Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.591
Filtrar
1.
J Hazard Mater ; 416: 125860, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492808

RESUMO

Facile synthesis of nano porous organic cages with small size and good fluorescence property is highly desirable, but still challenging and scarce for their sensing applications. Here we report a rapid room-temperature recrystallization method for the preparation of nano porous organic cages with ultra-small size as a fluorescent probe for copper ion. The prepared nano porous organic cages gave the diameter of 2.49 ± 0.04 nm, and exhibited stable emission at 535 nm with absolute quantum yield of 0.68%. On the basis of the coordination interaction and charge transfer between the nano porous organic cages and copper ion, a simple fluorescent probe for copper ion in aqueous solution was developed. The developed method gave a calibration function of QE = 0.4815lg[Cu2+] + 0.5847 (where QE is the quenching efficiency; [Cu2+] in µM) (R2 = 0.9987) in a concentration range of 0.1-2 µM, the limit of detection (3s) of 8 nM, and the relative standard deviation of 0.36% for 10 replicate determinations of 0.5 µM copper ion. The recoveries of spiked copper ion in tap water samples ranged from 96.8% to 103.0%. The proposed method possesses good sensitivity, selectivity and accuracy.


Assuntos
Cobre , Água , Fluorescência , Corantes Fluorescentes , Porosidade , Espectrometria de Fluorescência , Temperatura
2.
Nanoscale ; 13(30): 13057-13064, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477789

RESUMO

We developed a water-soluble, stable and selective "turn-on" fluorescence sensing platform based on carbon quantum dots (CQDs) for rapid determination of phosphate (Pi) in aqueous solutions and for visualization of latent fingerprints on paper. The hydroxyl groups on the surface of the synthesized CQDs can be deprotonated by Pi to trigger the intramolecular charge transfer (ICT) process and the inhibition of excited-state proton transfer (ESPT), achieving a turn-on emission response. CQDs demonstrated the capability to selectively detect Pi over other common ions and biomolecules with the linear fluorescence intensity change in the range from 0 to 100 µM. Moreover, the paper sprayed with the CQD solution showed a remarkable blue emission speckle and a fingerprint upon addition of Pi solution and finger touching, respectively. Notably, the fingerprint images including level 3 details (crossover, bifurcation, termination, and island and sweat pores) are also clearly identified and distinguished, indicating their potential application in document security. We believe that the as-synthesized CQDs will provide a new tool for Pi detection in aqueous media and paper document security.


Assuntos
Pontos Quânticos , Carbono , Fluorescência , Íons , Fosfatos
3.
World J Gastroenterol ; 27(31): 5189-5200, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34497444

RESUMO

Near-infrared fluorescence (NIRF) is a technique of augmented reality that, when applied in the operating theatre, allows the colorectal surgeon to visualize and assess bowel vascularization, to identify lymph nodes draining a cancer site and to identify ureters. Herein, we review the literature regarding NIRF in colorectal surgery.


Assuntos
Cirurgia Colorretal , Anastomose Cirúrgica , Fístula Anastomótica , Fluorescência , Humanos , Verde de Indocianina
4.
Anal Chim Acta ; 1177: 338786, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34482889

RESUMO

Biological thiols importantly regulate the intracellular redox activity and metabolic level, but many of the developed probes for biothiols are facing difficulty in effectively distinguishing GSH from Cys/Hcy due to the similarity in mechanism. In this work, despite the previous pattern of "Logic Gate", we reported the concept of "Fluorescence Fusion" for the first time to achieve only one excitation-emission process. The exploited the probe, MZ-NBD, could quickly measure GSH in 10 min with a large Stokes shift (130 nm). Though the reacting mechanism was similar, only GSH could cause the "Fluorescence Fusion" with only one strong fluorescence response while Cys/Hcy caused two peaks. Adjusting the excitation wavelength could hardly split the fused peak into two. Though image recognition by artificial intelligence could easily distinguish the patterns of peaks, here we used the signal-treating method to realize the high selectivity towards GSH. Moreover, MZ-NBD could be utilized for rapid detection of GSH in living MCF-7 cells, which was more suitable for GSH than using the "Logic Gate" strategy. More than introducing a novel probe with the new concept, this work was meaningful as the linker of traditional reaction-based fluorescent probes and potential image recognition by artificial intelligence, thus led to various future researches in inter-disciplines.


Assuntos
Cisteína , Glutationa , Inteligência Artificial , Fluorescência , Corantes Fluorescentes , Glutationa/isolamento & purificação , Homocisteína , Humanos , Células MCF-7
5.
Sci Total Environ ; 792: 148396, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465046

RESUMO

Droughts represent one of the most severe abiotic stress factors that could result in great crop yield loss. Numerous vegetation indices have been proposed for monitoring the vegetation condition under stress and assessing drought impacts on yield loss. However, the understanding and comparison between traditional vegetation indices (VIs) and the newly emerging satellite Sun-Induced Chlorophyll Fluorescence (SIF) for monitoring vegetation condition is still limited especially under drought stress and at multiple spatial scales. In this study, the potential of satellite observation SIF for monitoring corn response to drought was investigated based on the 2012 drought in the US Corn Belt. The standardized precipitation evapotranspiration index (SPEI) was used here to quantify drought. We found that all SPEI were above -1, except for July (-1.27), August (-1.39) and September (-1.14) in 2012, indicating the severity of this drought. We examined the relationship between satellite measurements of SIF, SIFyield, VIs (e.g., NDVI and EVI) and SPEI. Results indicated that SIFyield was sensitive to drought and SIF captured the stress more accurately both at the regional and state scales for the US Corn Belt. Quantitatively, SIFyield had a high correlation with SPEI (r = 0.987, p < 0.05) over the entire Corn Belt, and it indicated losses in response to drought approximately one month earlier than SIF/NDVI/EVI. Furthermore, our results demonstrated that SIF could be trusted as an effective indicator to study the relationship between GPP (R2 ≥ 0.8664, p < 0.01) under drought conditions across the Corn Belt. This study highlighted the advantage of using satellite SIF observations to monitor the drought stress on crop growth especially GPP at regional scale.


Assuntos
Clorofila , Secas , Fluorescência , Estações do Ano , Zea mays
7.
Analyst ; 146(18): 5558-5566, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515720

RESUMO

The single signal amplification strategy is significant for detecting various disease biomarkers but is restricted by its limited accuracy. The multi-signal and multi-mode methods have overcome this deficiency. Acid phosphatase (ACP) is an important intracellular enzyme but one-step cell imaging material-based probes are scarce for ACP. Herein, we designed a one-step self-assembled polymer probe using neutral red (NR), modified-(pyridoxal-5'-phosphate (PLP)) and Eu3+. The polymer exhibited non-emission and excellent stability. Upon the catalytic hydrolysis reaction of ACP, the polymer exhibited two strong fluorescence signals at 373 nm and 613 nm and an appreciable decline of absorbance at 395 nm. The probe has excellent selectivity and higher sensitivity with a limit of detection as low as 0.02 mU mL-1. It possesses favorable biocompatibility and has been successfully used to detect and image intracellular ACP in several living cells.


Assuntos
Fosfatase Ácida , Corantes Fluorescentes , Fluorescência , Corantes Fluorescentes/toxicidade
8.
Talanta ; 235: 122719, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517587

RESUMO

Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Fluorescência , Células HeLa , Humanos , Peróxido de Hidrogênio , Inflamação/tratamento farmacológico , Viscosidade
9.
Anal Chem ; 93(36): 12434-12440, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473470

RESUMO

The ability to accurately diagnose cancer is the cornerstone of early cancer treatment. The mitochondria in cancer cells maintain a higher pH and lower polarity relative to that in normal cells. A probe that reports signals only when both conditions are met may provide a reliable method for cancer detection with reduced false positives. Here, we construct an AND logic gate fluorescent probe using mitochondrial microenvironments as inputs. Utilizing the hydrolysis of a coumarin scaffold, the probe generates fluorescence signals ("ON") only when high pH (>7.0) and low polarity conditions exist simultaneously. Additionally, the higher mitochondrial membrane potential in cancer cells provides an additional level of selectivity because probe has increased affinity for cancer cell mitochondria. These capabilities endow the probe with a high contrast fluorescence diagnosis ability of cancer at cellular and tissue levels (as high as 51.9 fold), which is far exceeding the clinic threshold of 2.0 fold.


Assuntos
Lógica , Neoplasias , Cumarínicos , Fluorescência , Corantes Fluorescentes , Hidrólise , Neoplasias/diagnóstico
10.
Talanta ; 234: 122680, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364480

RESUMO

Uracil DNA glycosylase (UDG) is a key base excision repair (BER) enzyme and its abnormal expression is nearly relevant to several diseases including cancer. The sensitive detection of UDG activity is beneficial for biomedical studies and clinic diagnosis. In this work, we proposed a dumbbell probe mediated triple cascade signal amplification strategy for sensitive and specific detection of UDG activity. The specially designed dumbbell probe contained two uracil bases, two recognition sites for nicking enzyme and a split sequence of DNAzyme. Unsealed dumbbell probes were first connected into sealed dumbbell probes by T4 DNA ligase, and then the unsealed probes were hydrolyzed by exonuclease to ensure the purity of probes. Under the influence of UDG, two uracil bases were removed to produce two apyrimidinic (AP) sites, which were subsequently cleaved by Endo.IV. The probes after cleavage acted as primers and templates for double nicking sites strand displacement amplification (SDA) to produce a mass of two products. The products of SDA continued to act as primers and templates for rolling circle amplification (RCA) to produce repeats containing complete DNAzyme sequences. The DNAzyme repeatedly cleaved multiple molecular beacons (MB), resulting in remarkable fluorescence enhancement. Benefiting from the triple cascade signal amplification, the sensitivity was improved and the detection limit was 7.2 × 10-5 U mL-1. The method could well distinguish UDG from other interfering enzymes and detect UDG activity in real biological samples, showing good specificity. In addition, this method could be used for screening inhibitors. The above results suggested that the method provided a promising analytical means for UDG related biomedical research and clinic diagnosis.


Assuntos
DNA Catalítico , Uracila-DNA Glicosidase , Reparo do DNA , Fluorescência , Humanos , Uracila , Uracila-DNA Glicosidase/metabolismo
11.
Talanta ; 234: 122685, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364484

RESUMO

Cysteine (Cys) plays important physiological roles in the human body, and abnormal Cys concentrations can cause a variety of diseases. Thus, detecting Cys with high selectivity and sensitivity in vivo is important. Near-infrared (NIR) fluorescent probes are widely employed in biological detection because of their excellent optical properties such as minimal damage to biological samples, low background interference and high signal-to-noise ratio. However, few NIR fluorescent probes that can detect Cys over homocysteine (Hcy) and glutathione (GSH) have been reported because of their similar reactivity and structure. In this work, a highly water-soluble NIR probe (CYNA) for detecting Cys whose structure is similar to that of indocyanine green and is based on cyanine skeleton was synthesized and via aromatic nucleophilic substitution-rearrangement (SNAr-rearrangement) to specific recognize the cysteine. The probe showed high selectivity toward Cys and superior biosecurity, excellent biocompatibility and prolonged dynamic imaging. It also has long fluorescence emission wavelength (820 nm), low detection limit (14 nM) and was successfully applied for visualizing Cys in living cells and mice, which has great promise for applications in noninvasive vivo biological imaging and detection.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Fluorescência , Glutationa , Células HeLa , Homocisteína , Humanos , Camundongos , Imagem Óptica
13.
J Phys Chem Lett ; 12(32): 7671-7687, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34351771

RESUMO

Carbon dots (CDs) have excellent luminescence characteristics, such as good light stability, high quantum yield (QY), long phosphorescence lifetime, and a wide emission wavelength range, resulting in CDs' great success in optical applications. Understanding the structure-property relationships in CDs is essential for their use in optoelectronic applications. However, because of the complex nature of CD structures and synthesis processes, understanding the luminescence mechanism and structure-property relationships of CDs is a big challenge. This Perspective reviews the theoretical efforts toward the understanding of structure-property relationships and discusses the challenges that need to be overcome in future development of CDs.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Carbono/química , Teoria da Densidade Funcional , Fluorescência , Corantes Fluorescentes/síntese química , Aprendizado de Máquina , Modelos Químicos , Relação Estrutura-Atividade
14.
J Phys Chem Lett ; 12(32): 7859-7865, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34382803

RESUMO

Fluorescence-encoded vibrational spectroscopy has become increasingly more popular by virtue of its high chemical specificity and sensitivity. However, current fluorescence-encoded vibrational spectroscopy methods lack sensitivity in the low-frequency region, which if addressed could further enhance their capabilities. Here, we present a method for highly sensitive low-frequency fluorescence-encoded vibrational spectroscopy, termed fluorescence-encoded time-domain coherent Raman spectroscopy (FLETCHERS). By first exciting molecules into vibrationally excited states and then promoting the vibrating molecules to electronic states at varying times, the molecular vibrations can be encoded onto the emitted time-domain fluorescence intensity. We demonstrate the sensitive low-frequency detection capability of FLETCHERS by measuring vibrational spectra in the lower fingerprint region of rhodamine 800 solutions as dilute as 250 nM, which is ∼1000 times more sensitive than conventional vibrational spectroscopy. These results, along with further improvement of the method, open up the prospect of performing single-molecule vibrational spectroscopy in the low-frequency region.


Assuntos
Corantes Fluorescentes/química , Rodaminas/química , Análise Espectral Raman/métodos , Fluorescência , Limite de Detecção , Estudo de Prova de Conceito , Espectrometria de Fluorescência , Vibração
15.
Mar Environ Res ; 170: 105453, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34425401

RESUMO

The macro- and microalgae have been found to inhibit the growth and photosynthesis of one another due to allelopathic interactions between them. Sargassum fusiformis is a common and commercially cultivated seaweed in coastal waters of the East China Sea (ECS) and usually encounters dense harmful algal blooms (HABs) formed by dinoflagellates during their sexual reproduction period. In the present study, the effects of Prorocentrum donghaiense lipophilic extracted allelochemicals on the growth and photosynthesis of S. fusiformis zygotes were probed by fast chlorophyll fluorescence rise kinetics and chlorophyll a transient analysis (JIP-test). It was found that exposure to the allelochemicals led to decreased chlorophyll a content and photosynthetic rates of the zygotes in comparison to the ones in the control. In addition, using the JIP-test, it was found that the inhibitory effects of allelochemicals on photosynthesis of the zygotes were mainly exerted on the electron transport within PSII. The decrease of photosynthetic parameters such as VJ, Mo, ϕPo, ϕo, ϕEo, PI, PTR, PET in the zygotes exposed to the allelochemicals all revealed that the obstruction of electron transport, and the dominant decrease in PET, both implied that inhibition on the dark reaction contributed to the highest photosynthetic reduction. In addition, some reaction centers (RCs) in the zygotes exposed to the allelocamicals were inactivated, which led to higher dissipation of excitation energy, as demonstrated by the significant enhancement of the photosynthetic parameter DIo/RC. All the results indicated that the lipophilic extracts contained the allelochemicals of P. donghaiense which could inhibit the growth and photosynthesis of S. fusiformis zygotes by damaging the electron acceptors and inactivating RCs, and finally block the electron transport.


Assuntos
Dinoflagelados , Sargassum , Clorofila , Clorofila A , Fluorescência , Cinética , Feromônios , Fotossíntese , Zigoto
16.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443607

RESUMO

Cellular conformation of reduced pyridine nucleotides NADH and NADPH sensed using autofluorescence spectroscopy is presented as a real-time metabolic indicator under pressurized conditions. The approach provides information on the role of pressure in energy metabolism and antioxidant defense with applications in agriculture and food technologies. Here, we use spectral phasor analysis on UV-excited autofluorescence from Saccharomyces cerevisiae (baker's yeast) to assess the involvement of one or multiple NADH- or NADPH-linked pathways based on the presence of two-component spectral behavior during a metabolic response. To demonstrate metabolic monitoring under pressure, we first present the autofluorescence response to cyanide (a respiratory inhibitor) at 32 MPa. Although ambient and high-pressure responses remain similar, pressure itself also induces a response that is consistent with a change in cellular redox state and ROS production. Next, as an example of an autofluorescence response altered by pressurization, we investigate the response to ethanol at ambient, 12 MPa, and 30 MPa pressure. Ethanol (another respiratory inhibitor) and cyanide induce similar responses at ambient pressure. The onset of non-two-component spectral behavior upon pressurization suggests a change in the mechanism of ethanol action. Overall, results point to new avenues of investigation in piezophysiology by providing a way of visualizing metabolism and mitochondrial function under pressurized conditions.


Assuntos
NADP/química , NADP/metabolismo , NAD/química , NAD/metabolismo , Pressão , Fluorescência , Conformação Molecular
17.
Anal Chem ; 93(33): 11634-11640, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34378382

RESUMO

Exploring the ratiometric fluorescence biosensing of DNA-templated biemissive silver nanoclusters (AgNCs) is significant in bioanalysis, yet the design of a stimuli-responsive DNA device is a challenge. Herein, using the anti-digoxin antibody (anti-Dig) with two identical binding sites as a model, a tweezer-like DNA architecture is assembled to populate fluorescent green- and red-AgNCs (g-AgNCs and r-AgNCs), aiming to produce a ratio signal via specific recognition of anti-Dig with two haptens (DigH). To this end, four DNA probes are programmed, including a reporter strand (RS) dually ended with a g-/r-AgNC template sequence, an enhancer strand (ES) tethering two same G-rich tails (G18), a capture strand (CS) labeled with DigH at two ends, and a help strand (HS). Initially, both g-AgNCs and r-AgNCs wrapped in the intact RS are nonfluorescent, whereas the base pairing between RS, ES, CS, and HS resulted in the construction of DNA mechanical tweezers with two symmetric arms hinged by a rigid "fulcrum", in which g-AgNCs are lighted up due to G18 proximity ("green-on"), and r-AgNCs away from G18 are still dark ("red-off"). When two DigHs in proximity recognize and bind anti-Dig, the conformation switch of these tweezers resultantly occurs, taking g-AgNCs away from G18 for "green-off" and bringing r-AgNCs close to G18 for "red-on". As such, the ratiometric fluorescence of r-AgNCs versus g-AgNCs is generated in response to anti-Dig, achieving reliable quantization with a limit of detection at the picomolar level. Based on the fast stimulated switch of unique DNA tweezers, our ratiometric strategy of dual-emitting AgNCs would provide a new avenue for a variety of bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Anticorpos , DNA , Fluorescência , Prata , Espectrometria de Fluorescência
18.
Compend Contin Educ Dent ; 42(8): 460-465, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34449243

RESUMO

Fluorescence tools have shown to be highly valuable for precise diagnosis of caries and other lesions in dentistry. In the form of ultraviolet (UV) headlights and special loupes with high levels of magnification and observational capacity, these instruments can even be used during treatment for a more preventive and minimally invasive treatment strategy. Fluorescence, a type of luminescence, absorbs light of shorter wavelength and re-emits it as longer-wavelength light. This changes the color, for example from blue to red. The fluorescence spectra of carious lesions are typical for fluorescent porphyrins, mainly protoporphyrin IX. A possible source of these porphyrins within carious tissues is bacterial biosynthesis. Streptococcus mutans induces enamel and dentin lesions and modifies the fluorescence in the red and green spectral regions, with a stronger signal in the red region, due to porphyrin gradient signals. This article describes the concept of fluorescence-enhanced theragnosis for removal of caries and preservation of sound dental tissues.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Bactérias , Cárie Dentária/diagnóstico , Cárie Dentária/terapia , Esmalte Dentário , Dentina , Fluorescência , Humanos
19.
BMJ Case Rep ; 14(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404648

RESUMO

Blunt abdominal trauma can affect mesenteric circulation which may lead to bowel strictures. Indocyanine green (ICG) angiography can be used to assess mesenteric blood flow and bowel perfusion as a guide to resect length intraoperatively. But this concept has not been applied to ischaemic bowel strictures. We present a case of ischaemic ileal stricture induced by blunt abdominal trauma which was managed by resection and anastomosis. Intraoperative near-infrared (NIR) ICG angiography was used as a guide to resect the bowel length. This case emphasises that ischaemic bowel strictures should be suspected in patients presenting with intestinal obstruction following trauma. Resection and anastomosis of the affected segment remains the primary treatment modality with excellent outcomes. NIR ICG angiography is a real-time objective and useful resource for assessing bowel perfusion and could be used to determine the length of the segment to be resected in patients with ischaemic bowel stricture.


Assuntos
Verde de Indocianina , Obstrução Intestinal , Adulto , Anastomose Cirúrgica , Constrição Patológica/etiologia , Constrição Patológica/cirurgia , Fluorescência , Humanos , Obstrução Intestinal/diagnóstico por imagem , Obstrução Intestinal/etiologia , Obstrução Intestinal/cirurgia , Masculino
20.
Nat Commun ; 12(1): 4993, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404798

RESUMO

Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems. Among a variety of fuels, light, the original fuel of natural dissipative self-assembly, is fundamentally important but remains a challenge to introduce into artificial dissipative self-assemblies. Here, we report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles. Such dissipative supramolecular assembly is easily performed using protonated sulfonato-merocyanine and chitosan based molecular and macromolecular components in water. Light irradiation induces the assembly of supramolecular nanoparticles, which spontaneously disassemble in the dark due to thermal back relaxation of the molecular switch. Owing to the presence of light-induced amphiphiles and the thermal dissociation mechanism, the lifetimes of these transient supramolecular nanoparticles are highly sensitive to temperature and light power and range from several minutes to hours. By incorporating various fluorophores into transient supramolecular nanoparticles, the processes of aggregation-induced emission and aggregation-caused quenching, along with periodic variations in fluorescent color over time, have been demonstrated. Transient supramolecular assemblies, which act as fluorescence modulators, can also function in human hepatocellular cancer cells.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Água/química , Fluorescência , Células Hep G2 , Humanos , Cinética , Substâncias Macromoleculares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...