Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Ecotoxicol Environ Saf ; 203: 111000, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736119

RESUMO

Microplastics are identified as a great threat to marine environments. However, knowledge of their impacts on phytoplankton, especially for the diatoms is scarce. Herein, the effects of different polyvinyl chloride (PVC) microplastic concentrations and contact times (24, 48, 72 and 96 h) on the Fv/Fm and cell density of Phaeodactylum tricornutum (B255), Chaetoceros gracilis (B13) and Thalassiosira sp. (B280) were investigated to evaluate the toxic effects of microplastics on marine diatoms. The effects of PVC microplastics on the morphology of the diatoms was observed by SEM. The order of sensitivity to 1 µm PVC microplastics among three marine diatoms was B13 > B280 > B255, showing that the toxic effects varied with different microalgae species. Furthermore, the presence of a siliceous cell wall played a minimal role in protecting cells from the physical attack of PVC microplastics, with no significant difference from the common cell wall. PVC microplastics caused dose-dependent adverse effects on three marine diatoms. High PVC concentrations (200 mg/L) reduced the chlorophyll content, inhibited Fv/Fm, and affected the photosynthesis of three marine diatoms. The PVC microplastics adsorbed and caused physical damage on the structure of algal cells. Interactions between PVC microplastics and diatoms may be the probable reason for the negative effects of PVC on diatoms.


Assuntos
Diatomáceas/efeitos dos fármacos , Microplásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Relação Dose-Resposta a Droga , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Fotossíntese/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Fatores de Tempo
2.
Nat Commun ; 11(1): 3108, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561737

RESUMO

In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice zone (SIZ). These blooms have a range of fates including physical advection, downward carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the production of chlorophyll-based on nitrate depletion-compared with measured chlorophyll. Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the annually-averaged losses (169 mg C m-2 d-1), and phytodetritus POC export comprises ~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phytoplankton fate throughout the Southern Ocean SIZ.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Cadeia Alimentar , Camada de Gelo/microbiologia , Fitoplâncton/fisiologia , Água do Mar/microbiologia , Algoritmos , Clorofila/análise , Clorofila/metabolismo , Conjuntos de Dados como Assunto , Monitorização de Parâmetros Ecológicos/instrumentação , Eutrofização , Herbivoria , Oceanos e Mares , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Estações do Ano , Análise Espaço-Temporal
3.
Chemosphere ; 257: 127165, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480088

RESUMO

Phytoplankton and bacterioplankton are the key components of the organic matter cycle in aquatic ecosystems, and their interactions can impact the transfer of carbon and ecosystem functioning. The aim of this work was to assess the consequences of chemical contamination on the coupling between phytoplankton and bacterioplankton in two contrasting marine coastal ecosystems: lagoon waters and offshore waters. Bacterial carbon demand was sustained by primary carbon production in the offshore situation, suggesting a tight coupling between both compartments. In contrast, in lagoon waters, due to a higher nutrient and organic matter availability, bacteria could rely on allochthonous carbon sources to sustain their carbon requirements, decreasing so the coupling between both compartments. Exposure to chemical contaminants, pesticides and metal trace elements, resulted in a significant inhibition of the metabolic activities (primary production and bacterial carbon demand) involved in the carbon cycle, especially in offshore waters during spring and fall, inducing a significant decrease of the coupling between primary producers and heterotrophs. This coupling loss was even more evident upon sediment resuspension for both ecosystems due to the important release of nutrients and organic matter. Resulting enrichment alleviated the toxic effects of contaminants as indicated by the stimulation of phytoplankton biomass and carbon production, and modified the composition of the phytoplankton community, impacting so the interactions between phytoplankton and bacterioplankton.


Assuntos
Fitoplâncton/fisiologia , Poluentes Químicos da Água/toxicidade , Bactérias/metabolismo , Biomassa , Carbono/metabolismo , Ecossistema , Praguicidas/metabolismo , Estações do Ano , Água do Mar/química , Oligoelementos/metabolismo
4.
PLoS One ; 15(5): e0233156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459813

RESUMO

Marine microbial plankton hold high structural and functional diversity, however, high-resolution data are lacking in a large part of the Global Ocean, such as in subpolar areas of the SW Atlantic. The Burdwood Bank (BB) is a submerged plateau (average depth 100 m) that constitutes the westernmost segment of the North Scotia Ridge (54°-55°S; 56°-62°W). The BB hosts rich benthic biodiversity in low chlorophyll waters of the southern Patagonian Shelf, Argentina, declared Namuncurá Marine Protected Area (NMPA) in 2013. So far, the pelagic microorganisms above the bank have not been described. During austral summer 2016, we assessed the microbial plankton (0.2-200 µm cell size) biomass and their taxonomical and functional diversity along a longitudinal transect (54.2-55.3°S, 58-68°W) from the Beagle Channel (BC) to the BB, characterized by contrasting hydrography. Results displayed a marked zonation in the composition and structure of the microbial communities. The biomass of phytoplankton >5 µm was 28 times higher in the BC, attributed mainly to large diatom blooms, than in oceanic waters above the BB, where the small coccolithophore Emiliania huxleyi and flagellates <10 µm dominated. In turn, the biomass of microheterotrophs above the BB doubled the biomass in the BC due to large ciliates. Notably, toxic phytoplankton species and their phycotoxins were detected, in particular high abundance of Dinophysis acuminata and pectenotoxins above the bank, highlighting their presence in open subpolar regions. Picophytoplankton (<2 µm), including Synechococcus and picoeukaryotes, were remarkably important above the BB, both at surface and deep waters (up to 150 m). Their biomass surpassed by 5 times that of phytoplankton > 5 µm, emphasizing the importance of small-sized phytoplankton in low chlorophyll waters. The homogeneous water column and high retention above the bank seem to favor the development of abundant picophytoplankton and microzooplankton communities. Overall, our findings unfold the plankton configuration in the Southern Patagonian Shelf, ascribed as a sink for anthropogenic CO2, and highlight the diverse ecological traits that microorganisms develop to adjust their yield to changing conditions.


Assuntos
Biomassa , Modelos Biológicos , Fitoplâncton , Regiões Antárticas , Argentina , Fitoplâncton/classificação , Fitoplâncton/microbiologia , Fitoplâncton/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(22): 12215-12221, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414929

RESUMO

Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.


Assuntos
Biodiversidade , Comportamento Alimentar , Fitoplâncton/fisiologia , Synechococcus/crescimento & desenvolvimento , Zooplâncton/fisiologia , Animais , Cadeia Alimentar , Modelos Estatísticos , Dinâmica Populacional
6.
PLoS One ; 15(4): e0231357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271852

RESUMO

The relative importance of bottom-up versus top-down effects in aquatic ecosystems remains a longstanding and ongoing controversy. To investigate these effects on phytoplankton communities in freshwater lakes, phytoplankton and zooplankton were sampled, and physical-chemical variables were measured during spring and summer in two important freshwater lakes in northern China: Nansi Lake and Dongping Lake. The redundancy analysis results showed that phytoplankton density and biomass were regulated by physical-chemical variables (bottom-up effects) and predation (top-down effects) together, and the former was more prominent in both lakes. However, the correlation analysis indicated that the top-down effects of zooplankton on phytoplankton were not significant in spring and summer in both lakes, while the bottom-up regulation of physical-chemical variables on phytoplankton had different patterns in the two lakes. In Nansi Lake, the bottom-up effects of physical-chemical variables on phytoplankton were weaker in summer than that in spring due to the abundant nutrients in summer. In Dongping Lake, the bottom-up effects of physical-chemical on phytoplankton were significant both in spring and summer, and the dominant bottom-up control factor shifted from total nitrogen in spring to total phosphorus in summer, with an increased ratio of nitrogen to phosphorus due to changes in limiting factors. In the two studied lakes, with fish culture, the bottom-up effects of phytoplankton on zooplankton were more important than the top-down effects of zooplankton on phytoplankton. These results demonstrate the interactions between phytoplankton and zooplankton and highlight the importance of phytoplankton regulation in freshwater lakes, which has implications for the effective management of freshwater lake ecosystems.


Assuntos
Lagos/química , Fitoplâncton/fisiologia , Animais , Biomassa , Ecossistema , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Temperatura , Zooplâncton/fisiologia
7.
Ecotoxicol Environ Saf ; 196: 110497, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247956

RESUMO

Stresses imposed by insecticides and predators are possibly the most rigorous filters to which aquatic organisms are exposed in rivers and lakes associated with agricultural lands. However, their interactive effects on zooplankton communities are still unclear. This study elucidated the zooplankton community response to fish predation, the insecticide chlorpyrifos (CLP), and a combination of both factors, using a 30-day mesocosm experiment. The zooplankton assemblage was influenced by fish presence prior to CLP toxicity. Fish predation reduced microcrustacean density leading to a community dominated by microzooplankton (i.e.: rotifers and copepod nauplii). CLP decreased the species richness in treatments with and without fish, yielding an increase in the abundance of bdelloid rotifers, in the genera Lepadella and Trichocerca. The zooplankton:phytoplankton (<20 µm) ratio decreased substantially when the two stressors, fish predation and insecticide toxicity, were combined. Although CLP dissipated relatively rapidly in the aqueous phase and accumulated in sediment and fish tissue, zooplankton richness was unable to recover. A possible explanation for this could be the inhibitory effect of CLP on resting stage hatchings in the sediment. Therefore, the combined effects of fish predation and CLP might influence zooplankton richness, leading to an assemblage dominated by rotifers that appeared to be resistant to both factors, with a limited capability to control phytoplankton growth. Thus, the effects of natural and anthropogenic stressors should be considered together when assessing community dynamics in aquatic ecosystems.


Assuntos
Peixes/fisiologia , Inseticidas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zooplâncton/fisiologia , Animais , Clorpirifos/toxicidade , Ecossistema , Água Doce/química , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/fisiologia , Zooplâncton/efeitos dos fármacos
8.
PLoS One ; 15(4): e0231771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32310982

RESUMO

Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.


Assuntos
Fixação de Nitrogênio , Fitoplâncton/genética , Prochlorococcus/genética , Synechococcus/genética , Transcriptoma , California , Ciclo do Carbono , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fotossíntese , Fitoplâncton/fisiologia , Prochlorococcus/fisiologia , Synechococcus/fisiologia
9.
Mar Environ Res ; 155: 104880, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072984

RESUMO

Increasing dissolution of CO2 in the surface ocean is rapidly decreasing its pH and changing carbon chemistry which is further affecting marine biota in several ways. Phytoplankton response studies under the combination of elevated CO2 and trace metals are rare. We have conducted two consecutive onboard incubation experiments (R. V. Sindhu Sadhana; August 2017) in the eastern Arabian Sea (SW coast of India) during an upwelling event. A nutrient enriched diatom bloom was initiated onboard and grown under ambient (≈400 µatm, A-CO2) and high CO2 levels (≈1000 µatm; H-CO2) with different zinc (Zn; 1 nM) and copper (Cu) concentrations (1 nM, 2 nM and 8 nM). Phytoplankton community composition and the dominant genera were different during these two experiments. CO2 enrichment alone did not show any significant growth stimulating impact on the experimental community except enhanced cell density in the first experiment. Addition of Zn at A-CO2 level revealed no noticeable responses; whereas, the same treatment under H-CO2 level significantly reduced cell number. Considerably high protein content under H-CO2+Zn treatment was possibly counteracting Zn toxicity which also caused slower growth rate. Cu addition did not show any noticeable impact on growth and biomass production except increased protein content as well as decreased carbohydrate: protein ratio. This can be attributed to relatively higher protein synthesis than carbohydrate to alleviate oxidative stress generated by Cu. The centric diatom Chaetoceros and toxin producing pennate diatom Pseudo-nitzschia showed no significant response to either CO2 or Zn enrichment. Large centric diatom Leptocylindrus and Skeletonema responded positively to Zn addition in both CO2 levels. The former species showed the most sensitive response at the highest Cu and H-CO2 treatment; whereas, the pennate diatoms Nitzschia and Pseudo-nitzschia (toxigenic diatom) showed higher resilience under elevated CO2 and Cu levels. This observation indicated that in future ocean, increasing CO2 concentrations and trace metal pollution may potentially alter phytoplankton community structure and may facilitate toxigenic diatom bloom in the coastal waters.


Assuntos
Cobre/química , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Água do Mar/química , Zinco/química , Ácidos , Concentração de Íons de Hidrogênio , Índia
10.
Mar Pollut Bull ; 151: 110798, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056593

RESUMO

Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.


Assuntos
Petróleo , Fitoplâncton/fisiologia , Poluentes Químicos da Água , Diatomáceas , Dinoflagelados , Ribossomos
11.
Ann Rev Mar Sci ; 12: 233-265, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899671

RESUMO

Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.


Assuntos
Oceanos e Mares , Fitoplâncton/fisiologia , Biodiversidade , Fotossíntese , Fitoplâncton/classificação
12.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924617

RESUMO

The revolution of molecular techniques has revealed that the composition of natural bacterial communities normally includes a few abundant taxa and many rare taxa. Unraveling the mechanisms underlying the spatial assembly process of both abundant and rare bacterial taxa has become a central goal in microbial ecology. Here, we used high-throughput sequencing to explore geographic patterns and the relative importance of ecological processes in the assembly of abundant and rare bacterial subcommunities from 25 lakes across the middle and lower reaches of Yangtze River basin (MLYB), located in Southeast China, where most of the lakes are interconnected by river networks. We found similar biogeographic patterns of abundant and rare subcommunities which could significantly distinguish the community compositions of the two lake groups that were far from each other but which could not distinguish the community compositions of the nearby lakes. Both abundant and rare bacteria followed a strong distance-decay relationship. These findings suggest that the interconnectivity between lakes homogenizes the bacterial communities in local areas, and the abundant and rare taxa therein may be affected by the same ecological process. In addition, based on the measured environmental variables, the deterministic processes explain a small fraction of variation within both abundant and rare subcommunities, while both neutral and null models revealed a high stochasticity ratio for the spatial distribution patterns of both abundant and rare taxa. These findings indicate that the stochastic processes exhibited a greater influence on both abundant and rare bacterial subcommunity assemblies among interconnected lakes.IMPORTANCE The middle and lower Yangtze Plain is a typical floodplain in which many lakes connect with each other, especially in the wet season. More importantly, with the frequent change of regional water level in the wet season, there is a mutual hydrodynamic exchange among these lakes. The microbial biogeography among these interconnected lakes is still poorly understood. This study aims to unravel the mechanisms underlying the assembly process of abundant and rare bacteria among the interconnected lakes in the middle and lower Yangtze Plain. Our findings will provide a deeper understanding of the biogeographic patterns of rare and abundant bacterial taxa and their determined processes among interconnected aquatic habitats.


Assuntos
Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Fitoplâncton/fisiologia , China , Geografia , Densidade Demográfica , Rios/microbiologia , Estações do Ano
13.
Sci Total Environ ; 703: 135519, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757554

RESUMO

Environmental heterogeneity (EH) in space and time promotes niche-partition, which leads to high variation in biological communities, such as in algae. In streams, EH is highly related to the intensity of the water flow and may lead to community variation mainly during the low flow conditions. Despite the wide knowledge on the responses of phytoplankton communities to EH in lentic and semi-lentic systems, studies of riverine phytoplankton community variation are still scarce. Here, we first investigated the relationship between phytoplankton community variation and EH in different courses of the river and between seasons. We expected that under low or intermediate flow conditions, there is a positive correlation between community variation and EH. Alternatively, we did not expect any relationship between EH and community variation under high flow condition because stronger downstream transport would mask environmental filtering. We sampled nine sites monthly (May 2012 to April 2013) in a tropical river of Brazilian Southeast. We calculated EH from abiotic data whereas for community variation, here community distinctiveness (CD), we used Sorensen (CDSor) and Bray-Curtis (CDBray) dissimilarities. Differences in EH, CDSor and CDBray were tested at between-season and among-course levels. We found lower distinctiveness during the dry season when EH was the highest. Contrastingly, phytoplankton CD was the highest even when EH was low during the wet season. We found that this pattern raised from the increasing in individuals dispersal during the wet season, promoting mass effects. Finally, our results thus reject the first hypothesis and show a negative relationship between EH and distinctiveness. However, results support our alternative hypothesis and show that during the wet season, distinctiveness is not driven by EH. These results provide new insights into how EH drives community variation, being useful for both basic research about riverine algal communities and biomonitoring programs using phytoplankton communities as bioindicators.


Assuntos
Biodiversidade , Monitoramento Ambiental , Fitoplâncton/fisiologia , Rios , Brasil , Fitoplâncton/classificação , Estações do Ano
14.
Ann Rev Mar Sci ; 12: 1-22, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31525127

RESUMO

This narrative is a personal account of my evolution as a student of phytoplankton and the ocean. Initially I focused on phytoplankton nutrient physiology and uptake, later switching to photosynthetic physiology. Better models of photosynthesis naturally require a better understanding of spectral underwater light fields and absorption coefficients, which precipitated my involvement in the nascent field of bio-optical oceanography. Establishment of the now 34-year-old summer graduate course in ocean optics, which continues to attract students from around the globe, is a legacy of my jumping into optics. The importance of social interactions in advancing science cannot be underestimated; a prime example is how a TGIF gathering led to my immersion in the world of autonomous underwater vehicles for the past two decades of my career. Working with people who you like and respect is also critical; I believe collegial friendship played a major role in the great success of the 2008 North Atlantic Bloom Experiment.


Assuntos
Oceanografia/tendências , Educação de Pós-Graduação , História do Século XX , História do Século XXI , Nutrientes/metabolismo , Oceanografia/instrumentação , Fosfatos/metabolismo , Fotossíntese , Fitoplâncton/fisiologia , Estações do Ano
15.
Am Nat ; 195(1): E20-E37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868537

RESUMO

Phytoplankton are among the smallest primary producers on Earth, yet they display a wide range of cell sizes. Typically, small phytoplankton species are stronger nutrient competitors than large phytoplankton species, but they are also more easily grazed. In contrast, evolution of large phytoplankton is often explained as a physical defense against grazing. Conceptually, this explanation is problematic, however, because zooplankton can coevolve larger size to counter this size-dependent escape from grazing. Here, we hypothesize that there is another advantage for the evolution of large phytoplankton size not so readily overcome: larger phytoplankton often provide lower nutritional quality for zooplankton. We investigate this hypothesis by analyzing an eco-evolutionary model that combines the ecological stoichiometry of phytoplankton-zooplankton interactions with coevolution of phytoplankton and zooplankton size. In our model, evolution of cell size modifies the nutrient uptake kinetics of phytoplankton according to known allometric relationships, which in turn affect the nutritional quality of phytoplankton. With this size-based mechanism, the model predicts that low grazing pressure or nonselective grazing by zooplankton favors evolution of small phytoplankton cells of high nutritional quality. In contrast, selective grazing for nutritious food favors evolution of large phytoplankton of low nutritional quality, which are preyed on by medium- to large-sized zooplankton. This size-dependent change in food quality may explain the commonly observed shift from dominance by small picophytoplankton in oligotrophic waters with low grazing pressure to large phytoplankton species in nutrient-rich waters with high grazing pressure.


Assuntos
Biomassa , Cadeia Alimentar , Valor Nutritivo , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Herbivoria
16.
Artigo em Inglês | MEDLINE | ID: mdl-31752099

RESUMO

Chlorophyll a (Chl-a) is an important indicator of algal biomass in aquatic ecosystems. In this study, monthly monitoring data for Chl-a concentration were collected between 2005 and 2015 at four stations in Meiliang Bay, a eutrophic bay in Lake Taihu, China. The spatiotemporal distribution of Chl-a in the bay was investigated, and a statistical model to relate the Chl-a concentration to key driving variables was also developed. The monthly Chl-a concentration in Meiliang Bay changed from 2.6 to 330.0 µg/L, and the monthly mean Chl-a concentration over 11 years was found to be higher at sampling site 1, the northernmost site near Liangxihe River, than at the three other sampling sites. The annual mean Chl-a concentration fluctuated greatly over time and exhibited an upward trend at all sites except sampling site 3 in the middle of Meiliang Bay. The Chl-a concentration was positively correlated with total phosphorus (TP; r = 0.57, p < 0.01), dissolved organic matter (DOM; r = 0.73, p < 0.01), pH (r = 0.44, p < 0.01), and water temperature (WT; r = 0.37, p < 0.01), and negatively correlated with nitrate (NO3--N; r = -0.28, p < 0.01), dissolved oxygen (DO; r = -0.12, p < 0.01), and Secchi depth (ln(SD); r = -0.11, p < 0.05). A multiple linear regression model integrating the interactive effects of TP, DOM, WT, and pH on Chl-a concentrations was established (R = 0.80, F = 230.7, p < 0.01) and was found to adequately simulate the spatiotemporal dynamics of the Chl-a concentrations in other regions of Lake Taihu. This model provides lake managers with an alternative for the control of eutrophication and the suppression of aggregations of phytoplankton biomass at the water surface.


Assuntos
Clorofila A/análise , Eutrofização , Lagos/química , Fósforo/análise , Fitoplâncton/fisiologia , Poluentes Químicos da Água/análise , Biomassa , China , Monitoramento Ambiental , Modelos Biológicos , Análise Multivariada
17.
Environ Monit Assess ; 191(12): 719, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31691166

RESUMO

Phytoplankton species composition has long been recognized to be structured by environmental filtering, but our knowledge of patterns of spatial dissimilarity congruence between the phytoplankton community and environmental divers is rather limited. Specifically, a study on whether there are specific temporal properties that could be more related to spatial dissimilarity remains to be seen. We examined the extent to how spatial dissimilarity changed with seasonal succession by measuring ß-diversity in phytoplankton communities in Lake Erhai (from January 2012 to December 2014 at 15 sampling sites) as a function of different period conditions (high-density period and low-density period). We found that congruences of spatial dissimilarity in algal communities over time were neither stable in time nor showed a seasonal pattern. The spatial dissimilarity congruence between the phytoplankton community and dissolved inorganic phosphorus (DIP) concentration followed exponential decay patterns, and this congruence was led by algal cell density. This result implies that species and functions of phytoplankton are specialized, and DIP concentration drastically increases in high-density periods than in low-density periods. This means that DIP enrichment is related to the loss of algal diversity and functions and the increase of algal biomass in eutrophic lakes.


Assuntos
Monitoramento Ambiental , Lagos/química , Fósforo/análise , Fitoplâncton/fisiologia , Biodiversidade , Biomassa , China , Eutrofização
18.
Environ Monit Assess ; 191(11): 681, 2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-31656998

RESUMO

The aim of this study was to test whether the water quality phytoplankton assemblage index adapted for rivers (Qr index) is useful to characterize the water quality of a neotropical stream. We were interested also in inferring the main pollutants through a phytoplankton functional trait characterization and assessing the phytoplankton groups which may influence the Qr index final estimations. Monthly sampling of environmental variables and phytoplankton were done in three sites (S1, S2, and S3). Phytoplankton was classified according to Reynolds Functional Groups (RFG) and water quality estimation was performed using the Qr index. Principal coordinates (PCO) and PERMANOVA were applied to identify the main pollutants through the RFG. RFG linkage to Qr values was assessed by general linear models (GLM). "Moderate" water quality was found in S1 the whole year, in all sampling stations during the winter, and in summer-autumn in S2. "Regular" water quality was found in S3 during the summer-autumn, and S2-S3 during the spring. S1 and S2 showed eutrophic, standing, or mix waters whereas S3 had high organic matter content and eutrophic conditions. Despite some RFG (X1 and MP) being linked to high Qr values and some other (M, S1 and Z) to low, their dominance did not influence water quality estimation performed by the Qr. We conclude that the Qr index was useful for assessing the water quality. Though RFG were valuable for inferring eutrophication, organic pollution, and mixing, but their dominance does not necessarily have a direct effect on the final Qr estimation.


Assuntos
Monitoramento Ambiental/métodos , Fitoplâncton/fisiologia , Rios/química , China , Eutrofização , Estações do Ano , Qualidade da Água
19.
Environ Monit Assess ; 191(10): 603, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31482206

RESUMO

The spatial and temporal variation of phytoplankton communities including HAB species in relation to the environmental characteristics was investigated in the protected meso-oligotrophic Mellah lagoon located in the South Western Mediterranean. During 2016, a biweekly monitoring of phytoplankton assemblages and the main abiotic factors were realized at three representative stations. Taxonomic composition, abundance, and diversity index were determined. In total, 227 phytoplankton species (160 diatoms and 53 dinoflagellates) were inventoried. There was a clear dominance of diatoms (62.9%) compared with dinoflagellates (36.8%). Diatoms dominated in spring and dinoflagellates developed in summer and early autumn in Mellah showing a marked seasonal trend. Data showed that the dynamic of the phytoplankton taxa evolving in the lagoon was mainly driven by temperature and salinity. For the first time, a number of potentially toxic species have been identified, including 2 diatoms (Pseudo-nitzschia group delicatissima, Pseudo-nitzschia group seriata) and 5 dinoflagellates (Alexandrium minutum, Alexandrium tamarense/catenella, Dinophysis acuminata, Dinophysis sacculus, Prorocentrum lima). These harmful species could threat the functioning of the Mellah lagoon and human health and require the establishment of a monitoring network. Finally, our study suggests that the observed decrease of the phytoplankton diversity between 2001 and 2016 could result from the reduction in water exchanges between the lagoon and the adjacent coast following the gradual clogging of the channel.


Assuntos
Meio Ambiente , Monitoramento Ambiental , Fitoplâncton/classificação , Estações do Ano , Argélia , Diatomáceas/classificação , Diatomáceas/fisiologia , Dinoflagelados/classificação , Dinoflagelados/fisiologia , Fitoplâncton/fisiologia , Salinidade , Temperatura
20.
Sci Total Environ ; 692: 769-783, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539984

RESUMO

Based on the field surveys aimed at understanding the variations of Synechococcus (Syn) abundance in the Pearl River Estuary during different seasons. We found that heavy terrestrial precipitation result in significant riverine runoffs and promote Syn growth, extension and blooms during warm and wet seasons. To understand the ecological role of Syn play in this estuary during wet seasons, we combined flow cytometry and high throughput sequencing (HTS) of 16S rDNA to investigate the phytoplankton distribution patterns and the potential shaping mechanisms during a typical wet season. During the cruise, picophytoplankton, especially Syn, and Nano-eukaryotes contributed importantly to the total phytoplankton biomass of the estuary. Syn can be further divided into phycoerythrin (PE)-rich Syn and phycocyanin (PC)-rich Syn, with PC-rich Syn about 1.5 times higher than PE-rich Syn in abundance. Both PE-rich Syn (60.75 × 103 cells ml-1) and PC-rich Syn (604.05 × 103 cells ml-1) reach the highest abundance at the lower part of the estuary. Moreover, PE-rich Syn can be divided into two subgroups which showed different salinity preference, with PE1 distributed in the high salinity area (with salinity >25) while PE2 in the middle salinity area (with salinity 7-20). Our results from the 16S rDNA sequencing also indicated abundant diversity and different niche adaptation of Syn with the operational taxonomic units (OTUs) along the estuary. Besides, analysis also indicated a tight correlation between estuarine Syn and active heterotrophic bacteria, especially groups of Rhodobacteria and Actionobacteria.


Assuntos
Eutrofização , Inundações , Fitoplâncton/fisiologia , Synechococcus/fisiologia , China , Estuários , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA