA/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Apraxias/genética , Apraxias/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Reparo do DNA/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Microcefalia/genética , Microcefalia/patologia , Mutação/genética , Convulsões/genética , Convulsões/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-32586185

RESUMO

Static magnetic field (SMF) is widely used in industry, in consumer devices and diagnostic medical equipment, hence the widespread exposure to SMF in the natural environment and in people occupationally exposed to it. In environment and in some workplaces, there is a risk of exposure also to various chemicals. Environmental factors can affect the cellular processes which can be the cause of the development of various pathological conditions. Therefore, the aim of this study was to assess the effect of SMF on the expression of the apoptosis-related genes in human fibroblast cultures that had been co-treated with fluoride ions. The control and NaF-treated cells were subjected to the influence of SMF with a moderate induction. The flow-cytometric analysis showed that the fluoride ions reduced the number of viable cells and induced early apoptosis. However, exposure to the SMF reduced the number of dead cells that had been treated with fluoride ions. Moreover, specific genes that were involved in apoptosis exhibited a differential expression in the NaF-treated cells and exposure to the SMF yielded a modulation of their transcriptional activity. Our results suggest some beneficial properties of using a moderate-intensity static magnetic field to reduce the adverse effects of fluoride.


Assuntos
Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fibroblastos/efeitos dos fármacos , Campos Magnéticos , Fluoreto de Sódio/toxicidade , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Fibroblastos/patologia , Expressão Gênica/efeitos dos fármacos , Humanos
20.
Life Sci ; 256: 117893, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502539

RESUMO

AIMS: To investigate the effect and underlying mechanism of melittin and tripartite motif (TRIM) family in human embryonic lung fibroblast (HELF). MATERIALS AND METHODS: Lentiviral RNA interference vector and lentiviral overexpression vector were constructed and packaged by transfecting 293T cells; the proliferation of HELF was examined using Cell Counting Kit 8; Western blot and qRT-PCR were performed to examine protein and mRNA expression; the interaction with protein phosphatase magnesium-dependent 1A (PPM1A) was examined by Co-immunoprecipitation. KEY FINDINGS: Compared with the control group, the mRNA expression of the TRIM6, TRIM8 and TRIM47 in the IPF group significantly increased. Melittin inhibited the mRNA expression and protein expression levels of TRIM47, the HELF proliferation, the hydroxyproline levels, and the phosphorylation of Smad2/3; the interference of TRIM47 inhibited the protein expression of Vimentin, α-SMA, CTGF, the phosphorylation of Smad2/3 and the synthesis of hydroxyproline; TRIM47 overexpression elevated the phosphorylation of Smad2/3, induced ubiquitination of PPM1A and decreased the expression level of PPM1A, while TRIM47 RNA interference reversed this result. SIGNIFICANCE: Melittin has anti-fibrotic effect in HELF by directly reducing the phosphorylation of Smad2/3 or indirectly reducing the phosphorylation of Smad2/3 by decreasing the expression levels of TRIM47 whose overexpression induces ubiquitination of PPM1A.


Assuntos
Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/embriologia , Meliteno/farmacologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Actinas/metabolismo , Proteínas de Transporte/sangue , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiprolina/metabolismo , Proteínas de Neoplasias/sangue , Proteínas Nucleares/sangue , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2C/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação/efeitos dos fármacos , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA