Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.574
Filtrar
1.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800499

RESUMO

While approximately 2000 mutations have been discovered in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), only a small amount (about 10%) is associated with clinical cystic fibrosis (CF) disease. The discovery of the association between CFTR and the hyperactive epithelial sodium channel (ENaC) has raised the question of the influence of ENaC on the clinical CF phenotype. ENaC disturbance contributes to the pathological secretion, and overexpression of one ENaC subunit, the ß-unit, can give a CF-like phenotype in mice with normal acting CFTR. The development of ENaC channel modulators is now in progress. Both CFTR and ENaC are located in the cell membrane and are influenced by its lipid configuration. Recent studies have emphasized the importance of the interaction of lipids and these proteins in the membranes. Linoleic acid deficiency is the most prevailing lipid abnormality in CF, and linoleic acid is an important constituent of membranes. The influence on sodium excretion by linoleic acid supplementation indicates that lipid-protein interaction is of importance for the clinical pathophysiology in CF. Further studies of this association can imply a simple clinical adjuvant in CF therapy.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Ácido Linoleico/deficiência , Animais , Membrana Celular/genética , Membrana Celular/patologia , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Humanos , Ácido Linoleico/metabolismo , Camundongos
2.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807880

RESUMO

Two siblings with CF are homozygous for F508del (referred to as Subject A and Subject B). Despite having the same CFTR genotype and similar environment, these two subjects exhibited different disease phenotypes. We analyzed their medical records and CF Foundation Registry data and measured inflammatory protein mediators in their sputum samples. Then, we examined the longitudinal relationships between inflammatory markers and disease severity for each subject and compared between them. Subject A presented a more severe disease than Subject B. During the study period, Subject A had two pulmonary exacerbations (PEs) whereas Subject B had one mild PE. The forced expiratory volume in 1 s (FEV1, % predicted) values for Subject A were between 34-45% whereas for Subject B varied between 48-90%. Inflammatory protein mediators associated with neutrophils, Th1, Th2, and Th17 responses were elevated in sputum of Subject A compared with Subject B, and also in samples collected prior to and during PEs for both subjects. Neutrophilic elastase (NE) seemed to be the most informative biomarkers. The infectious burden between these two subjects was different.


Assuntos
Sequência de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Homozigoto , Mediadores da Inflamação/metabolismo , Deleção de Sequência , Irmãos , Linfócitos T Auxiliares-Indutores/metabolismo , Biomarcadores/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Feminino , Humanos , Elastase de Leucócito/metabolismo , Masculino , Escarro/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669352

RESUMO

Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Azitromicina/farmacologia , Azitromicina/uso terapêutico , /tratamento farmacológico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eicosanoides/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Timalfasina/farmacologia , Timalfasina/uso terapêutico
4.
Eur J Med Chem ; 213: 113195, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524685

RESUMO

Cystic fibrosis (CF) is the most frequent life-limiting autosomal recessive disorder in the Caucasian population. It is due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Current symptomatic CF therapies, which treat the downstream consequences of CFTR mutations, have increased survival. Better knowledge of the CFTR protein has enabled pharmacologic therapy aiming to restore mutated CFTR expression and function. These CFTR "modulators" have revolutionised the CF therapeutic landscape, with the potential to transform prognosis for a considerable number of patients. This review provides a brief summary of their mechanism of action and presents a thorough review of the results obtained from clinical trials of CFTR modulators.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Desenvolvimento de Medicamentos , Indóis/farmacologia , Quinolonas/farmacologia , Aminofenóis/síntese química , Aminofenóis/química , Aminopiridinas/síntese química , Benzodioxóis/síntese química , Ensaios Clínicos como Assunto , Fibrose Cística/diagnóstico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Indóis/síntese química , Quinolonas/síntese química , Quinolonas/química
5.
Arch Biochem Biophys ; 699: 108763, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460581

RESUMO

MicroRNAs (miRNAs) are small non-coding highly conserved RNA molecules that can act as master regulators of gene expression in a sequence-specific manner either by translation repression or mRNA degradation, influencing a wide range of biologic processes that are essential for the maintenance of cellular homeostasis. Chronic pediatric diseases are the leading cause of death worldwide among children and the recent evidence indicates that aberrant miRNA expression significantly contributes to the development of chronic pediatric diseases. This review focuses on the role of miRNAs in five major chronic pediatric diseases including bronchial asthma, congenital heart diseases, cystic fibrosis, type 1 diabetes mellitus, and epilepsy, and their potential use as novel biomarkers for the diagnosis and prognosis of these disorders.


Assuntos
Asma/fisiopatologia , Fibrose Cística/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Epilepsia/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , MicroRNAs/fisiologia , Asma/diagnóstico , Asma/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença Crônica , Fibrose Cística/diagnóstico , Fibrose Cística/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Epilepsia/diagnóstico , Epilepsia/metabolismo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/metabolismo , Humanos , MicroRNAs/sangue , MicroRNAs/metabolismo , Pediatria , Prognóstico
6.
Biochim Biophys Acta Biomembr ; 1863(1): 183482, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002450

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a bacterium able to induce serious pulmonary infections in cystic fibrosis (CF) patients. This bacterium is very often antibiotic resistant, partly because of its membrane impermeability, which is linked to the membrane lipid composition. This work aims to study the membrane phospholipids of P. aeruginosa grown in CF sputum-like media. METHODS: Three media were used: Mueller Hilton broth (MHB), synthetic cystic fibrosis medium (SCFM) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) complemented SCFM (SCFM-PC). Lipids were extracted and LC-MS/MS analyses were performed. Growth curves, atomic force microscopy images and minimal inhibitory concentration determination were performed in order to compare the growth and potentially link lipid modifications to antibiotic resistance. RESULTS: Semi-quantification showed phospholipid quantity variation depending on the growth medium. Phosphatidylcholines were detected in traces in SCFM. MS/MS experiments showed an increase of phospholipids derived from DOPC in SCFM-PC. We observed no influence of the medium on the bacterial growth and a minor influence on the bacterial shape. MIC values were generally higher in SCFM and SCFM-PC than in MHB. CONCLUSIONS: We defined a CF sputum-like media which can be used for the membrane lipid extraction of P. aeruginosa. We also showed that the growth medium does have an influence on its membrane lipid composition and antibiotic resistance, especially for SCFM-PC in which P. aeruginosa uses DOPC, in order to make its own membrane. GENERAL SIGNIFICANCE: Our results show that considerable caution must be taken when choosing a medium for lipid identification and antibiotic testing -especially for phospholipids-enriched media.


Assuntos
Membrana Celular/metabolismo , Fibrose Cística/microbiologia , Fosfolipídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escarro/microbiologia , Meios de Cultura , Fibrose Cística/metabolismo , Humanos , Infecções por Pseudomonas/metabolismo
7.
Sci Rep ; 10(1): 21900, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318612

RESUMO

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Assuntos
Doenças dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Diferenciação Celular , Fibrose Cística/metabolismo , Organoides/metabolismo , Adolescente , Doenças dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Fibrose Cística/patologia , Humanos , Masculino , Organoides/patologia
8.
PLoS One ; 15(10): e0235803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031374

RESUMO

Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF.


Assuntos
Brônquios/imunologia , Fibrose Cística/imunologia , NF-kappa B/metabolismo , Prevotella/imunologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/imunologia , Receptores Toll-Like/metabolismo , Brônquios/metabolismo , Brônquios/microbiologia , Brônquios/patologia , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Interleucina-8/metabolismo , NF-kappa B/genética , Prevotella/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Transdução de Sinais , Receptores Toll-Like/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-32750662

RESUMO

Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.


Assuntos
Ácido Araquidônico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Ácidos Docosa-Hexaenoicos/deficiência , Ácido Linoleico/deficiência , Ácido Araquidônico/deficiência , Fibrose Cística/fisiopatologia , Humanos , Inflamação/metabolismo , Ácido Linoleico/metabolismo , Metabolismo dos Lipídeos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/fisiopatologia , Muco/metabolismo
10.
Gene ; 761: 145023, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32758581

RESUMO

The clinical pictures of the disease of two Russian patients with cystic fibrosis with a rare nonsense variant c.831G>A (p.Trp277*) are described. The first case is a patient with the genotype comprising variant c.54-5940_273+10250del21kb (CFTRdele2,3), and the genotype of the second case included variant c.1521_1523delCTT (F508del). Patient 1, whose genotype had two class I genetic variants, revealed severe violations of CFTR synthesis based on the intestinal current measurements (ICM) and results obtained in the intestinal organoids. In both cases of patients with genetic variant c.831G>A, a severe course of cystic fibrosis was observed.


Assuntos
Canais de Cloreto/genética , Fibrose Cística/genética , Criança , Códon sem Sentido/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Genótipo , Humanos , Masculino , Mutação , Federação Russa
11.
Cells ; 9(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847034

RESUMO

The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy-lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.


Assuntos
Autofagia/imunologia , Betacoronavirus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Progressão da Doença , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Infecções por Coronavirus/virologia , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Homeostase , Humanos , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/metabolismo , Lisossomos/metabolismo , Pandemias , Pneumonia Viral/virologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , /metabolismo
12.
Nat Commun ; 11(1): 4258, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848127

RESUMO

Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Substituição de Aminoácidos , Sítios de Ligação/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células HEK293 , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Dobramento de Proteína , Modificação Traducional de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Supressão Genética , Temperatura
13.
Genes Immun ; 21(4): 260-262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32606316

RESUMO

Cystic fibrosis (CF) is one of the most common autosomal recessive life-limiting conditions affecting Caucasians. The resulting defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) results in defective chloride and bicarbonate secretion, as well as dysregulation of epithelial sodium channels (ENaC). These changes bring about defective mucociliary clearance, reduced airway surface liquid and an exaggerated proinflammatory response driven, in part, by infection. In this short article we explore the overlap in the pathophysiology of CF and COVID-19 infection and discuss how understanding the interaction between both diseases may shed light on future treatments.


Assuntos
Infecções por Coronavirus/metabolismo , Fibrose Cística/metabolismo , Pneumonia Viral/metabolismo , Animais , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/metabolismo , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia
14.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L408-L415, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668165

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CFTR gene. Although viral respiratory tract infections are, in general, more severe in patients with CF compared with the general population, a small number of studies indicate that SARS-CoV-2 does not cause a worse infection in CF. This is surprising since comorbidities including preexisting lung disease have been reported to be associated with worse outcomes in SARS-CoV-2 infections. Several recent studies provide insight into why SARS-CoV-2 may not produce more severe outcomes in CF. First, ACE and ACE2, genes that play key roles in SARS-CoV-2 infection, have some variants that are predicted to reduce the severity of SARS-CoV-2 infection. Second, mRNA for ACE2 is elevated and mRNA for TMPRSS2, a serine protease, is decreased in CF airway epithelial cells. Increased ACE2 is predicted to enhance SARS-CoV-2 binding to cells but would increase conversion of angiotensin II, which is proinflammatory, to angiotensin-1-7, which is anti-inflammatory. Thus, increased ACE2 would reduce inflammation and lung damage due to SARS-CoV-2. Moreover, decreased TMPRSS2 would reduce SARS-CoV-2 entry into airway epithelial cells. Second, many CF patients are treated with azithromycin, which suppresses viral infection and lung inflammation and inhibits the activity of furin, a serine protease. Finally, the CF lung contains high levels of serine protease inhibitors including ecotin and SERPINB1, which are predicted to reduce the ability of TMPRSS2 to facilitate SARS-CoV-2 entry into airway epithelial cells. Thus, a variety of factors may mitigate the severity of SARS-CoV-2 in CF.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/etiologia , Fibrose Cística/virologia , Inflamação/virologia , Pneumonia Viral/etiologia , Fibrose Cística/metabolismo , Células Epiteliais/virologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo
16.
Rev Med Suisse ; 16(698): 1229-1235, 2020 Jun 17.
Artigo em Francês | MEDLINE | ID: mdl-32558451

RESUMO

Cystic Fibrosis is a genetic disorder resulting in the absence or dysfunction of the CFTR protein, a chloride channel present on the surface of epithelia, particularly respiratory. Until recently, treatments only concerned the consequences of the disease. But a new type of molecules called «â€…modulators ¼, is already available to some patients and targets the origin of the disease. «â€…Modulators ¼ are divided into «â€…potentiators ¼, which improve the transport of chloride by the CFTR protein, and «â€…correctors ¼, increasing the amount of CFTR proteins. An oral triple therapy combining a potentiator and two correctors has just been approved in the USA and will treat 85 % of patients. The clinical benefit of «â€…modulators ¼ is remarkable, and these drugs are revolutionizing the treatment of Cystic Fibrosis.


Assuntos
Fibrose Cística/terapia , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação
17.
Nucleic Acids Res ; 48(13): 7454-7467, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32520327

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, encoding an anion channel that conducts chloride and bicarbonate across epithelial membranes. Mutations that disrupt pre-mRNA splicing occur in >15% of CF cases. One common CFTR splicing mutation is CFTR c.3718-2477C>T (3849+10 kb C>T), which creates a new 5' splice site, resulting in splicing to a cryptic exon with a premature termination codon. Splice-switching antisense oligonucleotides (ASOs) have emerged as an effective therapeutic strategy to block aberrant splicing. We test an ASO targeting the CFTR c.3718-2477C>T mutation and show that it effectively blocks aberrant splicing in primary bronchial epithelial (hBE) cells from CF patients with the mutation. ASO treatment results in long-term improvement in CFTR activity in hBE cells, as demonstrated by a recovery of chloride secretion and apical membrane conductance. We also show that the ASO is more effective at recovering chloride secretion in our assay than ivacaftor, the potentiator treatment currently available to these patients. Our findings demonstrate the utility of ASOs in correcting CFTR expression and channel activity in a manner expected to be therapeutic in patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Processamento de RNA , Aminofenóis/farmacologia , Brônquios/citologia , Linhagem Celular Tumoral , Células Cultivadas , Agonistas dos Canais de Cloreto/farmacologia , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Mutação , Quinolonas/farmacologia
18.
Cell Mol Life Sci ; 77(21): 4255-4267, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394023

RESUMO

Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Ácidos Graxos Insaturados/metabolismo , Fenretinida/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Fibrose Cística/metabolismo , Ácidos Graxos Essenciais/metabolismo , Fenretinida/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo
19.
PLoS One ; 15(5): e0232685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384122

RESUMO

BACKGROUND: In the primary analysis of a 12-month double-blind randomized active placebo-controlled trial, treatment of children with cystic fibrosis (CF) and pancreatic insufficiency (PI) with a readily absorbable structured lipid (Encala™, Envara Health, Wayne, PA) was safe, well-tolerated and improved dietary fat absorption (stool coefficient of fat absorption [CFA]), growth, and plasma fatty acids (FA). OBJECTIVE: To determine if the Encala™ treatment effect varied by severity of baseline fat malabsorption. METHODS: Subjects (n = 66, 10.5±3.0 yrs, 39% female) with baseline CFA who completed a three-month treatment with Encala™ or a calorie and macronutrient-matched placebo were included in this subgroup analysis. Subjects were categorized by median baseline CFA: low CFA (<88%) and high CFA (≥88%). At baseline and 3-month evaluations, CFA (72-hour stool, weighed food record) and height (HAZ), weight (WAZ) and BMI (BMIZ) Z-scores were calculated. Fasting plasma fatty acid (FA) concentrations were also measured. RESULTS: Subjects in the low CFA subgroup had significantly improved CFA (+7.5±7.2%, mean 86.3±6.7, p = 0.002), and reduced stool fat loss (-5.7±7.2 g/24 hours) following three months of EncalaTM treatment. These subjects also had increased plasma linoleic acid (+20%), α-linolenic acid (+56%), and total FA (+20%) (p≤0.005 for all) concentrations and improvements in HAZ (0.06±0.08), WAZ (0.17±0.16), and BMIZ (0.20±0.25) (p≤0.002 for all). CFA and FA were unchanged with placebo in the low CFA group, with some WAZ increases (0.14±0.24, p = 0.02). High CFA subjects (both placebo and Encala™ groups) had improvements in WAZ and some FA. CONCLUSIONS: Subjects with CF, PI and more severe fat malabsorption experienced greater improvements in CFA, FA and growth after three months of Encala™ treatment. Encala™ was safe, well-tolerated and efficacious in patients with CF and PI with residual fat malabsorption and improved dietary energy absorption, weight gain and FA status in this at-risk group.


Assuntos
Fibrose Cística/terapia , Gorduras na Dieta/metabolismo , Suplementos Nutricionais , Insuficiência Pancreática Exócrina/terapia , Lipídeos/uso terapêutico , Síndromes de Malabsorção/terapia , Administração Oral , Criança , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Suplementos Nutricionais/análise , Método Duplo-Cego , Insuficiência Pancreática Exócrina/complicações , Insuficiência Pancreática Exócrina/metabolismo , Feminino , Humanos , Lipídeos/administração & dosagem , Síndromes de Malabsorção/complicações , Síndromes de Malabsorção/metabolismo , Masculino , Efeito Placebo
20.
Am J Respir Cell Mol Biol ; 63(3): 374-385, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32437238

RESUMO

Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane regulator) gene. Pharmacologic therapies directed at CFTR have been developed but are not effective for mutations that result in little or no mRNA or protein expression. Cell therapy is a potential mutation-agnostic approach to treatment. One strategy is to harvest human bronchial epithelial cells (HBECs) for gene addition or genetic correction, followed by expansion and engraftment. This approach will require cells to grow extensively while retaining their ability to reconstitute CFTR activity. We hypothesized that conditionally reprogrammed cell (CRC) technology, namely growth in the presence of irradiated feeder cells and a Rho kinase inhibitor, would enable expansion while maintaining cell capacity to express functional CFTR. Our goal was to compare expression of the basal cell marker NGFR (nerve growth factor receptor) and three-dimensional bronchosphere colony-forming efficiency (CFE) in early- and later-passage HBECs grown using nonproprietary bronchial epithelial growth medium or the CRC method. Cell number and CFTR activity were determined in a competitive repopulation assay employing chimeric air-liquid interface cultures. HBECs expanded using the CRC method expressed the highest NGFR levels, had the greatest 3D colony-forming efficiency at later passage, generated greater cell numbers in chimeric cultures, and most effectively reconstituted CFTR activity. In our study, the HBEC air-liquid interface model, an informative testing platform proven vital for the development of other CF therapies, illustrated that cells grown by CRC technology or equivalent methods may be useful for cell therapy of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Brônquios/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...