Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.265
Filtrar
1.
Mar Environ Res ; 160: 104980, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907718

RESUMO

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.


Assuntos
Baías , Fitoplâncton , Plâncton , Biomassa , Mar Mediterrâneo
2.
Mar Environ Res ; 160: 105023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907734

RESUMO

In the present study, using in-situ and satellite observations, we investigate the influence of physical processes on the enhancement of phytoplankton biomass in the eastern Arabian Sea (EAS). Water column measurements were carried out from 9°N to 21°N (stations II-2 to II-14) along 68°E transect in the EAS during the beginning of fall intermonsoon (FIM) of 2014. Both in-situ and satellite-derived chlorophyll a (Chl a) showed higher biomass at 15°N (station II-8) compared to northern and southern stations. We explored the possible physical processes which can lead to high biological productivity at this station. Our study shows that nearly two times enhancement in Chl a at station II-8 was contributed by an open-ocean front, which occurred two days before the measurement. Based on phytoplankton marker pigments, it was evident that haptophytes were abundant at II-8 with a minor contribution from diatoms and dinoflagellates. This condition also led to a high concentration (4.9 nM) of dimethylsulphide (DMS), an anti-green house gas with a net flux of 3.76 µmol m-2d-1 at this site. Among the picophytoplankton, Synechococcus were abundant at this station, however Prochlorococcus were absent as confirmed by both marker pigment and flow cytometric counts. The case study presented here demonstrates the dynamic nature of open ocean fronts and their overall contribution to the productivity of the eastern Arabian Sea during the oligotrophic inter-monsoon period.


Assuntos
Diatomáceas , Fitoplâncton , Biomassa , Clorofila A , Oceanos e Mares , Tempo (Meteorologia)
3.
Oecologia ; 194(1-2): 251-265, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964292

RESUMO

Understanding how biological communities respond to climate change is a major challenge in ecology. The response of ectotherms to changes in temperature depends not only on their species-specific thermal tolerances but also on temperature-mediated interactions across different trophic levels. Warming is predicted to reinforce trophic cascades in linear aquatic food chains, but little is known about how warming might affect the lower trophic levels of food webs involving extensive fish omnivory, a common scenario in subtropical and tropical waterbodies. In this study, a mesocosm warming experiment was conducted involving a pelagic food chain (fish-zooplankton-phytoplankton) topped by the omnivorous bighead carp [Aristichthys nobilis (Richardson)]. We found that temperature elevation significantly enhanced the growth of fish and suppressed zooplankton, including both metazooplankton and ciliates, while abundances of phytoplankton, despite disruption of temporal dynamics, did not increase correspondingly-likely due to fish predation. Our results suggest that trophic cascades are less unlikely to be reinforced by warming in food chains involving significant omnivory. Moreover, we found that warming advanced the spring abundance peak of phytoplankton abundance and that of the parthenogenetic rotifer Brachionus quadridentatus; whereas, it had no effect on the only sexually reproducing copepod, Mesocyclops leuckarti, presumably due to its prolonged life history. Our study also confirmed that warming may lead to a phenological mismatch between some predators and their prey because of the distinct life histories among taxa, with potentially severe consequences for resource flow in the food chain, at least in the short term.


Assuntos
Temperatura Alta , Plâncton , Animais , Biomassa , Cadeia Alimentar , Fitoplâncton , Zooplâncton
4.
Mar Pollut Bull ; 158: 111392, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32753178

RESUMO

Using in situ data of 2014-2018, the summers Emiliania huxleyi blooms in the Barents Sea were studied. The blooms were recorded in the upper mixed layer in July and August every year, during which they spread to cover large areas and were associated with Atlantic waters. The E. huxleyi abundance revealed interannual variability, with the highest values (up to 12 × 106 cells/L) in July 2016. Bloom is characterized by a sharp seasonal thermocline, water surface temperature of about 7.14-11.7 °C, low silicate (0.45 ± 0.08 µM) and nitrogen (0.74 ± 0.16 µM) concentration, high phosphorus concentration (0.09 ± 0.01 µM) and nitrogen to phosphorus ratio significantly below the Redfield ratio. Data confirming the hypothesis of limiting the growth of diatoms by nitrogen concentration are presented. When E. huxleyi bloomed, its biomass exceeded 70% of the total phytoplankton biomass, species diversity was low, and diatoms were practically absent, and dinoflagellates were usually represented by large species.


Assuntos
Diatomáceas , Haptófitas , Nitrogênio , Fósforo , Fitoplâncton
5.
Mar Pollut Bull ; 159: 111536, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771663

RESUMO

This paper reported the distribution of phytoplankton biomarkers in surface sediments of Liaodong Bay, Bohai Sea. The primary productivity indicated by biomarkers is consistent with the results from modern water column phytoplankton surveys, indicating that the biomarkers can be used to reconstruct the primary productivity. The productivity in the bay mouth is higher than in the shallow coast area, indicating that the main controlling factor is the turbidity rather than terrestrial nutrients. The high primary productivity near Juhua Island is mainly related to eutrophication caused by human culture and land-based sewage discharge. The relative proportion of biomarkers showed that diatom and dinoflagellate contributed more to the coastal area and were mainly related to the competitive advantage under the condition of high nutrient salts, while a high proportion of haptophytes was found in the middle, which corresponded to the high salinity water.


Assuntos
Diatomáceas , Fitoplâncton , Baías , Biomarcadores , China , Eutrofização , Humanos , Água do Mar
6.
Proc Biol Sci ; 287(1933): 20200995, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811317

RESUMO

Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy-size relationships relative to approaches not based on size distributions is unknown. We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy-size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects). Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density). We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity. Finally, we discuss that species assembly can alter energy-size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.


Assuntos
Ecossistema , Fitoplâncton , Biomassa , Tamanho Corporal , Metabolismo Energético , Modelos Biológicos , Densidade Demográfica
7.
Toxicon ; 186: 19-25, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32738246

RESUMO

The first survey of the phycotoxin profile in mussels (Mytilus galloprovincialis) from the coastal waters of Bosnia and Herzegovina (The Bay of Neum, Middle Adriatic Sea) in correlation to the Makarska City Bay (Croatia, Middle Adriatic Sea) was conducted in 2017. Throughout the monitoring period, occasions of gymnodimine (GYM) and azaspiracid (AZA2) shellfish toxicity were recorded in concentrations that do not endanger human health. The occurrence of yessotoxins (YTXs), the most common toxins found in the Adriatic Sea, was correlated to the presence of the Gonyaulax species, a potential source of YTX. The DSP group of toxins is represented by the ester-OA. Phytoplankton analysis confirmed the presence of dinoflagellates from the Prorocentrum genus, a species associated with DSP toxicity. Occurrence frequency and variability of toxin composition were investigated in conjunction to physico-chemical parameters in the surrounding sea water. In the central Adriatic Sea, the infestation period ranges in general from June to August. However, the depuration phase extended beyond September in the Bay of Neum, increasing the length of the decontamination period.


Assuntos
Toxinas Marinhas/análise , Venenos de Moluscos/análise , Frutos do Mar/estatística & dados numéricos , Animais , Croácia , Dinoflagelados , Compostos Heterocíclicos com 3 Anéis/análise , Humanos , Hidrocarbonetos Cíclicos/análise , Iminas/análise , Mytilus , Oxocinas/análise , Fitoplâncton , Alimentos Marinhos , Intoxicação por Frutos do Mar , Compostos de Espiro/análise
8.
Ecotoxicol Environ Saf ; 203: 111000, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736119

RESUMO

Microplastics are identified as a great threat to marine environments. However, knowledge of their impacts on phytoplankton, especially for the diatoms is scarce. Herein, the effects of different polyvinyl chloride (PVC) microplastic concentrations and contact times (24, 48, 72 and 96 h) on the Fv/Fm and cell density of Phaeodactylum tricornutum (B255), Chaetoceros gracilis (B13) and Thalassiosira sp. (B280) were investigated to evaluate the toxic effects of microplastics on marine diatoms. The effects of PVC microplastics on the morphology of the diatoms was observed by SEM. The order of sensitivity to 1 µm PVC microplastics among three marine diatoms was B13 > B280 > B255, showing that the toxic effects varied with different microalgae species. Furthermore, the presence of a siliceous cell wall played a minimal role in protecting cells from the physical attack of PVC microplastics, with no significant difference from the common cell wall. PVC microplastics caused dose-dependent adverse effects on three marine diatoms. High PVC concentrations (200 mg/L) reduced the chlorophyll content, inhibited Fv/Fm, and affected the photosynthesis of three marine diatoms. The PVC microplastics adsorbed and caused physical damage on the structure of algal cells. Interactions between PVC microplastics and diatoms may be the probable reason for the negative effects of PVC on diatoms.


Assuntos
Diatomáceas/efeitos dos fármacos , Microplásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Relação Dose-Resposta a Droga , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Fotossíntese/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Fatores de Tempo
9.
Sci Total Environ ; 746: 141110, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745855

RESUMO

The use of discontinuity analysis to assess resilience and alternative regimes of ecosystems has mostly been based on animal size. We so far lack systematic comparisons of size-based and abundance-based approaches necessary for assessing the performance and suitability of the discontinuity analysis across a broader range of organism groups. We used an outdoor mesocosm setup to mimic shallow lake ecosystems with different depths (1.2 m deep, "shallow"; 2.2 m deep, "deep") and trophic status (i.e. low and high nutrient status characteristic of mesotrophic and hypertrophic lakes, respectively). We compared resilience assessments, based on four indicators (cross-scale structure, within-scale structure, aggregation length and gap size) inferred from the size and abundance (biovolume) structure of phytoplankton communities. Our results indicate that resilience assessments based on size and biovolume were largely comparable, which is likely related to similar variability in the size and abundance of phytoplankton as a function of nutrient concentrations. Also, nutrient enrichment rather than water depth influenced resilience, manifested in decreased cross-scale structure and increased aggregation lengths and gap sizes in the high-nutrient treatment. These resilience patterns coupled with decreased phytoplankton diversity and dominance of cyanobacteria in the high nutrient treatment support the use of discontinuity analysis for testing alternative regimes theory. Concordance of size-based and abundance-based results highlights the approach as being potentially robust to infer resilience in organism groups that lack discrete size structures.


Assuntos
Fitoplâncton , Água , Animais , Biomassa , Ecossistema , Eutrofização , Lagos , Nutrientes
10.
Sci Total Environ ; 745: 140993, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758740

RESUMO

A long-term dataset, including physicochemical, nutrient, and phytoplankton assemblages from 1994 to 2016, was analyzed to investigate the response of the algal community to variations in environmental factors in Deep Bay and Mirs Bay in southern China. These bays differ in their overall nutrient loadings, as well as in physical factors. The results showed that diatoms were numerically dominant in Mirs Bay, while other minor phytoplankton groups, including eutrophication-tolerant species, constituted the majority in Deep Bay. Phytoplankton community composition tended to be less complex in Deep Bay, suggesting a stressed, unstable and unbalanced ecosystem compared to that in Mirs Bay. Algal blooms occurred more frequently in Mirs Bay, whereas fewer but larger-scale blooms occurred in Deep Bay. Statistically, the combination of all explanatory variables accounted for approximately 55% of the variation in Chlorophyll-a (Chl-a) concentration and less than 20% of the total phytoplankton variation over the 23-year period in the two bays. The high level of nutrients caused by urbanization was not the driving force in the formation of blooms but presumably provided a nutrient base that resulted in blooms with longer durations and covering larger areas.


Assuntos
Baías , Fitoplâncton , China , Ecossistema , Monitoramento Ambiental , Eutrofização , Hong Kong , Estações do Ano , Urbanização
11.
Sci Total Environ ; 746: 140904, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763595

RESUMO

In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.


Assuntos
Microbiota , Sedimentos Geológicos , Metagenoma , Oceanos e Mares , Fitoplâncton
12.
Science ; 369(6500): 198-202, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647002

RESUMO

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


Assuntos
Camada de Gelo , Fitoplâncton/crescimento & desenvolvimento , Regiões Árticas , Biomassa , Carbono/metabolismo , Oceanos e Mares , Estações do Ano
13.
Mar Pollut Bull ; 157: 111261, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658663

RESUMO

The temporal-spatial distribution of marine autotrophic picoplankton (APP) in the central Bohai Sea was investigated in April (spring), June (early summer), August (summer), and October (autumn) in 2015 through a combination of HPLC-pigment method and flow cytometry. Flow cytometry results showed that APP was composed of Synechococcus (Syn) and pico-eukaryotes (PEUKs). The lowest average abundances of Syn and PEUKs was obtained in April. Afterward, the average APP density substantially increased, and Syn dominated the total cell abundances. Although generally outnumbered by Syn, PEUKs were the larger contributor to total APP carbon biomass (>52%) in all the cruises, except in August, when Syn bloomed. Compared with the cytometric method, HPLC-pigment CHEMTAX revealed a more sophisticated diversity of APP community. In April, diatoms were the main contributor to pico-Chl a, whereas prasinophytes became the main contributor in June and October. Syn bloom was evidenced by CHEMTAX, which revealed that it contributed 69.3% of Chl a in August. Redundancy analysis suggested that temperature was the main factor influencing the distribution of APP. Moreover, nutrients and their structures had some effects, which depended on different APP groups in the area. The accordance between CHEMTAX and cytometric method was evaluated through correlation analysis. A significantly positive correlation between cell abundance and CHEMTAX-derived Chl a was observed for Syn in August and PEUKs in June. Nevertheless, further study is needed owing to the observed discrepancies between the methods.


Assuntos
Processos Autotróficos , Água do Mar , China , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Fitoplâncton
14.
Mar Pollut Bull ; 157: 111331, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658695

RESUMO

Dissolved inorganic nitrogen (DIN) enrichment accompanied by silicate deficiency in seawater can promote dinoflagellate growth over diatom growth and induce further negative ecological consequences. Here, we propose an easily exercisable method for silicate fertilization as a remedy of eutrophication. In the laboratory, rice husk ash (RHA) released silicate and phosphate in an atomic ratio range of 38-113 without a significant influence on DIN. During incubations of silicate-limited waters, low-dose fertilization increased the diatom/dinoflagellate ratio by 1-5 times. With the high-dose fertilizer addition, DIN, with an initial concentration of 7.63 ±â€¯0.95 µmol l-1, was exhausted in three days, and the diatom abundance increased by 19 times on the 5th day. The silicate fertilization method presented here can be applied independently in eutrophicated waters for dinoflagellate suppression and dissolved nitrogen removal; this method could also work as a supplementary measure to existing nutrient (N, P) reduction and biomanipulation efforts.


Assuntos
Diatomáceas , Proliferação de Células , Desnitrificação , Eutrofização , Fertilizantes , Nitrogênio , Fitoplâncton , Água do Mar , Silicatos
15.
Science ; 369(6500): 137-138, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32646983
16.
Huan Jing Ke Xue ; 41(2): 702-712, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608729

RESUMO

The Wenyu River is an important ecological corridor of Beijing. In this study, the spatio-temporal dynamics of water quality and phytoplankton community in the Wenyu River in 2006, 2011, and 2018, as well as their relationship were thoroughly analyzed by historical data analysis and field surveys. Results show that the water quality in the Wenyu River improved significantly from serious pollution owing to pollution containment. The major water pollutant has shifted from ammonia nitrogen (NH4+-N) to total nitrogen (TN). Compared with 2011, the average multiple of NH4+-N and total nitrogen TN exceeding the national standard were reduced by factors of 0.29-0.33 and 2.77-2.39, respectively, in 2018. The average concentration of NH4+-N and TN decreased from 15.52-19.16 mg·L-1 and 20.21-19.58 mg·L-1 in 2011 to 1.93-2.66 mg·L-1 and 5.66-6.79 mg·L-1 in 2018. Moreover, dissolved oxygen (DO) and NH4+-N concentrations in the Wenyu River and its tributaries, the Qinghe River, almost met requirements of their water function zoning target. Corresponding with the water quality improvement, the phytoplankton and community species increased dramatically. Phytoplankton species increased from 6 to 8 phyla, as well as community species. The dominant species changed from Chlorophyta in 2006 to the Cyanophyta in 2011, then to Bacillariophyta in 2018. The Shannon-Wiener diversity index (H') and evenness Pielou index (J) had improved. However, the major dominant species such as Cyclotella and Melosira persisted, and the Wenyu River was still in the eutrophication state in 2018. Statistical analysis results indicated that Cyanophyta, Bacillariophyta, and other algae abundance were significantly correlated with DO, pH, NH4+-N, TN, and TP.


Assuntos
Fitoplâncton/classificação , Rios , Poluição da Água/análise , Qualidade da Água , Pequim , China , Estações do Ano , Análise Espaço-Temporal
17.
Huan Jing Ke Xue ; 41(2): 713-727, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608730

RESUMO

The tail of the reservoir is the unstable zone regarding water quality and phytoplankton community. Therefore, it is the crucial zone in aquatic ecosystem transitions. To understand the transition characteristics and driving mechanisms of water environment dynamics, high-frequency monitoring of the water environment and phytoplankton community in the tail of a deep and large reservoir, the Xin'anjiang Reservoir in southeast of China, was conducted using a water quality monitoring buoy and three-day interval water sampling during 18 months. Results show clear seasonal thermal and oxygen stratification in the river mouth of the reservoir. The nutrient and chlorophyll-a concentrations also show stratifying phenomena during the thermal stratification period. Heavy rain and inflow quickly consume the stratification. Nutrient concentrations were highly dynamic in the river mouth. The total phosphorus ranges from 0.011 mg·L-1 to 0.188 mg·L-1, and total nitrogen ranges from 0.75 mg·L-1 to 2.76 mg·L-1. Dissolved phosphorus comprised 56% of total phosphorus, and dissolved nitrogen occupied 88% of total nitrogen, respectively. Nutrient concentrations were influenced strongly by rainfall intensity and inflow rate. Total phosphorus and nitrogen concentrations were significantly related to the three-day accumulated rainfall. Nutrient concentrations in the flood season (March to June) were significantly higher than in the non-flood season (P<0.001). Seasonal phytoplankton proliferation also significantly influenced by total phosphorus concentration. The phytoplankton community changes significantly with seasons and flood events. Bacillariophytea was generally dominant throughout the year, with the predominant genus of Fragilaria spp., Cyclotella spp., Synedra spp., and Melosira spp. Cyanophyta biomass peaked in July, August, and September, with the dominant genus of Aphanizomenon spp., Microcystis spp., and Oscillatoria spp. Apart from the high temperature, storm inflow events also triggered Cyanophyta proliferation. The proliferation of Chlorophyta was similar to Cyanophyta, with the predominant genus of Pediastrum spp. and Closterium spp.. While the Cryptophyta biomass peaked during March to May, with the predominant genus of Cryptomonas spp.. Redundancy analysis shows that the influence factors of phytoplankton community dynamics include the inflow rate, temperature, water level, water transparency, total nitrogen, total phosphorus, and nitrogen to phosphorus ratio. The meteorological and hydrological factors were major factors for phytoplankton dynamics during later autumn and winter, while the nutrient will be the co-driving factors of phytoplankton community dynamics during summer and early autumn. The research confirmed the huge influence of the intensity rainfall event on the water environment in reservoirs and described the key environmental conditions for phytoplankton community dynamics. The research is useful for the design of the monitoring and forecasting system for water safety in drinking water source reservoirs.


Assuntos
Fitoplâncton/classificação , Rios , Qualidade da Água , China , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Estações do Ano
18.
PLoS One ; 15(7): e0234075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678823

RESUMO

Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate "hot" (more extreme) and "cold" (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.


Assuntos
Carbonatos/metabolismo , Mudança Climática , Mytilus/crescimento & desenvolvimento , Oceanos e Mares , Água do Mar/química , Adaptação Fisiológica , Exoesqueleto/química , Animais , Oceano Atlântico , Carbonato de Cálcio/análise , Ecossistema , Concentração de Íons de Hidrogênio , Mytilus/metabolismo , Nutrientes , Tamanho do Órgão , Fitoplâncton , Temperatura , Ondas de Maré
19.
Huan Jing Ke Xue ; 41(3): 1246-1255, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608626

RESUMO

Zooplankton, as an important part of the water food chain, plays an important role in lake ecosystems. It is an important monitoring indicator for water bodies. However, due to the lack of long-term monitoring data of zooplankton community structure, there is a lack of understanding about its long-term characteristics. Based on monthly monitoring data from 1997 to 2017 of Meiliang Bay in Lake Taihu, the long-term trends of zooplankton community structure and its relation to the environment were examined. The results showed that the abundance and biomass of zooplankton in Meiliang Bay significantly decreased from 1997 to 2017 (P<0.05). In particular, the abundance and biomass of rotifer and copepod slowly declined, and the abundance of cladocerans fluctuated but its biomass presented a significant decreasing trend (P<0.05). The cladocerous biomass contributed the most to the zooplankton biomass in Meiliang Bay. The dominance of smaller cladocerans and copepods increased with decreasing rotifer density, significantly decreasing the average body size of zooplankton (P<0.05). This study indicated that zooplankton were becoming smaller, potentially weakening the top-down control on phytoplankton. In addition, zooplankton abundance and biomass showed an upward trend in spring and decreased in autumn and winter, and reached maximum values of 1406.70 ind.·L-1 and 25.64 mg·L-1, respectively, in September. In the summer, their changes were the opposite. Pearson correlation analysis showed that zooplankton community structure was significantly related to water physical characteristics (alkalinity, electrical conductivity, water depth, suspended substance, and water temperature), chlorophyll a, and nitrogen (P<0.05). This indicated that the eutrophication of Meiliang Bay in Lake Taihu had a significant impact on the community structure of zooplankton.


Assuntos
Lagos , Zooplâncton , Animais , Baías , Biomassa , China , Clorofila A , Ecossistema , Monitoramento Ambiental , Fitoplâncton
20.
Huan Jing Ke Xue ; 41(4): 1648-1656, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608670

RESUMO

As a water storage lake for the South-to-North Water Diversion Project, it is crucial to examine changes in aquatic ecosystem structures in Lake Luoma, Jiangsu province. Field sampling was carried out in Lake Luoma monthly from 2014 to 2018 to study the relationship between the phytoplankton community structure and environmental factors. During the studied period, total nitrogen, permanganate index, and electrical conductivity in water column gradually increased, whereas fluoride content declined. The pattern of total phosphorus and dissolved oxygen was not distinct. A total of 71 genera of phytoplankton were identified from 2014 to 2018, and the average monthly biomass variation ranged from 0.16 to 5.51 mg·L-1. Bacillariophyta and Chlorophyta were the dominant phyla in the four years, followed by Pyrrophyta and Cryptophyta. The dominant genera were Synedra sp., Chroomonas spp., Aulacoseira spp., Dinobryon sp., Scenedesmus spp. , Fragilaria spp., Mougeotia sp. , Ankistrodesmus sp. , and Euglena spp. The results showed that the phytoplankton community structure significantly changed in the four years, which was mainly ascribed to the redistribution of biomass. Specifically, in addition to the dominance of Bacillariophyta and Chlorophyta, the dominance of Pyrrophyta and Cyanophyta increased during the last two years. Non-metric multidimensional scaling analysis showed that variation of the phytoplankton community in Lake Luoma was mainly related to total nitrogen, fluoride, water temperature, total phosphorus, dissolved oxygen, pH, conductivity, and permanganate index, among which the total nitrogen, water temperature, and fluoride concentration dominated the phytoplankton community change after the generalized additive model test. Water temperature is the driving factor affecting seasonal changes of the phytoplankton community. Total nitrogen and fluoride concentrations are the driving factors affecting the interannual variation in the phytoplankton community. Our study indicated that in recent years, the implementation of the ban on sand mining and demolition of the enclosed aquaculture in Lake Luoma has affected the water environment, resulting in a significant succession of the phytoplankton community.


Assuntos
Lagos , Fitoplâncton , China , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA