Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.045
Filtrar
1.
Gene ; 765: 145076, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860899

RESUMO

Circular RNAs (circRNAs) play vital roles in the development of diabetic nephropathy (DN). In this study, we investigated the function of circ_0037128 and molecular mechanism via which it regulates diabetic nephropathy development. It was found that expression of circ_0037128 was significantly increased in mouse DN model and high glucose treated mesangial cells (MCs), and circ_0037128 loss-of-function led to reduced cell proliferation and fibrosis in vitro. Moreover, miR-17-3p acts as competitive endogenous RNA (ceRNA) that directly interacts with circ_0037128 through its miRNA response elements (MREs). Consistently, expression of miR-17-3p was remarkably down-regulated in DN model, and negatively regulated cell proliferation and fibrosis. Further investigations revealed that AKT3 was the putative target of miR-17-3p, whose expression was elevated in DN model. In conclusion, we have characterized the function of a novel circ_0037128 and illustrated the significance of circ_0037128-miR-17-3p-AKT3 axis in DN pathogenesis.


Assuntos
Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Nefropatias Diabéticas/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Diabetes Mellitus/genética , Modelos Animais de Doenças , Fibrose/genética , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , MicroRNAs/genética
2.
Environ Health Prev Med ; 25(1): 53, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917140

RESUMO

BACKGROUND: Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders. METHODS: Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl4). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries. RESULTS: Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), H2O2 and nitrite increased in liver tissues of CCl4 treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl4 caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-ß (TGF-ß), Smad-3 and collagen type 1 (Col1-α) increased with CCl4 induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl4 intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl4 in rats retrieved the normal expression of these markers and prevented hepatic injuries. CONCLUSION: Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.


Assuntos
Tetracloreto de Carbono/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Substâncias Protetoras/farmacologia , Urticaceae/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fibrose/genética , Inflamação/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
3.
Nat Commun ; 11(1): 4467, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948751

RESUMO

Recent studies have reported that upregulation of disulfide-bond A oxidoreductase-like protein (DsbA-L) prevented lipid-induced renal injury in diabetic nephropathy (DN). However, the role and regulation of proximal tubular DsbA-L for renal tubulointerstitial fibrosis (TIF) remains unclear. In current study, we found that a proximal tubules-specific DsbA-L knockout mouse (PT-DsbA-L-KO) attenuated UUO-induced TIF, renal cell apoptosis and inflammation. Mechanistically, the DsbA-L interacted with Hsp90 in mitochondria of BUMPT cells which activated the signaling of Smad3 and p53 to produce connective tissue growth factor (CTGF) and then resulted in accumulation of ECM of BUMPT cells and mouse kidney fibroblasts. In addition, the progression of TIF caused by UUO, ischemic/reperfusion (I/R), aristolochic acid, and repeated acute low-dose cisplatin was also alleviated in PT-DsbA-L-KO mice via the activation of Hsp90 /Smad3 and p53/CTGF axis. Finally, the above molecular changes were verified in the kidney biopsies from patients with obstructive nephropathy (Ob). Together, these results suggest that DsbA-L in proximal tubular cells promotes TIF via activation of the Hsp90 /Smad3 and p53/CTGF axis.


Assuntos
Fibrose/genética , Predisposição Genética para Doença/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Nefropatias/genética , Idoso , Animais , Apoptose , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Inflamação , Rim/lesões , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Life Sci ; 259: 118269, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798559

RESUMO

BACKGROUND: Diabetic nephropathy (DN), a severe microvascular complication of diabetes, has complex pathogenesis. Circular RNAs (circRNAs) exert broad biological functions on human diseases. This study intended to explore the role and mechanism of circ_WBSCR17 in DN. METHODS: DN mice models were constructed using streptozotocin injection, and DN cell models were assembled using high glucose (HG) treatment in human kidney 2 cells (HK-2). The expression of circ_WBSCR17, miR-185-5p and SRY-Box Transcription Factor 6 (SOX6) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SOX6 and fibrosis markers were examined by western blot. The release of inflammatory cytokines, cell proliferation and apoptosis, were assessed by enzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The predicted interaction between miR-185-5p and circ_WBSCR17 or SOX6 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULT: Circ_WBSCR17 was highly expressed in DN mice models and HG-induced HK-2 cells. Circ_WBSCR17 knockdown or SOX6 knockdown promoted cell proliferation and blocked cell apoptosis, inflammatory responses and fibrosis, while circ_WBSCR17 overexpression or SOX6 overexpression conveyed the opposite effects. MiR-185-5p was a target of circ_WBSCR17 and directly bound to SOX6. MiR-185-5p could reverse the role of circ_WBSCR17 or SOX6. Moreover, the expression of SOX6 was modulated by circ_WBSCR17 through intermediating miR-185-5p. CONCLUSION: Circ_WBSCR17 triggered the dysfunction of HG-induced HK-2 cells, including inflammatory responses and fibrosis, which was accomplished via the miR-185-5p/SOX6 regulatory axis.


Assuntos
Nefropatias Diabéticas/metabolismo , Túbulos Renais/metabolismo , MicroRNAs/metabolismo , N-Acetilgalactosaminiltransferases/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXD/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibrose/genética , Fibrose/metabolismo , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais/patologia , Túbulos Renais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , N-Acetilgalactosaminiltransferases/metabolismo , RNA Circular/genética , Fatores de Transcrição SOXD/genética
5.
Proc Natl Acad Sci U S A ; 117(34): 20753-20763, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32759223

RESUMO

Fibrotic diseases remain a major cause of morbidity and mortality, yet there are few effective therapies. The underlying pathology of all fibrotic conditions is the activity of myofibroblasts. Using cells from freshly excised disease tissue from patients with Dupuytren's disease (DD), a localized fibrotic disorder of the palm, we sought to identify new therapeutic targets for fibrotic disease. We hypothesized that the persistent activity of myofibroblasts in fibrotic diseases might involve epigenetic modifications. Using a validated genetics-led target prioritization algorithm (Pi) of genome wide association studies (GWAS) data and a broad screen of epigenetic inhibitors, we found that the acetyltransferase CREBBP/EP300 is a major regulator of contractility and extracellular matrix production via control of H3K27 acetylation at the profibrotic genes, ACTA2 and COL1A1 Genomic analysis revealed that EP300 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, and broad transcriptomic and proteomic profiling of CREBBP/EP300 inhibition by the chemical probe SGC-CBP30 identified collagen VI (Col VI) as a prominent downstream regulator of myofibroblast activity. Targeted Col VI knockdown results in significant decrease in profibrotic functions, including myofibroblast contractile force, extracellular matrix (ECM) production, chemotaxis, and wound healing. Further evidence for Col VI as a major determinant of fibrosis is its abundant expression within Dupuytren's nodules and also in the fibrotic foci of idiopathic pulmonary fibrosis (IPF). Thus, Col VI may represent a tractable therapeutic target across a range of fibrotic disorders.


Assuntos
Proteína de Ligação a CREB/genética , Colágeno Tipo VI/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteína de Ligação a CREB/metabolismo , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Colágeno Tipo VI/fisiologia , Proteína p300 Associada a E1A/genética , Epigênese Genética/genética , Epigenômica/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Proteômica , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
6.
Gene ; 761: 144971, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32707301

RESUMO

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes across the world. Recently, many circular RNAs (circRNAs) can exert a crucial role in DN progression. Our investigation was designed to study whether circ_0123996 was associated with DN and aimed to find out the underlying mechanisms. We observed that circ_0123996 expression was significantly increased in Type 2 diabetes (T2D) with DN in comparison to those patients without DN. Consistently, circ_0123996 was also obviously elevated in DN mice models and high glucose (HG)-incubated MMCs. Then, it was proved transfection of circ_0123996 siRNA in mice mesangial cells (MMCs) restrained MMCs proliferation greatly. In addition, it was demonstrated that decrease of circ_0123996 alleviated fibrosis-related protein expression including FN and Col-4 in MMCs. Next, it was confirmed by our study that circ_0123996 can serve as a sponge for miR-149-5p. miR-149-5p has been identified in several diseases including diabetes. At present, we observed that miR-149-5p was decreased in DN. Overexpression of miR-149-5p greatly repressed the effect of circ_0123996 on MMCs. BTB and CNC homology 1 (Bach1) is reported in various disease including some vascular diseases.Here, Bach1 was confirmed as a target of miR-149-5p. Circ_0123996 upregulated Bach1 expression and restrained MMCs proliferation and fibrosis through sponging miR-149-5p. Thus, it was revealed that circ_0123996 was involved in DN via sponging miR-149-5p and modulating Bach1 expression.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Nefropatias Diabéticas/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Adulto , Animais , Apoptose/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose/genética , Fibrose/metabolismo , Humanos , Masculino , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Circular/genética
7.
Gene ; 758: 144952, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32683074

RESUMO

Diabetic nephropathy (DN) as one of the most frequent microvascular complications of diabetic patients causes chronic renal failure and end-stage renal disease. Noncoding RNAs including circular RNAs (circRNAs) and micro RNAs (miRNAs) were widely reported to play a critical role in numerous human diseases including DN. This research was designed to investigate the role of circ_0000064 in diabetic nephropathy progression. The results showed that circ_0000064 significantly promoted mesangial cells proliferation and aggravated fibrosis in DN. In the subsequent mechanism investigation, we found that circ_0000064 was involved in this process by targeting micro RNA miR-143. The inhibition of miR-143 significantly reverses the effect of circ_0000064 silencing on DN. In conclusion, we demonstrated the regulatory role of circ_0000064 in DN and clarified that circ_0000064 play a role in DN via targeting miR-143. Circ_0000064 and miR-143 also showed the potential as a biomarker for DN.


Assuntos
Nefropatias Diabéticas/genética , Fibrose/genética , Células Mesangiais/patologia , MicroRNAs/genética , RNA Circular/genética , Animais , Proliferação de Células/genética , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus/patologia , Fibrose/patologia , Humanos , Camundongos
8.
Nat Rev Drug Discov ; 19(7): 480-494, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555376

RESUMO

The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.


Assuntos
Neoplasias/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Medicina Regenerativa/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação a DNA/genética , Fibrose/genética , Fibrose/patologia , Fibrose/terapia , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Transdução de Sinais , Fatores de Transcrição/genética , Cicatrização/fisiologia
9.
Am J Physiol Endocrinol Metab ; 319(1): E146-E162, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421370

RESUMO

Secreted hormones facilitate tissue cross talk to maintain energy balance. We previously described C1q/TNF-related protein 12 (CTRP12) as a novel metabolic hormone. Gain-of-function and partial-deficiency mouse models have highlighted important roles for this fat-derived adipokine in modulating systemic metabolism. Whether CTRP12 is essential and required for metabolic homeostasis is unknown. We show here that homozygous deletion of Ctrp12 gene results in sexually dimorphic phenotypes. Under basal conditions, complete loss of CTRP12 had little impact on male mice, whereas it decreased body weight (driven by reduced lean mass and liver weight) and improved insulin sensitivity in female mice. When challenged with a high-fat diet, Ctrp12 knockout (KO) male mice had decreased energy expenditure, increased weight gain and adiposity, elevated serum TNFα level, and reduced insulin sensitivity. In contrast, female KO mice had reduced weight gain and liver weight. The expression of lipid synthesis and catabolism genes, as well as profibrotic, endoplasmic reticulum stress, and oxidative stress genes were largely unaffected in the adipose tissue of Ctrp12 KO male mice. Despite greater adiposity and insulin resistance, Ctrp12 KO male mice fed an obesogenic diet had lower circulating triglyceride and free fatty acid levels. In contrast, lipid profiles of the leaner female KO mice were not different from those of WT controls. These data suggest that CTRP12 contributes to whole body energy metabolism in genotype-, diet-, and sex-dependent manners, underscoring complex gene-environment interactions influencing metabolic outcomes.


Assuntos
Adipocinas/genética , Peso Corporal/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Resistência à Insulina/genética , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Estresse do Retículo Endoplasmático/genética , Ácidos Graxos não Esterificados/metabolismo , Feminino , Fibrose/genética , Expressão Gênica , Interação Gene-Ambiente , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Estresse Oxidativo/genética , Fatores Sexuais , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ganho de Peso/genética
10.
Am J Physiol Cell Physiol ; 319(2): C277-C287, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432932

RESUMO

Severe burn injury induces a myriad of deleterious effects to skeletal muscle, resulting in impaired function and delayed recovery. Following burn, catabolic signaling and myofiber atrophy are key fiber-intrinsic determinants of weakness; less well understood are alterations in the interstitial environment surrounding myofibers. Muscle quality, specifically alterations in the extracellular matrix (ECM), modulates force transmission and strength. We sought to determine the impact of severe thermal injury on adaptation to the muscle ECM and quantify muscle fibrotic burden. After a 30% total body surface area dorsal burn, spinotrapezius muscle was harvested from mice at 7 (7d, n = 5), 14 (14d, n = 4), and 21 days (21d, n = 4), and a sham control group was also examined (Sham, n = 4). Expression of transforming growth factor-ß (TGFß), myostatin, and downstream effectors and proteases involved in fibrosis and collagen remodeling were measured by immunoblotting, and immunohistochemical and biochemical analyses assessed fibrogenic cell abundance and collagen deposition. Myostatin signaling increased progressively through 21 days postburn alongside fibrogenic/adipogenic progenitor cell expansion, with abundance peaking at 14 days postburn. Postburn, elevated expression of tissue inhibitor of matrix metalloproteinase 1 supported collagen remodeling resulting in a net accumulation of muscle collagen content. Collagen accumulation peaked at 14 days postburn but remained elevated through 21 days postburn, demonstrating minimal resolution of burn-induced fibrosis. These findings highlight a progressive upregulation of fibrogenic processes following burn injury, eliciting a fibrotic muscle phenotype that hinders regenerative capacity and is not resolved with 21 days of recovery.


Assuntos
Queimaduras/genética , Fibrose/genética , Músculo Esquelético/metabolismo , Miostatina/genética , Fator de Crescimento Transformador beta/genética , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Proliferação de Células/genética , Colágeno/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Transdução de Sinais/genética
11.
Ren Fail ; 42(1): 513-522, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32441195

RESUMO

Objective: To investigate the way that miR-136 regulated spleen tyrosine kinase (SYK) and transforming growth factor-ß1 (TGF-ß1)/Smad3 signaling pathways on renal fibrosis.Methods: 100 male SD (Sprague-Dawley) rats were randomly divided into diabetic nephropathy (DN) group, normal control (NC) group, miR-136 mimics group, and control group. The renal fibrosis model of diabetic rats was established by streptozotocin (STZ) method. NRK-52E cells were transfected into six groups: HG group, HG + miR-136 group, HG + miR-NC group, miR-136 + SYK group, miR-136 + NC group, and control group. Histopathological examination, the expressions of miR-136 and SYK mRNA, the expression of mTOR, blood glucose, urine protein, body weight, creatinine level, blood urea nitrogen (BUN), and KW/BW were detected in each group. Transfection efficiency, the targeted binding, and regulation between miR-136 and SYK, as well as the expression level of related inflammatory factors, the expression levels of SYK, E-Cad (E-cadherin), Vimentin, Collagen I, α-smooth muscle actin (α-SMA), and vascular endothelial growth factor A (VEGFA) were detected.Results: It was shown that the expression level of miR-136 in DN group significantly decreased. The blood glucose and urine protein concentrations in the DN group and miR-136 mimics group significantly increased and the body weight was decreased, but the blood glucose concentration in the miR-136 mimics group increased with time. The prolongation of the decline significantly decreased, and the growth rate of urinary protein reduced. Creatinine, BUN, and the kidney weight to body weight ratio (KW/BW) in DN group increased significantly. Cell culture results showed that SYK was a target gene of miR-136 and miR-136/SYK-mediated renal fibrosis by activating TGF-ß1/Smad3 signal.Conclusion: SYK activates TGF-ß1/Smad3 signaling, while miR-136 inhibits TGF-ß1/Smad3 signaling mediating tubular epithelial cell fibrosis by down-regulating SYK.


Assuntos
Nefropatias/metabolismo , Nefropatias/patologia , MicroRNAs/genética , Transdução de Sinais , Quinase Syk/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Fibrose/genética , Fibrose/metabolismo , Nefropatias/genética , Masculino , Ratos , Ratos Sprague-Dawley , Proteína Smad3/metabolismo , Quinase Syk/genética , Fator de Crescimento Transformador beta1/metabolismo
12.
Adv Exp Med Biol ; 1229: 181-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285412

RESUMO

Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetic population worldwide, characteristic by cardiomyocyte hypertrophy, apoptosis and myocardial interstitial fibrosis and eventually developing into heart failure. Non-coding RNAs, such as microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and other RNAs without the protein encoding function were emerging as a popular regulator in various types of processes during human diseases. The evidences have shown that miRNAs are regulators in diabetic cardiomyopathy, such as insulin resistance, cardiomyocytes apoptosis, and inflammatory, especially their protective effect on heart function. Besides that, the functions of lncRNAs and circRNAs have been gradually confirmed in recent years, and their functions in DCM have become increasingly prominent. We highlighted the nonnegligible roles of non-coding RNAs in the pathological process of DCM and showed the future possibilities of these non-coding RNAs in DCM treatment. In this chapter, we summarized the present advance of the researches in this filed and raised the concern and the prospect in the future.


Assuntos
Cardiomiopatias Diabéticas , RNA não Traduzido , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Fibrose/genética , Fibrose/patologia , Humanos , MicroRNAs , Miocárdio/patologia , RNA Circular , RNA Longo não Codificante
13.
Biol Pharm Bull ; 43(3): 558-564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115515

RESUMO

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current therapies for DKD are insufficient. Therefore, there is an urgent need for identifying new therapies. An increasing number of micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) have been demonstrated to modulate the progression of diabetic kidney disease. Nevertheless, until now, there have been few reports evaluating the relevance of circular RNAs (circRNAs) in DKD. circRNAs have been reported to regulate the occurrence and development of multiple diseases. In this study, we intended to explore the circRNA expression profiles and determine the role of circRNA in DKD. We identified a series of dysregulated circRNAs in glucose-stressed HK-2 cells using circRNA microarray analysis. Among the candidate circRNAs, we found that circACTR2 was upregulated and may be involved in inflammation and pyroptosis. Knockdown of circACTR2 significantly decreased pyroptosis, interleukin (IL)-1ß release and collagen IV and fibronectin production, indicating the effective regulation by circACTR2 of cell death and inflammation. Overall, our study identified a new circRNA, circACTR2, that regulates high glucose-induced pyroptosis, inflammation and fibrosis in proximal tubular cells. The present study preliminarily explores the role of circRNAs in pyroptosis of tubular cells, and provides novel insight into the pathogenesis of DKD and new therapeutic strategies.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glucose/efeitos adversos , Piroptose/genética , Piroptose/fisiologia , RNA Circular/deficiência , RNA Circular/genética , Proteína 2 Relacionada a Actina , Linhagem Celular , Colágeno/metabolismo , Células Epiteliais , Fibronectinas/metabolismo , Fibrose/genética , Fibrose/metabolismo , Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Rim/metabolismo
14.
Clin Sci (Lond) ; 134(6): 609-628, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32175563

RESUMO

Diabetic cardiac fibrosis increases ventricular stiffness and facilitates the occurrence of diastolic dysfunction. Retinoid X receptor (RXR) plays an important role in cardiac development and has been implicated in cardiovascular diseases. In the present study, we investigated the effects of RXR agonist treatment on streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM) and the underlying mechanism. Sprague-Dawley (SD) rats induced by STZ injection were treated with either RXR agonist bexarotene (Bex) or vehicle alone. Echocardiography was performed to determine cardiac structure and function. Cardiac fibroblasts (CFs) were treated with high glucose (HG) with or without the indicated concentration of Bex or the RXR ligand 9-cis-retinoic acid (9-cis-RA). The protein abundance levels were measured along with collagen, body weight (BW), blood biochemical indexes and transforming growth factor-ß (TGF-ß) levels. The effects of RXRα down-regulation by RXRα small interfering RNA (siRNA) were examined. The results showed that bexarotene treatment resulted in amelioration of left ventricular dysfunction by inhibiting cardiomyocyte apoptosis and myocardial fibrosis. Immunoblot with heart tissue homogenates from diabetic rats revealed that bexarotene activated liver kinase B1 (LKB1) signaling and inhibited p70 ribosomal protein S6 kinase (p70S6K). The increased collagen levels in the heart tissues of DCM rats were reduced by bexarotene treatment. Treatment of CFs with HG resulted in significantly reduced LKB1 activity and increased p70S6K activity. RXRα mediated the antagonism of 9-cis-RA on HG-induced LKB1/p70S6K activation changes in vitro. Our findings suggest that RXR agonist ameliorates STZ-induced DCM by inhibiting myocardial fibrosis via modulation of the LKB1/p70S6K signaling pathway. RXR agonists may serve as novel therapeutic agents for the treatment of DCM.


Assuntos
Bexaroteno/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Proteínas Serina-Treonina Quinases/metabolismo , Receptores X Retinoide/agonistas , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/genética , Fibrose/metabolismo , Humanos , Masculino , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Estreptozocina
15.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178467

RESUMO

Antisense Oligonucleotides (ASOs) are an emerging drug class in gene modification. In our study we developed a safe, stable, and effective ASO drug candidate in locked nucleic acid (LNA)-gapmer design, targeting TGFß receptor II (TGFBR2) mRNA. Discovery was performed as a process using state-of-the-art library development and screening. We intended to identify a drug candidate optimized for clinical development, therefore human specificity and gymnotic delivery were favored by design. A staggered process was implemented spanning in-silico-design, in-vitro transfection, and in-vitro gymnotic delivery of small batch syntheses. Primary in-vitro and in-vivo toxicity studies and modification of pre-lead candidates were also part of this selection process. The resulting lead compound NVP-13 unites human specificity and highest efficacy with lowest toxicity. We particularly focused at attenuation of TGFß signaling, addressing both safety and efficacy. Hence, developing a treatment to potentially recondition numerous pathological processes mediated by elevated TGFß signaling, we have chosen to create our data in human lung cell lines and human neuronal stem cell lines, each representative for prospective drug developments in pulmonary fibrosis and neurodegeneration. We show that TGFBR2 mRNA as a single gene target for NVP-13 responds well, and that it bears great potential to be safe and efficient in TGFß signaling related disorders.


Assuntos
Oligonucleotídeos Antissenso/genética , Oligonucleotídeos/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/genética , Células A549 , Animais , Linhagem Celular Tumoral , Fibrose/genética , Inativação Gênica/fisiologia , Humanos , Pulmão/fisiologia , Camundongos , RNA Mensageiro/genética
17.
Arthritis Rheumatol ; 72(7): 1160-1169, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134204

RESUMO

OBJECTIVE: Genome-wide gene expression studies implicate macrophages as mediators of fibrosis in systemic sclerosis (SSc), but little is known about how these cells contribute to fibrotic activation in SSc. We undertook this study to characterize the activation profile of SSc monocyte-derived macrophages and assessed their interaction with SSc fibroblasts. METHODS: Plasma and peripheral blood mononuclear cells (PBMCs) were obtained from whole blood from SSc patients (n = 24) and age- and sex-matched healthy controls (n = 12). Monocytes were cultured with autologous or allogeneic plasma to differentiate cells into macrophages. For reciprocal activation studies, macrophages were cocultured with fibroblasts using Transwell plates. RESULTS: The gene expression signature associated with blood-derived human SSc macrophages was enriched in SSc skin in an independent cohort and correlated with skin fibrosis. SSc macrophages expressed surface markers associated with activation and released CCL2, interleukin-6, and transforming growth factor ß under basal conditions (n = 8) (P < 0.05). Differentiation of healthy donor monocytes in plasma from SSc patients conferred the immunophenotype of SSc macrophages (n = 13) (P < 0.05). Transwell experiments demonstrated that coculture of SSc macrophages with SSc fibroblasts induced fibroblast activation (n = 3) (P < 0.05). CONCLUSION: These data demonstrate that the activation profile of SSc macrophages is profibrotic. SSc macrophages are activated under basal conditions and release mediators and express surface markers associated with both alternative and inflammatory macrophage activation. These findings also suggest that activation of SSc macrophages arises from soluble factors in local microenvironments. These studies implicate macrophages as likely drivers of fibrosis in SSc and suggest that therapeutic targeting of these cells may be beneficial in ameliorating disease in SSc patients.


Assuntos
Fibroblastos/metabolismo , Macrófagos/imunologia , Escleroderma Sistêmico/genética , Pele/metabolismo , Adulto , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Diferenciação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Técnicas de Cocultura , Feminino , Fibrose/genética , Fibrose/imunologia , Fibrose/metabolismo , Antígenos HLA-DR/imunologia , Humanos , Imunofenotipagem , Interleucina-6/genética , Interleucina-6/imunologia , Lectinas Tipo C/imunologia , Leucócitos Mononucleares , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Lectinas de Ligação a Manose/imunologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Receptores de Superfície Celular/imunologia , Fator de Transcrição STAT3/metabolismo , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Pele/patologia , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
18.
Exp Mol Pathol ; 114: 104409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088192

RESUMO

BACKGROUND: Noise is an important environmental risk factor. Industrial environments are rich in high-intensity infrasound (hi-IFS), which we have found to induce myocardial and coronary perivascular fibrosis in rats. The effects of exposure to IFS on the ventricles have been studied, but not on the atria. We hypothesized that rats exposed to hi-IFS develop atrial remodeling involving fibrosis and connexin 43, which we sought to evaluate. MATERIAL AND METHODS: Seventy-two Wistar rats, half exposed to hi-IFS (120 dB, <20 Hz) during a maximum period of 12 weeks and half age-matched controls, were studied. Atrial fibrosis was analyzed by Chromotrope-aniline blue staining. The immunohistochemical evaluation of Cx43 was performed using the polyclonal antibody connexin-43 m diluted 1:1000 at 4 °C overnight. Digitized images were obtained with an optical microscope using 400× magnifications. The measurements were performed using image J software. A two-way ANOVA model was used to compare the groups. RESULTS: The mean values of the ratio "atrial fibrosis / cardiomyocytes" increased to a maximum of 0.1095 ± 0,04 and 0.5408 ± 0,01, and of the ratio "CX43 / cardiomyocytes" decreased to 0.0834 ± 0,03 and 0.0966 ± 0,03, respectively in IFS-exposed rats and controls. IFS-exposed rats exhibited a significantly higher ratio of fibrosis (p < .001) and lower ratio of Cx43 (p = .009). CONCLUSION: High-intensity infrasound exposure leads to an increase in atrial interstitial fibrosis and a decrease in connexin 43 in rat hearts. This finding reinforces the need for further experimental and clinical studies concerning the effects of exposure to infrasound.


Assuntos
Conexina 43/genética , Fibrose/genética , Coração/fisiopatologia , Ruído/efeitos adversos , Animais , Modelos Animais de Doenças , Fibrose/etiologia , Fibrose/fisiopatologia , Regulação da Expressão Gênica/efeitos da radiação , Coração/efeitos da radiação , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Fatores de Risco
19.
Circ Res ; 126(8): 988-1003, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32065054

RESUMO

RATIONALE: Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. OBJECTIVES: To study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. METHODS AND RESULTS: Out of 381 miRs screened in the perivascular tissues in response to Ang II (angiotensin II)-mediated hypertension, miR-214 showed the highest induction (8-fold, P=0.0001). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in perivascular adipose tissue adipocytes. Global deletion of miR-214-/- prevented Ang II-induced periaortic fibrosis, Col1a1, Col3a1, Col5a1, and Tgfb1 expression, hydroxyproline accumulation, and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214-/- mice were protected against endothelial dysfunction, oxidative stress, and increased Nox2, all of which were induced by Ang II in WT mice. Ang II-induced recruitment of T cells into perivascular adipose tissue was abolished in miR-214-/- mice. Adoptive transfer of miR-214-/- T cells into RAG1-/- mice resulted in reduced perivascular fibrosis compared with the effect of WT T cells. Ang II induced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214-/-. T cell activation, proliferation and chemotaxis pathways were differentially affected. MiR-214-/- prevented Ang II-induction of profibrotic T cell cytokines (IL-17, TNF-α, IL-9, and IFN-γ) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of patients with hypertension and is directly correlated to pulse wave velocity as a measure of vascular stiffness. CONCLUSIONS: T-cell-derived miR-214 controls pathological perivascular fibrosis in hypertension mediated by T cell recruitment and local profibrotic cytokine release.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T/metabolismo , Animais , Endotélio Vascular/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Hipertensão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Onda de Pulso/métodos , Linfócitos T/patologia , Transcriptoma/fisiologia
20.
Exp Mol Pathol ; 114: 104402, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061942

RESUMO

The aim of this study was to investigate the roles of CD4+ T cells and transforming growth factor beta (TGFß1) in the pathological process of valvular hyperblastosis and fibrosis of patients with rheumatic heart disease (RHD). A total of 151 patients were enrolled, among whom, 78 patients were with RHD, and 73 were age and gender matched RHD negative patients. Blood samples and valve specimens were collected for analysis. Pathological changes and collagen fibers contents of valves were analyzed using HE and Masson staining. Percentage of peripheral blood CD4+ T cells was tested through flow cytometry. TGFß1 level in serum were identified by ELISA. CD4+ T cells infiltration and expression of TGFß1, p-p38, p-JNK, p-ERK in valves were detected by immunohistochemistry. The mRNA and protein levels of p38, JNK, ERK, TGFß1, I-collagen and α-SMA were detected by qRT-PCR and western blotting, respectively. The heart valve tissues of RHD patients showed higher degrees of fibrosis, calcification and lymphocytes infiltration, which were mainly CD4+ T cells. In addition, compared with control group, RHD patients had more total CD4+ T cells in peripheral blood and valve tissues. Expression of TGFß1, phosphorylation of JNK and p38, and synthesis of I-collagen in valve tissues of RHD patients were also significantly increased. Furthermore, we found a strong positive correlation between TGFß1 expression and phosphorylation of JNK and p38. CD4+ T cells, and fibrogenic cytokine TGFß1, which activate the intracellular MAPK signaling pathway may participate in the fibrosis of heart valve in RHD patients.


Assuntos
Doenças das Valvas Cardíacas/genética , Estenose da Valva Mitral/genética , Cardiopatia Reumática/genética , Fator de Crescimento Transformador beta1/genética , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/sangue , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Fibrose/sangue , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/genética , Doenças das Valvas Cardíacas/sangue , Doenças das Valvas Cardíacas/patologia , Humanos , MAP Quinase Quinase 4/sangue , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Estenose da Valva Mitral/sangue , Estenose da Valva Mitral/patologia , Cardiopatia Reumática/sangue , Cardiopatia Reumática/patologia , Fator de Crescimento Transformador beta1/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA