Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.494
Filtrar
1.
J Agric Food Chem ; 67(39): 10891-10903, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31505929

RESUMO

Jasmonates (JAs) play an important role in plant developmental processes and regulate the biosynthesis of various specialized metabolites, and transcription factors are crucial in mediating JA signaling to regulate these processes. Capsaicinoids (Caps) are intriguing specialized metabolites produced uniquely by Capsicum species that give their fruits a pungent flavor to defend against herbivory and pathogens. In this study, we identify a R2R3-MYB transcription factor CaMYB108 and demonstrate its roles in regulating the biosynthesis of Caps and stamen development. Transcriptional analysis indicated that CaMYB108 was preferentially expressed in the flower and fruit, while the subcellular localization of CaMYB108 was shown to be the nucleus. Virus-induced gene silencing of CaMYB108 led to the expression of capsaicinoid biosynthetic genes (CBGs), and the contents of Caps dramatically reduce. Moreover, the CaMYB108-silenced plants showed delayed anther dehiscence and reduced pollen viability. Transient overexpression of CaMYB108 caused the expression of CBGs to be upregulated, and the Caps content significantly increased. The results of dual-luciferase reporter assays showed that CaMYB108 targeted CBG promoters. In addition, the expression of CaMYB108 and CBGs was inducible by methyl jasmonate and was consistent with the increased content of Caps. Overall, our results indicate that CaMYB108 is involved in the regulation of Caps biosynthesis and stamen development.


Assuntos
Capsaicina/metabolismo , Capsicum/metabolismo , Ciclopentanos/metabolismo , Flores/crescimento & desenvolvimento , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
2.
Ecotoxicol Environ Saf ; 183: 109468, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398580

RESUMO

Tephrosia vogelii Hook was excellent insecticidal plant, it was introduced into China and planted over a large area in Guangdong province. The main active components of T. vogelii was rotenone and it widely found in leaves and pods of T. vogelii. This paper study of the safety assessment of T. vogelii flowers to worker bees. In this paper, the content of rotenone in T. vogelii petal, nectar, pollen, pistil, and stamen samples were investigated by HPLC, and tested the toxicity of T. vogelii flowers for Apis cerana cerana during 24 h. The dissipation and dynamic of rotenone in A. c. cerana different biological compartments were investigated under indoor conditions during 24 h. The results showed, The LT50 of T. vogelii flowers to worker bees were collected from the eastern, western, southern, northern and top were 13.95, 24.17, 12.55, 26.48, and 18.84 h, the haemolymph of worker bees have the highest content of rotenone, the least accumulation of rotenone in workers bee's thorax, and the rate of dissipation was slowly during the whole study. In conclusion, the results showed the T. vogelii create security risks to worker bees under some ecosystems.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Rotenona/toxicidade , Tephrosia/química , Animais , China , Ecossistema , Flores/química , Flores/crescimento & desenvolvimento , Inseticidas/análise , Controle Biológico de Vetores , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Néctar de Plantas/química , Pólen/química , Rotenona/análise , Tephrosia/crescimento & desenvolvimento
3.
Plant Physiol Biochem ; 142: 510-518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31445476

RESUMO

As one of the most popular woody species that blooms in summer, Lagerstroemia speciosa has been used abundantly in urban landscape for its excellent floral beauty. For the first time, we discovered a double-flower variant with all petaloid stamens. To understand the molecular basis of this variation, we contrasted the transcriptomes of single- and double-flower buds at three stamen development stages. In total, 73,536 unigenes were mapped and 30,714 differently expressed genes (DEGs) were identified in the tissues. We focused on the DEGs expressing in both phenotypes and investigated the association of their expression profiles with their functions in transcription pathways. Furthermore, we performed WGCNA and identified co-expressed genes with four floral homeotic genes as hubs (MADS16, Unigene0026169; AP2, Unigene0042732; SOC1, Unigene0046314; AG, Unigene0056437). The expression of these hub genes has been conserved across the three developmental stages but significantly different between the two floral phenotypes. As a result, the robust transcriptional regulation of stamen petaloidy in double flowers was deduced. These findings will help to unravel the regulatory mechanisms of several specific genes, thereby providing a basis to study double-flower molecular breeding in L. speciosa.


Assuntos
Flores/crescimento & desenvolvimento , Lagerstroemia/crescimento & desenvolvimento , Flores/anatomia & histologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Lagerstroemia/anatomia & histologia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
4.
BMC Plant Biol ; 19(1): 340, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382873

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are known to play an important role in the regulation of gene expression in eukaryotes. Photo-thermosensitive genic male sterile (PTGMS) is a very important germplasm resource in two-line hybrid rice breeding. Although many circRNAs have been identified in rice (Oryza sativa L.), little is known about the biological roles of circRNAs in the fertility transition of the PTGMS rice line. RESULTS: In the present study, RNA-sequencing libraries were constructed from the young panicles of the Wuxiang S sterile line rice (WXS (S)) and its fertile line rice (WXS (F)) at three development stages with three biological replicates. A total of 9994 circRNAs were obtained in WXS rice based on high-throughput strand-specific RNA sequencing and bioinformatic approaches, of which 5305 were known circRNAs and 4689 were novel in rice. And 14 of 16 randomly selected circRNAs were experimentally validated with divergent primers. Our results showed that 186 circRNAs were significantly differentially expressed in WXS (F) compared with WXS (S), of which 97, 87 and 60 circRNAs were differentially expressed at the pollen mother cell (PMC) formation stage (P2), the meiosis stage (P3) and the microspore formation stage (P4), respectively. Fertility specific expression patterns of eight circRNAs were analysis by qRT-PCR. Gene ontology (GO) and KEGG pathway analysis of the parental genes of differentially expressed circRNAs (DECs) revealed that they mainly participated in various biological processes such as development, response to stimulation, hormonal regulation, and reproduction. Furthermore, 15 DECs were found to act as putative miRNA sponges to involved in fertility transition in PTGMS rice line. CONCLUSION: In the present study, the abundance and characteristics of circRNAs were investigated in the PTGMS rice line using bioinformatic approaches. Moreover, the expression patterns of circRNAs were different between WXS (F) and WXS (S). Our findings primarily revealed that circRNAs might be endogenous noncoding regulators of flower and pollen development, and were involved in the fertility transition in the PTGMS rice line, and guide the production and application of two-line hybrid rice.


Assuntos
Oryza/genética , RNA/genética , Fertilidade/genética , Fertilidade/fisiologia , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia , Resposta ao Choque Térmico , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/fisiologia , Pólen/crescimento & desenvolvimento , RNA/fisiologia
5.
BMC Plant Biol ; 19(1): 372, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438864

RESUMO

BACKGROUND: Correct timing of flowering is critical for plants to produce enough viable offspring. In Arabidopsis thaliana (Arabidopsis), flowering time is regulated by an intricate network of molecular signaling pathways. Arabidopsis srr1-1 mutants lacking SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) expression flower early, particularly under short day (SD) conditions (1). SRR1 ensures that plants do not flower prematurely in such non-inductive conditions by controlling repression of the key florigen FT. Here, we have examined the role of SRR1 in the closely related crop species Brassica napus. RESULTS: Arabidopsis SRR1 has five homologs in Brassica napus. They can be divided into two groups, where the A02 and C02 copies show high similarity to AtSRR1 on the protein level. The other group, including the A03, A10 and C09 copies all carry a larger deletion in the amino acid sequence. Three of the homologs are expressed at detectable levels: A02, C02 and C09. Notably, the gene copies show a differential expression pattern between spring and winter type accessions of B. napus. When the three expressed gene copies were introduced into the srr1-1 background, only A02 and C02 were able to complement the srr1-1 early flowering phenotype, while C09 could not. Transcriptional analysis of known SRR1 targets in Bna.SRR1-transformed lines showed that CYCLING DOF FACTOR 1 (CDF1) expression is key for flowering time control via SRR1. CONCLUSIONS: We observed subfunctionalization of the B. napus SRR1 gene copies, with differential expression between early and late flowering accessions of some Bna.SRR1 copies. This suggests involvement of Bna.SRR1 in regulation of seasonal flowering in B. napus. The C09 gene copy was unable to complement srr1-1 plants, but is highly expressed in B. napus, suggesting specialization of a particular function. Furthermore, the C09 protein carries a deletion which may pinpoint a key region of the SRR1 protein potentially important for its molecular function. This is important evidence of functional domain annotation in the highly conserved but unique SRR1 amino acid sequence.


Assuntos
Brassica napus/genética , Flores/genética , Genes de Plantas , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Dosagem de Genes , Expressão Gênica , Filogenia , Proteínas de Plantas/fisiologia
6.
BMC Plant Biol ; 19(1): 336, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370790

RESUMO

BACKGROUND: APETALA2-like genes encode plant-specific transcription factors, some of which possess one microRNA172 (miR172) binding site. The miR172 and its target euAP2 genes are involved in the process of phase transformation and flower organ development in many plants. However, the roles of miR172 and its target AP2 genes remain largely unknown in Brassica napus (B. napus). RESULTS: In this study, 19 euAP2 and four miR172 genes were identified in the B. napus genome. A sequence analysis suggested that 17 euAP2 genes were targeted by Bna-miR172 in the 3' coding region. EuAP2s were classified into five major groups in B.napus. This classification was consistent with the exon-intron structure and motif organization. An analysis of the nonsynonymous and synonymous substitution rates revealed that the euAP2 genes had gone through purifying selection. Whole genome duplication (WGD) or segmental duplication events played a major role in the expansion of the euAP2 gene family. A cis-regulatory element (CRE) analysis suggested that the euAP2s were involved in the response to light, hormones, stress, and developmental processes including circadian control, endosperm and meristem expression. Expression analysis of the miR172-targeted euAP2s in nine different tissues showed diverse spatiotemporal expression patterns. Most euAP2 genes were highly expressed in the floral organs, suggesting their specific functions in flower development. BnaAP2-1, BnaAP2-5 and BnaTOE1-2 had higher expression levels in late-flowering material than early-flowering material based on RNA-seq and qRT-PCR, indicating that they may act as floral suppressors. CONCLUSIONS: Overall, analyses of the evolution, structure, tissue specificity and expression of the euAP2 genes were peformed in B.napus. Based on the RNA-seq and experimental data, euAP2 may be involved in flower development. Three euAP2 genes (BnaAP2-1, BnaAP2-5 and BnaTOE1-2) might be regarded as floral suppressors. The results of this study provide insights for further functional characterization of the miR172 /euAP2 module in B.napus.


Assuntos
Brassica napus/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , MicroRNAs/genética , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequência Conservada/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , MicroRNAs/fisiologia , Filogenia , Alinhamento de Sequência
7.
DNA Cell Biol ; 38(9): 982-995, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31411493

RESUMO

The phosphatidylethanolamine-binding protein (PEBP) gene family exists in all eukaryote kingdoms, with three subfamilies: FT (FLOWERING LOCUS T)-like, TFL1 (TERMINAL FLOWER 1)-like, and MFT (MOTHER OF FT AND TFL1)-like. FT genes promote flowering, TFL1 genes act as a repressor of the floral transition, and MFT genes have functions in flowering promotion and regulating seed germination. We identified and characterized orthologs of the Arabidopsis FT/TFL1 gene family in petunia to elucidate their expression patterns and evolution. Thirteen FT/TFL1-like genes were isolated from petunia, with the five FT-like genes mainly expressed in leaves. The circadian rhythms of five FT-like genes and PhCO (petunia CONSTANS ortholog) were figured out. The expression of PhFT1 was contrary to that of PhFT2, PhFT3, PhFT4, and PhFT5. PhCO had a circadian clock different from Arabidopsis CO, but coincided with PhFT1; it decreased in daytime and accumulated at night. Two of the FT-like genes with differential circadian rhythm and higher expression levels, PhFT1 and PhFT4, were used to transform Arabidopsis. Eventually, overexpressing PhFT1 strongly delayed flowering, whereas overexpression of PhFT4 produced extremely early-flowering phenotype. Different from previous reports, PhTFL1a, PhTFL1b, and PhTFL1c were relatively highly expressed in roots. Taken together, this study demonstrates that petunia FT-like genes, like FT, are able to respond to photoperiod. The expression pattern of FT/TFL1 gene family in petunia contributes to a new insight into the functional evolution of this gene family.


Assuntos
Flores/genética , Família Multigênica , Petunia/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Petunia/crescimento & desenvolvimento , Fenótipo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoperíodo , Proteínas de Plantas/metabolismo
8.
BMC Plant Biol ; 19(1): 337, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375064

RESUMO

BACKGROUND: Cymbidium goeringii belongs to the Orchidaceae, which is one of the most abundant angiosperm families. Cymbidium goeringii consist with high economic value and characteristics include fragrance and multiple flower colors. Floral scent is one of the important strategies for ensuring fertilization. However, limited genetic data is available in this non-model plant, and little known about the molecular mechanism responsible for floral scent in this orchid. Transcriptome and expression profiling data are needed to identify genes and better understand the biological mechanisms of floral scents in this species. Present transcriptomic data provides basic information on the genes and enzymes related to and pathways involved in flower secondary metabolism in this plant. RESULTS: In this study, RNA sequencing analyses were performed to identify changes in gene expression and biological pathways related scent metabolism. Three cDNA libraries were obtained from three developmental floral stages: closed bud, half flowering stage and full flowering stage. Using Illumina technique 159,616,374 clean reads were obtained and were assembled into 85,868 final unigenes (average length 1194 nt), 33.85% of which were annotated in the NCBI non redundant protein database. Among this unigenes 36,082 were assigned to gene ontology and 23,164 were combined with COG groups. Total 33,417 unigenes were assigned in 127 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. According these transcriptomic data we identified number of candidates genes which differentially expressed in different developmental stages of flower related to fragrance biosynthesis. In q-RT-PCR most of the fragrance related genes highly expressed in half flowering stage. CONCLUSIONS: RNA-seq and DEG data provided comprehensive gene expression information at the transcriptional level that could be facilitate the molecular mechanisms of floral biosynthesis pathways in three developmental phase's flowers in Cymbidium goeringii, moreover providing useful information for further analysis on C. goeringii, and other plants of genus Cymbidium.


Assuntos
Flores/metabolismo , Genes de Plantas/genética , Odorantes , Orchidaceae/genética , Acetatos/metabolismo , Ciclopentanos/metabolismo , Farneseno Álcool/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Orchidaceae/metabolismo , Oxilipinas/metabolismo , Filogenia , Análise de Sequência de RNA , Sesquiterpenos/metabolismo , Terpenos/metabolismo
9.
BMC Plant Biol ; 19(1): 330, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337343

RESUMO

BACKGROUND: Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS: To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION: Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.


Assuntos
Cucurbitaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Diferenciação Sexual , Cromossomos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/fisiologia , Proteoma/fisiologia
10.
Plant Sci ; 286: 78-88, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300145

RESUMO

Chloroplastic Cpn60 proteins are type I chaperonins comprising of Cpn60α and Cpn60ß subunits. Arabidopsis genome contains six entries in Cpn60 family, out of which two are for Cpn60α subunit and four for Cpn60ß subunit. We noted that the cpn60ß4 knockout mutant plants (T-DNA insertion salk_064887 line) differed from the wild type Col-0 plants in the developmental programming. cpn60ß4 mutant plants showed early seed germination. Radical emergence, hypocotyl emergence and cotyledons opening were faster in cpn60ß4 mutant plants than WT. Importantly, cpn60ß4 mutant plants showed early-flowering phenotype. The number of flowers and siliques as well as weight of the seeds were higher in cpn60ß4 mutant plants as compared to Col-0 plants. These effects were reverted to wild type like growth and developmental patterns when genomic fragment of Arabidopsis encompassing Cpn60ß4 gene was complemented in the mutant background. The overexpression of Cpn60ß4 gene using CaMV35 promoter in wild type background (OE-Cpn60ß4) delayed the floral transition as against wild type plants. The plastid division were affected in cpn60ß4 mutant plants compared to Col-0. The results of this study suggest that Cpn60ß4 plays important role(s) in chloroplast development and is a key factor in plant growth, development and flowering in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a Fosfato/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a Fosfato/genética , Reprodução
11.
Gene ; 713: 143974, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301484

RESUMO

An orthologous gene of SEPALLATA1, designated as IiSEP1, was isolated from Isatis indigotica. The genomic DNA of IiSEP1 is 3.1 Kb in length. The full-length cDNA of IiSEP1 is 1481 bp and contains a 756 bp ORF encoding a 251-amino-acid protein. Sequence comparison revealed that IiSEP1 belonged to the MADS-box gene family. IiSEP1 contains 7 exons and 6 introns, showing similar exon-intron structure with Arabidopsis SEP1. Phylogenetic analysis suggested that IiSEP1 belonged to AGL2/SEP subfamily and was likely to be an I. indigotica ortholog of Arabidopsis SEP1. Quantitative real-time PCR showed that IiSEP1 was predominantly expressed in the reproductive organs. Ectopic expression of IiSEP1 in Arabidopsis resulted in early flowering, accompanied with the reduction of inflorescence number and the production of terminal flower on the top of the main stems. Moreover, IiSEP1 overexpressing flowers generated numerous variations in phenotype. The sepals were changed into petal-sepal mosaic structures or displayed carpelloid features, and transparent ovules were formed in internal surface of these sepals. In addition, some flowers were constituted by sepals and pistil, but lacked petals and stamens. Taken together, IiSEP1 might play important roles in reproductive growth of I. indigotica and could affect the morphogenesis of flowers and fruits.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/genética , Isatis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Sequência de Aminoácidos , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Isatis/genética , Proteínas de Domínio MADS/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Homologia de Sequência
12.
Nat Commun ; 10(1): 2999, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278262

RESUMO

The different genome-wide distributions of tri-methylation at H3K36 (H3K36me3) in various species suggest diverse mechanisms for H3K36me3 establishment during evolution. Here, we show that the transcription factor OsSUF4 recognizes a specific 7-bp DNA element, broadly distributes throughout the rice genome, and recruits the H3K36 methyltransferase SDG725 to target a set of genes including the key florigen genes RFT1 and Hd3a to promote flowering in rice. Biochemical and structural analyses indicate that several positive residues within the zinc finger domain are vital for OsSUF4 function in planta. Our results reveal a regulatory mechanism contributing to H3K36me3 distribution in plants.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Transativadores/metabolismo , Metilação de DNA/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
13.
BMC Plant Biol ; 19(1): 313, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307374

RESUMO

BACKGROUND: Essential oils (EOs) of Lavandula angustifolia, mainly consist of monoterpenoids and sesquiterpenoids, are of great commercial value. The multi-flower spiciform thyrse of lavender not only determines the output of EOs but also reflects an environmental adaption strategy. With the flower development and blossom in turn, the fluctuation of the volatile terpenoids displayed a regular change at each axis. However, the molecular mechanism underlying the regulation of volatile terpenoids during the process of flowering is poorly understood in lavender. Here, we combine metabolite and RNA-Seq analyses of flowers of five developmental stages at first- and second-axis (FFDSFSA) and initial flower bud (FB0) to discover the active terpenoid biosynthesis as well as flowering-related genes. RESULTS: A total of 56 mono- and sesquiterpenoids were identified in the EOs of L. angustifolia 'JX-2'. FB0' EO consists of 55 compounds and the two highest compounds, ß-trans-ocimene (20.57%) and (+)-R-limonene (17.00%), can get rid of 74.71 and 78.41% aphids in Y-tube olfactometer experiments, respectively. With sequential and successive blossoms, temporally regulated volatiles were linked to pollinator attraction in field and olfaction bioassays. In three characteristic compounds of FFDSFSA' EOs, linalyl acetate (72.73%) and lavandulyl acetate (72.09%) attracted more bees than linalool (45.35%). Many transcripts related to flowering time and volatile terpenoid metabolism expressed differently during the flower development. Similar metabolic and transcriptomic profiles were observed when florets from the two axes were maintained at the same maturity grade. Besides both compounds and differentially expressed genes were rich in FB0, most volatile compounds were significantly correlated with FB0-specific gene module. Most key regulators related to flowering and terpenoid metabolism were interconnected in the subnetwork of FB0-specific module, suggesting the cross-talk between the two biological processes to some degree. CONCLUSIONS: Characteristic compounds and gene expression profile of FB0 exhibit ecological value in pest control. The precise control of each-axis flowering and regular emissions at transcriptional and metabolic level are important to pollinators attraction for lavender. Our study sheds new light on lavender maximizes its fitness from "gene-volatile terpenoid-insect" three layers.


Assuntos
Flores/genética , Redes Reguladoras de Genes , Lavandula/genética , Terpenos/metabolismo , Acetatos/metabolismo , Animais , Ecossistema , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Insetos , Lavandula/crescimento & desenvolvimento , Lavandula/metabolismo , Monoterpenos/metabolismo , Odorantes , Óleos Voláteis/metabolismo , Óleos Vegetais/metabolismo , Polinização , RNA de Plantas , Análise de Sequência de RNA
14.
Mol Genet Genomics ; 294(6): 1403-1420, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31222475

RESUMO

Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.


Assuntos
Brassica rapa/genética , Flores/genética , Transcriptoma , Brassica rapa/classificação , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
J Dairy Sci ; 102(8): 7134-7149, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155262

RESUMO

Forage sorghum [Sorghum bicolor (L.) Moench] is a viable alternative to corn silage (Zea mays L.) in double cropping rotations with forage winter cereals in New York due to a later planting date and potentially earlier harvest date of forage sorghum than is typical for corn silage. Our objective was to determine whether harvest of brachytic dwarf brown midrib forage sorghum can take place before the currently recommended soft dough harvest time while maintaining dry matter (DM) yield, forage nutritive value, and total mixed ration performance. Seven trials were conducted on 2 research farms in central New York from 2014 to 2017. Forage sorghum received 1 of 2 fertilizer N rates at planting (112 and 224 kg of N/ha). Stands were harvested at boot, flower, milk, and soft dough stages. Forage samples were analyzed for nutritive value and substituted for corn silage in a typical dairy total mixed ration at varying amounts using the Cornell Net Carbohydrate and Protein System. Timing of harvest affected yield and forage nutritive value for each individual trial and across trials, and the effects were independent of N fertilizer application rate. Averaged across trials, yield ranged from 10.7 Mg of DM/ha for the boot stage to 13.5, 15.2, and 15.8 Mg of DM/ha for the flower, milk, and soft dough stages, respectively. For individual trials, yield either remained constant with harvest beyond the flower stage (4 trials), or beyond the milk stage (1 trial), whereas for 2 trials yield increased up to the soft dough stage. At the later harvest stages, DM, starch, and nonfiber carbohydrates were increased, whereas crude protein, neutral detergent fiber, and 30-h neutral detergent fiber digestibility were decreased. Without adjusting for DM intake, substitution of corn silage by forage sorghum harvested at the soft dough stage resulted in stable predicted metabolizable energy allowable milk, whereas the reduced starch content of earlier harvested sorghum resulted in less metabolizable energy allowable milk with greater substitution of corn silage for sorghum. Forage sorghum can be harvested as early as the flower or milk stage without losing DM yield, allowing for timely planting of forage winter cereal in a double cropping rotation. However, energy supplementation in the diet is needed to make up for reduced starch concentrations with harvest of sorghum at flower and milk growth stages.


Assuntos
Sorghum/crescimento & desenvolvimento , Dieta/veterinária , Fibras na Dieta/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fazendas , Flores/crescimento & desenvolvimento , Flores/metabolismo , New York , Valor Nutritivo , Silagem/análise , Sorghum/metabolismo , Amido/análise , Amido/metabolismo , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
16.
J Agric Food Chem ; 67(26): 7410-7415, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31185719

RESUMO

The flower scent of the damask rose ( Rosa damascena) was studied. Two ultratrace components exhibiting high flavor dilution factors were detected as odor-active compounds via aroma extract dilution analysis (AEDA). One of these had a woody note and was identified as rotundone using multidimensional gas chromatography-mass spectrometry-olfactometry (MD-GC-MS-O), while the other had a citrus note and was identified as 4-(4-methylpent-3-en-1-yl)-2(5 H)-furanone (MPF) by fractionation of a commercial rose absolute from R. damascena. To the best of our knowledge, this is the first study addressing the organoleptic importance of these two compounds in the rose scent. Sensory analysis was conducted to evaluate the effects of rotundone and MPF. Adding 50 µg/kg rotundone and 5 µg/kg MPF to the aroma reconstitute of R. damascena provided it with blooming and natural characteristics. Additionally, the existence of rotundone and MPF in five types of fragrant roses was investigated.


Assuntos
Flores/química , Odorantes/análise , Rosa/química , Compostos Orgânicos Voláteis/química , Flores/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Olfatometria , Rosa/crescimento & desenvolvimento , Olfato
17.
BMC Plant Biol ; 19(1): 251, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185907

RESUMO

BACKGROUND: Compared with annual herbaceous plants, woody perennials require a longer period of juvenile phase to flowering, and many traits can be only expressed in adulthood, which seriously makes the breeding efficiency of new varieties slower. For the study of poplar early flowering, the main focus is on the study Arabidopsis homologue gene CO/FT. Based on studies of Arabidopsis, rice and other plant species, some important research progress has been made on the regulation of flowering time by NF-Y subunits. However, little is known about the function of NF-Y regulating flowering in poplar. RESULTS: In the present study, we have identified PtNF-YB family members in poplar and focus on the function of the PtNF-YB1 regulate flowering timing using transgenic Arabidopsis and tomato. To understand this mechanisms, the expression levels of three known flowering genes (CO, FT and SOC1) were examined with RT-PCR in transgenic Arabidopsis. We used the Y2H and BiFC to assay the interactions between PtNF-YB1 and PtCO (PtCO1 and PtCO2) proteins. Finally, the potential molecular mechanism model in which PtNF-YB1 play a role in regulating flowering in poplar was discussed. CONCLUSIONS: In this study, we have characterized the poplar NF-YB gene family and confirmed the function of the PtNF-YB1 regulate flowering timing. At the same time, we found that the function of PtNF-YB1 to improve early flowering can overcome species barriers. Therefore, PtNF-YB1 can be used as a potential candidate gene to improve early flowering by genetic transformation in poplar and other crops.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Populus/crescimento & desenvolvimento , Populus/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Família Multigênica , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
J Agric Food Chem ; 67(26): 7223-7231, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180671

RESUMO

The aim of this study was to investigate the effect of 3-chloro-5-trifluoromethylpyridine-2-carboxylic acid (PCA), a metabolite of the fungicide fluopyram, on grapevine. During spring and summer 2015, grapevine growth disorders were observed in several countries in Europe. An unprecedented herbicide-like damage was diagnosed on leaves and flowers, causing significant loss of harvest. This study proposes PCA as the causing agent of the observed growth disorders. PCA was shown to cause leaf epinasty, impaired berry development that leads to crop loss, and root growth anomalies in Vitis vinifera similar to auxin herbicides in a dose-dependent manner. Using both field trials and greenhouse experiments, the present study provides first evidence for a link between the application of fluopyram in vineyards 2014, the formation of PCA, and the emergence of growth anomalies in 2015. Our data could be useful to optimize dosage, application time point, and other conditions for an application of fluopyram without phytotoxic effects.


Assuntos
Benzamidas/metabolismo , Ácidos Carboxílicos/efeitos adversos , Fungicidas Industriais/efeitos adversos , Piridinas/efeitos adversos , Piridinas/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Benzamidas/efeitos adversos , Ácidos Carboxílicos/metabolismo , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fungicidas Industriais/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/metabolismo
19.
J Plant Physiol ; 239: 38-51, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181407

RESUMO

Reaumuria trigyna (Reaumuria Linn genus, family Tamaricaceae), an endangered dicotyledonous shrub with the features of a recretohalophyte, is endemic to the Eastern Alxa-Western Ordos area of China. Based on R. trigyna transcriptome data and expression pattern analysis of RtWRKYs, RtWRKY23, a Group II WRKY transcription factor, was isolated from R. trigyna cDNA. RtWRKY23 was mainly expressed in the stem and was induced by salt, drought, cold, ultraviolet radiation, and ABA treatments, but suppressed by heat treatment. Overexpression of RtWRKY23 in Arabidopsis increased chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. Real-time quantitative PCR (qPCR) analysis and yeast one-hybrid analysis demonstrated that RtWRKY23 protein directly or indirectly modulated the expression levels of downstream genes, including stress-related genes AtPOD, AtPOD22, AtPOD23, AtP5CS1, AtP5CS2, and AtPRODH2, and reproductive development-related genes AtMAF5, AtHAT1, and AtANT. RtWRKY23 transgenic Arabidopsis had higher proline content, peroxidase activity, and superoxide anion clearance rate, and lower H2O2 and malondialdehyde content than WT plants under salt stress conditions. Moreover, RtWRKY23 transgenic Arabidopsis exhibited later flowering and shorter pods, but little change in seed yield, compared with WT plants under salt stress. Our study demonstrated that RtWRKY23 not only enhanced salt stress tolerance through maintaining the ROS and osmotic balances in plants, but also participated in the regulation of flowering under salt stress.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Tamaricaceae/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Tamaricaceae/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Plant Sci ; 285: 165-174, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203881

RESUMO

The TPL/TPR co-repressor is involved in many plant signaling pathways, including those regulating the switch from vegetative to reproductive growth. Here, a TPL homolog (TPL 1-2) was isolated from chrysanthemum. Its product was found to be deposited in the nucleus. The abundance of TPL1-2 transcript varied across the plant, with its highest level being recorded in the stem apex, and its lowest in the root and stem. In the leaf, the abundance of TPL1-2 transcript was highest at dusk in plants exposed to long days, and at dawn in those exposed to short days. Site-directed mutagenesis was used to induce an N176H mutation in TPL1-2. The constitutive expression in Arabidopsis thaliana of the wild type and the mutated alleles of TPL1-2 had a contrasting effect on flowering time, with the mutant transgene expressors flowering later than the wild type transgene expressors. The flowering-related genes FT, TSF, FUL and AP1 were all more strongly transcribed in the mutant transgene expressors than in the wild type transgene expressors.


Assuntos
Chrysanthemum/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Proteínas de Plantas/genética , Arabidopsis , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA