Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.756
Filtrar
1.
Ecotoxicol Environ Saf ; 205: 111283, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977282

RESUMO

Fine particulate matter (PM2.5) airborne pollution increases the risk of chronic respiratory diseases, such as idiopathic pulmonary fibrosis (IPF), which is characterized by non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers. Type 2 alveolar epithelial cells (AEC2s) are alveolar stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that OGG1, a kind of DNA repair enzyme, have a critical role in protecting cells from oxidative damage and apoptosis induced by PM2.5, but the contribution of OGG1 in proliferation and self-renewal of AEC2s is not known. Here, we constructed OGG1-/-mice to test the effect and mechanism of OGG1 on PM2.5-induced pulmonary fibrosis and injury in vivo. We detected proliferation and self-renewal of OGG1 overexpression or OGG1 knockout AEC2s after PM2.5 injury by flow cytometry and clone formation. We observed that knockout of OGG1 aggravated pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, OGG1 is required for the proliferation and renewal of AEC2s after PM2.5 injury. Overexpression of OGG1 promotes the proliferation and self-renewal of AEC2s by inhibiting PM2.5-mediated oxidative stress and NF-κB signaling hyperactivation in vitro. Furthermore, NF-κB inhibitors promoted proliferation and self-renewal of OGG1-deficient AEC2s cells after PM2.5 injury, and attenuated PM2.5-induced pulmonary fibrosis and injury in mice. These data establish OGG1 as a regulator of NF-κB signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that inhibition of the NF-κB signaling pathway may represent a potential therapeutic strategy for IPF patients with low-expression of OGG1.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Autorrenovação Celular/genética , DNA Glicosilases/metabolismo , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Células-Tronco/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , DNA Glicosilases/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(3): 216-222, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32981275

RESUMO

Objective: To observe whether the mechanism of small dose capsaicin (Cap) against pulmonary fibrosis in mouse is mediated by agitating transient receptor potential vanilloid 1 (TRPV1). Methods: A total of 60 BALB/c mice were randomly divided into control (CON) group, bleomycin (BLM)group, Cap (0.5, 1,2 mg/kg) groups and Cap (2 mg/kg) plus SB-452533 (2.5 mg/kg) group. C57BL/6 mice were intratracheally injected with 3.5 mg/kg BLM to induce pulmonary fibrosis model. Animals for drugs treatment received daily drug via subcutaneous injection for 21 days. The morphological changes and collagen deposition in lung tissues were analysed by HE staining, Masson staining and immunohistochemistry. The concentration of calcitonin gene-related peptide (CGRP) in plasma was determined by ELISA. The mRNA and (or) proteins levels of α-CGRP, ß-CGRP, collagen I, collagen III, E-Cadherin, zonula occludens-1 (ZO-1), vimentin, alpha smooth muscle actin (α-SMA), TRPV1, p-ERK1/2 and eukaryotic initiation factor 3a (eIF3a) were detected by qPCR and (or) Western blot. Results: Compared with the BLM group, small dose Cap significantly reduced bleomycin-induced pulmonary fibrosis in mice and obviously reversed alveolar epithelial cells epithelial-mesenchymal transition (EMT) (the expression of E-cadherin and ZO-1 were increased(P<0.05 or P<0.01)and the expression of α-SMA and Vimentin were decreased (P<0.05 or P<0.01) after drugs treatment for 21 day, concomitantly with the increase the expressions of TRPV1 and CGRP (P<0.05 or P<0.01), and inhibiting ERK1/2 phosphorylation and eIF3a expression (P<0.05 or P<0.01). These effects of small dose Cap were abolished in the presence of TRPV1 receptor antagonist SB-452533. Conclusion: The results suggest that small dose Cap can reverse alveolar epithelial cells EMT and alleviate bleomycin-induced pulmonary fibrosis in mice by inhibiting ERK1/2/eIF3asignaling pathway, which is related to agitating TRPV1 receptor and releasing of CGRP.


Assuntos
Células Epiteliais Alveolares , Capsaicina , Transição Epitelial-Mesenquimal , Fibrose Pulmonar , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Bleomicina/toxicidade , Capsaicina/administração & dosagem , Capsaicina/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Distribuição Aleatória , Fator de Crescimento Transformador beta1
3.
Life Sci ; 260: 118399, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918977

RESUMO

Pulmonary fibrosis is the end stage of many interstitial lung diseases, characterized by the deposition of excess extracellular matrix (ECM), destruction of normal alveolar structure, and resulting in the obstruction of gas exchange and respiratory failure. The idiopathic pulmonary fibrosis (IPF) is the most common form of pulmonary fibrosis with little effective therapies. 5-Methoxytryptophan (5-MTP) is a newly found tryptophan metabolite. Previous studies suggested that 5-MTP has the effects of anti-inflammatory, anti-tumorigenesis, vascular protection and anti-fibrosis in renal disease. Whether 5-MTP has therapeutic effect on pulmonary fibrosis is not clear. In our study, we used TGF-ß1 to stimulate human lung fibroblasts (HLFs) and bleomycin (BLM) induced pulmonary fibrosis model to investigate the effect of 5-MTP on pulmonary fibrosis. Our study demonstrated that 5-MTP could improve the lung function and attenuate the destruction of alveolar structure in BLM-induced pulmonary fibrosis mice. Furthermore, 5-MTP significantly decreased accumulation of myofibroblasts and the deposition of ECM by inhibiting the differentiation of fibroblasts to myofibroblasts and suppressing the protein expression of the ECM both in vivo and in vitro. Our results also revealed 5-MTP could inhibit the proliferation and migration of the fibroblasts in vitro, which played an important role in the progressive pulmonary fibrosis. To further investigate the mechanism of the anti-fibrosis of 5-MTP, several canonical and noncanonical signaling pathways were examined. Our results revealed that 5-MTP could inhibit the pulmonary fibrosis through downregulating the phosphorylation of TGF-ß/SMAD3, PI3K/AKT signaling pathways. Together, our study indicated that 5-MTP promises to be therapeutic agent of pulmonary fibrosis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triptofano/análogos & derivados , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Diferenciação Celular , Matriz Extracelular , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Triptofano/farmacologia
4.
Toxicol Lett ; 333: 170-183, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795487

RESUMO

Paraquat (PQ) poisoning-induced pulmonary fibrosis always results in fatal harm to patients. Our study aimed to investigate the functions of the Wnt/ß-catenin pathway in PQ-induced pulmonary fibrosis. By comparing the proteomic profiles of rat lung tissues using protein array in the absence or presence of PQ, the Wnt/ß-catenin signaling, as a fibrosis-related pathway, was discovered to be profoundly activated by PQ. The protein levels of Wnt/ß-catenin signaling components including MMP-2, ß-catenin, Wnt3a, Wnt10b, Cyclin D1, and WISP1 were increased in PQ-treated rat lung tissues. Surprisingly, PQ was found to be able to promote lung epithelial cells and fibroblasts differentiating into myofibroblasts by activating Wnt/ß-catenin signaling pathway. Dickkopf-1 (DKK1), an antagonist of Wnt/ß-catenin signaling pathway, could inhibit the myofibroblast differentiation and attenuate PQ-induced pulmonary fibrogenesis in vitro and in vivo. The expression levels of fibroblasts markers Vimentin, α-smooth muscle actin (α-SMA) and Collagen I was detected and found to be increased when PQ treated and restored with additional DKK1 treatment. In summary, these assays indicated that Wnt/ß-catenin signaling pathway played a regulatory role in the differentiation of lung epithelial cells and fibroblasts, and the pathogenesis of pulmonary fibrosis related to PQ. Inhibition of the Wnt/ß-catenin signaling pathway may be investigated further as a potential fibrosis suppressor for pulmonary fibrosis therapy.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Herbicidas/toxicidade , Miofibroblastos/efeitos dos fármacos , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos Sprague-Dawley
5.
Phytomedicine ; 78: 153298, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781391

RESUMO

BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is a progressive inflammatory disorder driven by a fibrotic cascade of events such as epithelial to mesenchymal transition, extracellular matrix production and collagen formation in the lungs in a sequential manner. IPF incidences were raising rapidly across the world. FDA approved pirfenidone and nintedanib (tyrosine kinase inhibitors) are being used as a first-line treatment drugs for IPF, however, neither the quality of life nor survival rates have been improved because of patient noncompliance due to multiple side effects. Thus, the development of novel therapeutic approaches targeting TGF-ß mediated cascade of fibrotic events is urgently needed to improve the survival of the patients suffering from devastating disease. PURPOSE: The aim of this study was to investigate and validate the anti-fibrotic properties of Biochanin-A (isoflavone) against TGF-ß mediated fibrosis in in vitro, ex vivo, in vivo models and to determine the molecular mechanisms that mediate these anti-fibrotic effects. METHODS: The therapeutic activity of BCA was determined in in vitro/ex vivo models. Cells were pre-treated with BCA and incubated in presence or absence of recombinant-TGF-ß to stimulate the fibrotic cascade of events. Pulmonary fibrosis was developed by intratracheal administration of bleomycin in rats. BCA treatment was given for 14 days from post bleomycin instillation and then various investigations (collagen content, fibrosis gene/protein expression and histopathological changes) were performed to assess the anti-fibrotic activity of BCA. RESULTS: In vitro/ex vivo (Primary normal, IPF cell line and primary IPF cells/ Precision cut mouse lung slices) experiments revealed that, BCA treatment significantly (p < 0.001) reduced the expression of TGF-ß modulated fibrotic genes/protein expressions (including their functions) which are involved in the cascade of fibrotic events. BCA treatment significantly (p < 0.01) reduced the bleomycin-induced inflammatory cell-infiltration, inflammatory markers expression, collagen deposition and expression of fibrotic markers in lung tissues equivalent or better than pirfenidone treatment. In addition, BCA treatment significantly (p < 0.001) attenuated the TGF-ß1/BLM-mediated increase of TGF-ß/Smad2/3 phosphorylation and resulted in the reduction of pathological abnormalities in lung tissues determined by histopathology observations. CONCLUSION: Collectively, BCA treatment demonstrated the remarkable therapeutic effects on TGF-ß/BLM mediated pulmonary fibrosis using IPF cells and rodent models. This current study may offer a novel treatment approach to halt and may be even rescue the devastating lung scarring of IPF.


Assuntos
Colágeno/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Genisteína/farmacologia , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/toxicidade , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Ratos Wistar , Reprodutibilidade dos Testes , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
6.
Carbohydr Polym ; 247: 116740, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829859

RESUMO

Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.


Assuntos
Betacoronavirus , Produtos Biológicos/uso terapêutico , Infecções por Coronavirus/complicações , Pandemias , Pneumonia Viral/complicações , Polissacarídeos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Bleomicina/toxicidade , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O3/fisiologia , Fungos/química , Ribonucleoproteína Nuclear Heterogênea D0/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Camundongos , Neutrófilos/efeitos dos fármacos , Fitoterapia , Plantas Medicinais/química , Polissacarídeos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/prevenção & controle , RNA Longo não Codificante/antagonistas & inibidores , Ratos , Alga Marinha/química , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores
7.
Mol Immunol ; 125: 15-22, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619930

RESUMO

PIM1 is serine/threonine protein kinase that is involved in numerous biological processes. Pulmonary fibrosis (PF) is a chronic pathological result of the dysfunctional repair of lung injury without effective therapeutic treatments. In the current study, we investigated whether PIM1 inhibition would improve bleomycin (BLM)-induced pulmonary fibrosis. In a BLM-induced pulmonary fibrosis model, PIM1 was persistently upregulated in fibrotic lung tissues. Furthermore, PIM1 inhibition by the PIM1-specific inhibitor SMI-4a showed protective effects against BLM-induced mortality. Furthermore, SMI-4a suppressed hydroxyproline deposition and reversed epithelial-mesenchymal transition (EMT) formation, which was characterized by E-cadherin and α-SMA expression in vivo. More importantly, the ZEB1/E-cadherin pathway was found to be closely associated with BLM-induced pulmonary fibrosis. After the in vitro treatment of A549 cells, PIM1 regulated E-cadherin expression by dependently modulating the activity of the transcription factor ZEB1. These findings were verified in vivo after SMI-4a administration. Finally, an shPIM1-expressing adeno-associated virus was delivered via intratracheal injection to induce a long-term PIM1 deficiency in the alveolar epithelium. AAV-mediated PIM1 knockdown in the lung tissues alleviated BLM-induced pulmonary fibrosis, as indicated by collagen accumulation reduction, pulmonary histopathological mitigation and EMT reversion. These findings enhance our understanding of the roles of PIM1 in BLM-induced pulmonary fibrosis and suggest PIM1 inhibition as a potential therapeutic strategy in chronic pulmonary injuries.


Assuntos
Células Epiteliais Alveolares/metabolismo , Caderinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibrose Pulmonar/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Células A549 , Células Epiteliais Alveolares/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia
8.
Artigo em Chinês | MEDLINE | ID: mdl-32536068

RESUMO

Objective: To study the effect of the injected bone marrow mesenchymal stem cells (BMSC) on rats with pulmonary fibrosis induced by paraquat (PQ) during different poisoning periods and explore the potential mechanism. Methods: From October to December 2018, BMSCs of SPF SD rats were isolated and purified by whole-bone marrow adherent culture method and cultured to the Third Generation (P3) . The surface antigens CD29, CD90, CD45 and CD34 of P3 BMSC were detected by Flow cytometry, the formation of alkaline phosphatase (ALP) , calcium nodules and fat droplets were observed by ALP, Alizarin Red staining and oil red O staining. At the same time, 36 SPF male rats were randomly divided into 6 groups: NC Group (Blank Control Group, injected with the same amount of saline) and PQ group (PQ model group, injected with 20% PQ solution 18 mg/kg intraperitoneally) , bMSC-A group, BMSC-B group, BMSC-C group and BMSC-D group were injected with BMSC suspension 1×10(6) cells/mice at 3 h、3 d、7 d and 14 d after PQ poisoning. After 28 days, the rats were killed, the lung organ coefficients were calculated, the hydroxyproline (HYP) content in lung tissue was calculated by alkaline hydrolysis, and the lung injury and fibrosis were observed by HE and Masson staining, serum TGF-1、TNF-α、MMP-9 and TIMP-1 were detected by Elisa. Results: High Purity BMSCs were successfully isolated and obtained. The P3 BMSC generation was positive expression of CD29、CD90、and negative expression of CD34、CD45, and had the potential of osteogenic and adipogenic differentiation. The results of HE staining and Masson staining showed that the alveolar structure in NC group was intact and homogeneous, in PQ group, the alveolar structure was severely damaged and a lot of collagen fibers and fibroblasts were deposited, and the degrees of lung injury in each BMSC intervention group were obviously less than in PQ group, in BMSC-A group and BMSC-B group, the degrees of reduction were obvious. Compared with NC group, the Lung organ coefficient, HYP content in lung tissue and TGF-ß1, TIMP-1 levels in serum were significantly higher in PQ group (P<0.05) , while TNF-α and MMP-9 had no significant difference (P>0.05) . Compared with PQ group, the lung organ Coefficients, HYP, TGF-1 and TIMP-ß1 in BMSC-A and BMSC-B groups were lower than those in PQ group (P<0.05) . The Lung organ coefficients, TGF-ß1 and TIMP-1 in BMSC-C and BMSC-D groups were lower than those in PQ group, there was no significant difference (P>0.05) . Conclusion: Early BMSC injecting can alleviate pulmonary fibrosis induced by PQ. The mechanism may be that BMSC can reduce pulmonary fibrosis through reducing the level of TGF-ß1 and regulating the balance of TIMP-1/MMP-9, threrby reducing inflammatory damage and increasing the degradation of extracellular matrix (ECM) .


Assuntos
Células-Tronco Mesenquimais , Paraquat , Fibrose Pulmonar , Animais , Células da Medula Óssea , Pulmão , Masculino , Células-Tronco Mesenquimais/fisiologia , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Sprague-Dawley
9.
J Med Chem ; 63(13): 7326-7346, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479084

RESUMO

Autotaxin (ATX) is the dominant catalytic enzyme accounting for the lipid mediator lysophosphatidic acid (LPA) through hydrolysis of lysophosphatidylcholine (LPC). There is great interest in developing nonacidic ATX inhibitors with a specific binding mode to serve as potential in vivo effective therapeutic tools. Herein, dating from a high-throughput screening (HTS) product Indole-1 (740 nM), a dedicated optimization campaign was implemented through derivatizing the -COOH group to versatile linkers that well-bridged the indole skeleton and the hydrophobic pocket binding groups. Ultimately, it was established that the coexistence of a carbamate linker and -OH-group-containing amines could generally furnish excellent indole-based ATX inhibitors with even below 1 nM in vitro activities. Two optimal entities were advanced to a bleomycin-induced mice pulmonary fibrosis model, which exerted promising efficacy in alleviating the damaged lung texture caused by bleomycin exposure. The novel carbamate-containing indole-based ATX inhibitors with a concrete binding mode may contribute to the identification of potential therapeutic agents to intervene in fibrotic diseases.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indóis/química , Diester Fosfórico Hidrolases/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Sítio Alostérico , Animais , Sítios de Ligação , Bleomicina/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hidrazonas/química , Indóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Conformação Proteica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Relação Estrutura-Atividade
10.
Phytother Res ; 34(10): 2685-2696, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32281701

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial pneumonia that causes pulmonary tissue damage and functional impairment. To investigate the effects of cryptotanshinone on pulmonary fibrosis, the expression of NIH/3T3, HPF, and rat primary pulmonary fibroblasts was measured and found to be inhibited by CPT in a time- and concentration-dependent manner, and the upregulation of α-SMA expression in NIH/3T3 and HPF cells, which had been stimulated by TGFß-1, was decreased after CPT administration. We observed that CPT could reverse the increase in α-SMA expression and vimentin and the decrease in E-cad expression in A549 cells, which had been induced by 5 ng/mL TGFß-1, indicating that CPT has inhibitory effects in the EMT process. A BLM-induced pulmonary fibrosis model was established in C57BL/6 mice. The lung coefficient and hydroxyproline content increased significantly in the BLM-induced group and were decreased in the CPT-treated group. The expression levels of collagen-I and α-SMA and the phosphorylation level of Stat3 were significantly increased, and CPT treatment decreased these levels. Furthermore, the results from the flow cytometry analysis indicated that, in lung tissues, the frequencies of MDSCs, macrophages, DCs and T cells were considerably increased in the BLM-induced group, while CPT treatment reduced these immunocyte populations.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Bleomicina/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenantrenos/uso terapêutico , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ratos
11.
Sci Rep ; 10(1): 6647, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313071

RESUMO

Crystalline silica (quartz) is known to induce silicosis and cancer in the lungs. In the present study, we investigated the relationship between quartz-induced chronic inflammation and lung carcinogenesis in rat lungs after a single exposure to quartz. F344 rats were treated with a single intratracheal instillation (i.t.) of quartz (4 mg/rat), and control rats were treated with a single i.t. of saline. After 52 or 96 weeks, the animals were sacrificed, and the lungs and other organs were used for analyses. Quartz particles were observed in the lungs of all quartz-treated rats. According to our scoring system, the lungs of rats treated with quartz had higher scores for infiltration of lymphocytes, macrophages and neutrophils, oedema, fibrosis, and granuloma than the lungs of control rats. After 96 weeks, the quartz-treated rats had higher incidences of adenoma (85.7%) and adenocarcinoma (81.0%) than control rats (20% and 20%, respectively). Quartz-treated and control rats did not show lung neoplastic lesions at 52 weeks after treatment. The number of lung neoplastic lesions per rat positively correlated with the degree of macrophage and lymphocyte infiltration, oedema, fibrosis, and lymph follicle formation around the bronchioles. In conclusion, single i.t. of quartz may induce lung cancer in rat along with chronic inflammation.


Assuntos
Adenocarcinoma/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Quartzo/administração & dosagem , Silicose/etiologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Movimento Celular/efeitos dos fármacos , Edema/induzido quimicamente , Edema/imunologia , Edema/patologia , Granuloma/induzido quimicamente , Granuloma/imunologia , Granuloma/patologia , Inflamação , Intubação Intratraqueal , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Ratos , Ratos Endogâmicos F344 , Silicose/imunologia , Silicose/patologia
12.
Immunopharmacol Immunotoxicol ; 42(2): 138-146, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32116062

RESUMO

Objectives: Paraquat (PQ) poisoning can induce mitophagy and pulmonary fibrosis. Cyclosporine A (CsA) is an inhibitor of mitophagy. This study aimed at investigating whether CsA could inhibit PQ-induced mitophagy and pulmonary fibrosis in rats.Materials and Methods: Male Sprague-Dawley (SD) rats were treated with vehicle saline (control), 50 mg/kg PQ by gavage alone, or together with different doses of CsA. At 14 days post-induction, the levels of pulmonary fibrosis and PTEN-induced putative kinase 1 (PINK1) and Parkin expression in individual rats and mitochondrial membrane potential (MMP) in lung cells were measured. Moreover, A549 cells were treated with PQ or PQ + CsA for 24 h and the levels of PINK1, Parkin, fibronectin, collagen I and LC3 I and II expression and MMP were examined. Finally, the impact of PINK1 overexpression on the PQ or PQ + CsA-modulated fibronectin and collagen I expression in A549 cells was tested.Results: PQ exposure significantly increased the levels of hydroxyproline and collagen I expression and collagen fiber accumulation in the lung of rats, which were mitigated by CsA treatment. Furthermore, treatment with CsA significantly improved the PQ-decreased MMP and abrogated PQ-upregulated PINK1 and Parkin expression in the lungs of rats. In addition, CsA treatment decreased the PQ-induced fibrosis and mitophagy and PQ-impaired MMP as well as PQ-upregulated PINK1 and Parkin expression in A549 cells. The later effect of CsA was abrogated by PINK1 overexpression in A549 cells.Conclusions: Therefore, CsA can inhibit the PQ-induced mitophagy and pulmonary fibrosis by attenuating the PINK1/Parkin signaling.


Assuntos
Ciclosporina/farmacologia , Pulmão/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Paraquat/envenenamento , Proteínas Quinases/metabolismo , Fibrose Pulmonar/prevenção & controle , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Animais , Modelos Animais de Doenças , Humanos , Hidroxiprolina/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos Sprague-Dawley
13.
Genomics Proteomics Bioinformatics ; 18(1): 41-51, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32135311

RESUMO

Exposure of airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 µm (PM2.5) is epidemiologically associated with lung dysfunction and respiratory symptoms, including pulmonary fibrosis. However, whether epigenetic mechanisms are involved in PM2.5-induced pulmonary fibrosis is currently poorly understood. Herein, using a PM2.5-induced pulmonary fibrosis mouse model, we found that PM2.5 exposure leads to aberrant mRNA 5-methylcytosine (m5C) gain and loss in fibrotic lung tissues. Moreover, we showed the m5C-mediated regulatory map of gene functions in pulmonary fibrosis after PM2.5 exposure. Several genes act as m5C gain-upregulated factors, probably critical for the development of PM2.5-induced fibrosis in mouse lungs. These genes, including Lcn2, Mmp9, Chi3l1, Adipoq, Atp5j2, Atp5l, Atpif1, Ndufb6, Fgr, Slc11a1, and Tyrobp, are highly related to oxidative stress response, inflammatory responses, and immune system processes. Our study illustrates the first epitranscriptomic RNA m5C profile in PM2.5-induced pulmonary fibrosis and will be valuable in identifying biomarkers for PM2.5 exposure-related lung pathogenesis with translational potential.


Assuntos
5-Metilcitosina/metabolismo , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fibrose Pulmonar/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32209025

RESUMO

Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene (mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout (Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Asbestose/genética , DNA Glicosilases/genética , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/genética , Fibrose Pulmonar/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Asbestos/administração & dosagem , Asbestose/etiologia , Asbestose/metabolismo , Asbestose/patologia , Bleomicina/administração & dosagem , Dano ao DNA , DNA Glicosilases/deficiência , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Regulação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Cultura Primária de Células , Proteínas Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Titânio/administração & dosagem
15.
Med Sci Monit ; 26: e919739, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019905

RESUMO

BACKGROUND Interstitial pulmonary fibrosis (IPF) is harmful for patients' life and health. The effective treatment of IPF is lacking because of unclear pathogenesis. Necrostatin-1 has protective effects on lung injury and can suppress the fibrosis development. I this study we investigated whether necrostatin-1 could decrease the proliferation of pulmonary fibroblasts, pulmonary fibrosis and expression of extracellular matrix (ECM) in IPF. MATERIAL AND METHODS The IPF mice model was conducted by intra-tracheal injection of bleomycin (BLM) (2 mg/kg) for C57BL/6N mice. Necrostatin-1 treatment was performed with 1 mg/kg necrostatin-1 by an intravenous injection for C57BL/6N mice. Lung tissue structures and collagen deposition were observed by hematoxylin and eosin staining and Masson staining. IPF in vitro model was constructed by MRC-5 cells induced by transforming growth factor beta 1 (TGF-ß1). And, 20 µM necrostatin-1 was used to treat the TGF-ß1 induced MRC-5 cells. Cell Counting Kit-8 (CCK-8) assay detected the viability of MRC-5 cells. The expression of receptor-interacting protein kinase-1 and -3 (RIPK1 and RIPK3), alpha smooth muscle actin (alpha-SMA), collagen IV, collagen I, fibronectin (FN), and transforming growth factor-ß (TGF-ß) in lung tissues and MRC-5 cells was measured by western blot analysis. The alpha-SMA expression in lung tissues was also analyzed by immunohistochemistry. RESULTS The expression of RIPK1 and RIPK3 in lung tissues of BLM induced mice was increased. The degree of pulmonary fibrosis and expression of alpha-SMA, collagen IV, collagen I, FN, and TGF-ß in lung tissues of BLM induced mice was enhanced. The proliferation of MRC-5 cells was increased when MRC-5 cells were induced by TGF-ß. The expression of RIPK1, RIPK3, alpha-SMA, collagen IV, collagen I, and FN was increased in TGF-ß induced MRC-5 cells. And, necrostatin-1 could effectively reverse the changes of pulmonary fibrosis, RIPK1, RIPK3, and ECM in vivo and in vitro experiments. CONCLUSIONS Necrostatin-1 attenuated pulmonary fibrosis in lung tissues of BLM induced mice and inhibited the fibroblast proliferation. And, necrostatin-1 also decreased the expression of RIPK1, RIPK3, and ECM in lung tissues of BLM induced mice and TGF-ß induced fibroblasts. Necrostatin-1 could be a new effective drug for the treatment of IPF.


Assuntos
Matriz Extracelular/metabolismo , Imidazóis/uso terapêutico , Indóis/uso terapêutico , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Imidazóis/farmacologia , Indóis/farmacologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Exp Cell Res ; 388(2): 111878, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004504

RESUMO

Occupational exposure to silica dust particles was the major cause of pulmonary fibrosis, and many miRNAs have been demonstrated to regulate target mRNAs in silicosis. In the present study, we found that a decreasing level of miR-411-3p in silicosis rats and lung fibroblasts induced by TGF-ß1. Enlargement of miR-411-3p could inhibit the cell proliferation and migration in lung fibroblasts with TGF-ß1 treatment and attenuate lung fibrosis in silicotic mice. In addition, a mechanistic study showed that miR-411-3p exert its inhibitory effect on Smad ubiquitination regulatory factor 2 (Smurf2) expression and decrease ubiquitination degradation of Smad7 regulated by smurf2, result in blocking of TGF-ß/Smad signaling. We proposed that increased expression of miR-411-3p abrogates silicosis by blocking activation of TGF-ß/Smad signaling through decreasing ubiquitination degradation effect of smurf2 on Smad7.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fibrose Pulmonar/prevenção & controle , Dióxido de Silício/toxicidade , Silicose/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Ratos , Ratos Wistar , Silicose/genética , Silicose/patologia , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética
17.
Lab Invest ; 100(6): 801-811, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32051533

RESUMO

Metabolic reprogramming plays a critical role in many diseases. A recent study revealed that aerobic glycolysis in lung tissue is closely related to pulmonary fibrosis, and also occurs during lipopolysaccharide (LPS)-induced sepsis. However, whether LPS induces aerobic glycolysis in lung fibroblasts remains unknown. The present study demonstrated that LPS promotes collagen synthesis in the lung fibroblasts through aerobic glycolysis via the activation of the PI3K-Akt-mTOR/PFKFB3 pathway. Challenging the human lung fibroblast MRC-5 cell line with LPS activated the PI3K-Akt-mTOR pathway, significantly upregulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), enhanced the aerobic glycolysis, and promoted collagen synthesis. These phenomena could be reversed by the PI3K-Akt inhibitor LY294002, mTOR inhibitor rapamycin, PFKFB3 inhibitor 3PO, or PFKFB3 silencing by specific shRNA, or aerobic glycolysis inhibitor 2-DG. In addition, PFKFB3 expression and aerobic glycolysis were also detected in the mouse model of LPS-induced pulmonary fibrosis, which could be reversed by the intraperitoneal injection of PFKFB3 inhibitor 3PO. Taken together, this study revealed that in LPS-induced pulmonary fibrosis, LPS might mediate lung fibroblast aerobic glycolysis through the activation of the PI3K-Akt-mTOR/PFKFB3 pathway.


Assuntos
Glicólise/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-2/metabolismo , Fibrose Pulmonar/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Cromonas/farmacologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente
18.
Biomed Pharmacother ; 125: 109953, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036217

RESUMO

Polyguanylic acid potassium salt (PolyG) has an anti-fibrotic G-quadruplex (G4) structure. It could inhibit the expression of nucleolin, a protein involved in cell proliferation and apoptosis. However, its role in regulating nucleolin in silicosis is still unknown. After instillation of 50 µl of crystalline silica suspension (50 mg/ml) into the trachea of C57BL/6 mice, we show that nucleolin expression is upregulated in mouse pulmonary tissue following the treatment with silica and that PolyG, which were injected 2.5 mg/kg body weight into mice by abdomen, could alleviate pulmonary fibrosis through inhibiting the expression of nucleolin. Further, we demonstrated that the expression of the DNA double-strand break (DSB) marker, γ-H2AX, increased in response to silica treatment. PolyG could efficiently reduce the protein expression of γ-H2AX and decreased the level of fibrosis-related genes, such as Col1a1 and Col3a1, as well as the levels of fibrosis-associated proteins α-SMA and vimentin in the lungs of silica-treated mice. These findings show that PolyG could regulate nucleolin and DNA damage repair to control fibrotic response in experimental silicosis and provide a new target for preventive intervention.


Assuntos
Reparo do DNA/efeitos dos fármacos , Fosfoproteínas/metabolismo , Poli G/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Proteínas de Ligação a RNA/metabolismo , Dióxido de Silício/toxicidade , Animais , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosfoproteínas/genética , Poli G/química , Proteínas de Ligação a RNA/genética
19.
Toxicol Appl Pharmacol ; 391: 114913, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032644

RESUMO

Pulmonary fibrosis (PF) is an epithelial/fibroblastic crosstalk disorder of the lungs with highly complex etiopathogenesis. Limited treatment possibilities are responsible for poor prognosis and mean survival rate of 3 to 5 years of PF patients after definite diagnosis. Once thought to be an irreversible disorder, recent evidences have brought into existence the concept of organ fibrosis reversibility due to plastic nature of fibrotic tissues. These findings have kindled interest among the scientific community and given a new direction for research in the arena of fibrosis for developing new anti-fibrotic therapies. The current study is designed to evaluate the anti-fibrotic effects of Honokiol (HNK), a neolignan active constituent from Magnolia officinalis. This study has been conducted in TGF-ß1 induced in vitro model and 21 day in vivo murine model of Bleomycin induced PF. The findings of our study suggest that HNK was able to inhibit fundamental pathways of epithelial to mesenchymal transition (EMT) and TGF-ß/Smad signaling both in vitro and in vivo. Additionally, HNK also attenuated collagen deposition and inflammation associated with fibrosis. We also hypothesized that HNK interfered with IL-6/CD44/STAT3 axis. As hypothesized, HNK significantly mitigated IL-6/CD44/STAT3 axis both in vitro and in vivo as evident from outcomes of various protein expression studies like western blotting, immunohistochemistry and ELISA. Taken together, it can be concluded that HNK reversed pulmonary fibrotic changes in both in vitro and in vivo experimental models of PF and exerted anti-fibrotic effects majorly by attenuating EMT, TGF-ß/Smad signaling and partly by inhibiting IL-6/CD44/STAT3 signaling axis.


Assuntos
Compostos de Bifenilo/uso terapêutico , Lignanas/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Compostos de Bifenilo/farmacologia , Bleomicina , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Citocinas/sangue , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Receptores de Hialuronatos , Interleucina-6 , Lignanas/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fator de Transcrição STAT3/efeitos dos fármacos , Proteínas Smad/efeitos dos fármacos , Fator de Crescimento Transformador beta/efeitos dos fármacos
20.
Cell Physiol Biochem ; 54(2): 195-210, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32083406

RESUMO

BACKGROUND/AIMS: Idiopathic pulmonary fibrosis (IPF) is a specific form of progressive and chronic interstitial lung disease of unknown cause. IPF is characterized by excessive deposition of extracellular matrix (ECM) and destructive pathological remodeling due to epithelial-to-mesenchymal transition (EMT). Eventually, lung interstitium thickens and stiffens and breathing becomes difficult. It has been well established that the transforming growth factor-ß1 (TGF-ß1)/Smad signaling pathway plays a critical role in the pathogenesis of pulmonary fibrosis. TGF-ß1-mediated activation of mitogen activated protein kinase (MAPK) family affects Smad signaling. p90RSK is a serine/threonine kinase and is activated by the extracellular signal-regulated kinase (ERK) signaling pathway. However, the roles played by p90RSK in TGF-ß1 signaling and the pathogenesis of pulmonary fibrosis remain unknown. METHODS: We investigated whether p90RSK regulates the pathogenesis of pulmonary fibrosis using in vitro and in vivo systems and Western blotting, real-time quantitative PCR, transcriptional activity assays and immunofluorescence studies. RESULTS: Pharmacological inhibition of p90RSK by FMK or inhibition of p90RSK with adenoviral vector encoding a dominant negative form of p90RSK suppressed TGF-ß1-induced ECM accumulation and EMT in lung epithelial cells and fibroblasts. Interestingly, FMK significantly inhibited TGF-ß1-induced Smad3 nuclear translocation and smad binding element-dependent transcriptional activity, but not Smad3 phosphorylation. Furthermore, in a mouse model of bleomycin-induced lung fibrosis, FMK ameliorated pulmonary fibrosis. CONCLUSION: These findings indicate that p90RSK plays critical roles in pulmonary fibrosis, which suggests it be viewed as a novel therapeutic target for the treatment of lung fibrosis.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína Smad3/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Isoquinolinas/farmacologia , Cetonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Piridinas/farmacologia , Pirróis/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/genética , Ativação Transcricional/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA