Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.303
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111605, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396125

RESUMO

This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.


Assuntos
Dióxido de Carbono/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Bioacumulação , Clorofila/metabolismo , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 208: 111607, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396127

RESUMO

The present study aimed to explore the effect of synthetic and naturally occurring chelators, EDTA and citric acid (CA), respectively, on changes in physiological and biochemical factors including cell death, level of mercury ions accumulation, malondialdehyde (MDA) content, total phenol and total flavonoids, anthocyanins and DPPH free radical scavenging activity, in the leaves of okra (Abelmoschus esculentus L.) plants exposed to mercury stress. In addition, polyphenolic compounds profile was assessed by high-performance liquid chromatography. The okras were planted in completely controlled hydroponic conditions (Hoagland solution). After they reached the four-leaf stage, they were treated simultaneously with different concentrations of HgCl2, EDTA and CA chelators, and their combination for one month. At the stage of maturity, the physiological and biochemical factors of the plant leaves were measured. The results showed that with the application of higher concentration of HgCl2, cell death, level of shoot and root Hg2+ content and root MDA, total phenols and total flavonoids, anthocyanin content, and DPPH free radical scavenging activity were increased. Also, the results indicated that okra plants have high biomass and a high rate of Hg mobilization and accumulation in the shoot versus the roots (TF=2.152 for the plants treated with 60 mg L-1 Hg2+), hence, can be considered as Hg hyperaccumulator plant for the phytoremediation of Hg-polluted soils and waters. In the Hg-treated plants changes in their phenolic profile were induced, and the increase of chlorogenic acid, rosmaric acid, apigenin, quercetin and rutin content was observed. The application of EDTA and CA improved the toxic effects of Hg2+, by modifying phenolic compounds, chelating Hg2+, and its proper compartmentation, while EDTA outperformed CA in this respect. Based on the results, it could be concluded that due to the high biomass and growth of okra in the presence of Hg2+, this plant is suitable for phytoremediation of soil and water contaminated with mercury. In addition, EDTA and CA can play a significant role in removing this toxic metal through transferring it from the culture medium to the plant.


Assuntos
Abelmoschus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Mercúrio/toxicidade , Fenóis/metabolismo , Poluentes do Solo/toxicidade , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/metabolismo , Fenômenos Bioquímicos/efeitos dos fármacos , Biodegradação Ambiental , Biomassa , Malondialdeído/metabolismo , Mercúrio/análise , Fenóis/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 208: 111718, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396049

RESUMO

Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.


Assuntos
Chuva Ácida/toxicidade , Lepidium sativum/efeitos dos fármacos , Microplásticos/toxicidade , Polietilenotereftalatos/toxicidade , Poluentes Químicos da Água/toxicidade , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/metabolismo , Lepidium sativum/fisiologia , Microplásticos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Polietilenotereftalatos/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Poluentes Químicos da Água/química
4.
Ecotoxicol Environ Saf ; 208: 111675, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396007

RESUMO

Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.


Assuntos
Bioacumulação/efeitos dos fármacos , Cádmio/toxicidade , Carvão Vegetal/química , Alface/efeitos dos fármacos , Poluentes do Solo/toxicidade , Disponibilidade Biológica , Transporte Biológico , Cádmio/metabolismo , Alface/metabolismo , Modelos Teóricos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/química , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Água/química , Zea mays/química
5.
Ecotoxicol Environ Saf ; 208: 111643, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396163

RESUMO

Sulfur (S) can play essential roles in protecting plants against abiotic stress, including heavy metal toxicity. However, the effect of this nutrient on plants exposed to barium (Ba) is still unknown. This study was designed to evaluate the S supply on oxidative stress and the antioxidant system of Tanzania guinea grass under exposure to Ba, grown in a nutrient solution under greenhouse conditions. It was studied the influence of S/Ba combinations in nutrient solution on oxidative stress indicators (hydrogen peroxide, malondialdehyde, and proline) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase). The treatments consisted in thirteen S/Ba combinations in the nutrient solution (0.1/0.0; 0.1/5.0; 0.1/20.0; 1.0/2.5; 1.0/10.0; 1.9/0.0 - control; 1.9/5.0; 1.9/20.0; 2.8/2.5; 2.8/10.0; 3.7/0.0; 3.7/5.0 and 3.7/20.0 mM of S and Ba, respectively). The plants were grown for two growth periods, which consisted of fourteen days of S supply and the eight days of Ba exposure each one. The severe S deficiency decreased the superoxide dismutase activity, regardless of Ba exposure in recently expanded leaves and culms plus sheaths. However, supplemental S supply (above 1.9 mM S, which corresponds to S supply adequate to plant growth) it improved the superoxide dismutase activity in these tissues under high Ba concentrations. Conversely, the severe S deficiency increased the activities of catalase, ascorbate peroxidase, and glutathione reductase in grass leaves slightly, without Ba exposure influence. It was observed that the supplemental S supply also induced the guaiacol peroxidase activity and proline production in culms plus sheaths under high Ba rates, showing values until 2.5 and 3.1 folds higher than the control treatment, respectively. In plants under exposure to 20.0 mM Ba, the supplemental S supply decreased the malondialdehyde content in culms plus sheaths in 17% compared to 1.9 mM S. These results indicate that supplemental S supply can mitigate Ba toxicity in Tanzania guinea grass, mainly by improving superoxide dismutase and guaiacol peroxidase activities, and proline metabolism.


Assuntos
Antioxidantes/metabolismo , Bário/toxicidade , Panicum/efeitos dos fármacos , Prolina/metabolismo , Enxofre/farmacologia , Fertilizantes , Estresse Oxidativo/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo
6.
Ecotoxicol Environ Saf ; 208: 111654, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396168

RESUMO

Salicylic acid (SA) is an important signal molecule, regulating oxidative stress response in plants. In this study, we evaluated the influences of SA (1 mg L-1, 10 mg L-1 and 50 mg L-1) on the accumulation of clothianidin (CLO), dinotefuran (DFN) and difenoconazole (DFZ) (5 mg L-1) and pesticide-induced (CLO-10 mg L-1, DFN-20 mg L-1, and DFZ-10 mg L-1) oxidative stress in cucumber plants. Exogenous SA at 10 mg L-1 significantly reduced the half-lives of three pesticides in nutrient solution and prevented the accumulation of pesticides in roots and leaves. And the role of SA in reducing residues was related to the major accumulation sites of pesticides. By calculating the root concentration factor (RCF) and translocation factor (TF), we found that SA at 10 mg L-1 reduced the ability of roots to absorb pesticides and enhanced the translocation ability from roots to leaves. Roots exposed to high concentrations of three pesticides could reduce biomass, low chlorophyll content, increase the accumulation of reactive oxygen species (ROS) and proline, promote lipid peroxidation, and alter the activities of a range of antioxidant enzymes, respectively. Exogenous SA at low concentrations (1 mg L-1 and 10 mg L-1) significantly mitigated these negative effects. Hence, application of exogenous SA at 10 mg L-1 could effectively alleviate the accumulation of pesticides and induce stress tolerance in cucumber planting systems.


Assuntos
Cucumis sativus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/metabolismo , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Cucumis sativus/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Praguicidas/toxicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Ecotoxicol Environ Saf ; 208: 111688, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396020

RESUMO

Elemental defense hypothesis suggests that toxic metals accumulated in plant tissues could enhance plant defense against herbivores and pathogens. Since over-accumulation of metals in plant organs will pose negative effects on plant health, it is necessary to find a way to alleviate metal-induced toxicity in plants while keeping or even improving plant resistance. Exogenous nitrogen (N) application was reported to have such alleviation effect while stimulating metal accumulation in plant tissues. In this study, we examined whether soil N addition in three different doses to a poplar species under cadmium (Cd) stress can simultaneously improve plant growth and resistance to four herbivorous insects and a leaf pathogen. The results showed that N application to Cd-amended soil prominently enhanced plant growth and leaf Cd accumulation. While N addition in three doses all remarkably reduced herbivore growth than control plants, only the highest N dose exerted stronger inhibition than the sole Cd-treated plants. In the paired-choice experiment, plants supplied with the highest N dose showed an enhanced deterrent effect on herbivore preference than plants exposed to sole Cd. Furthermore, plant resistance to the leaf pathogen infection was strongly enhanced as the levels of N addition increased. Leaf sugar and three main defensive chemicals were not affected by N application implied that such enhanced effect of N on plant resistance was due to increased leaf Cd accumulation. Our results suggested that the application of exogenous N over a certain amount could enhance the resistance of Cd-treated plants to leaf herbivory and pathogen infection.


Assuntos
Cádmio/toxicidade , Nitrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Cádmio/metabolismo , Herbivoria/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Populus/crescimento & desenvolvimento , Populus/microbiologia , Solo/química , Poluentes do Solo/metabolismo
8.
Ecotoxicol Environ Saf ; 210: 111878, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418159

RESUMO

Flavonoids participate in several plant processes such as growth and physiological protection in adverse environments. In this study, we investigated the combined effects of eCO2 and cadmium (Cd)-contaminated soils on the total flavonoid and monomer contents in the leaves of Robinia pseudoacacia L. seedlings. Elevated CO2, Cd, and eCO2+ Cd increased the total flavonoids in the leaves relative to the control, and eCO2 mostly increased (p < 0.05) the total flavonoid content under Cd exposure. Elevated CO2 increased (p < 0.05) robinin, rutin, and acacetin contents in the leaves of 45-day seedlings and decreased (p < 0.05) the content of robinin and acacetin at 90 and 135 d under Cd exposure except for robinin at day 45 under Cd1 and acacetin on day 135 under Cd1. Quercetin content decreased (p < 0.05) under the combined conditions relative to Cd alone. Kaempferol in the leaves was only detected under eCO2 on day 135. The responses of total chlorophyll, total soluble sugars, starch, C, N, S, and the C/N ratio in the leaves to eCO2 significantly affected the synthesis of total flavonoids and monomers under Cd exposure. Overall, rutin was more sensitive to eCO2+ Cd than the other flavonoids. Cadmium, CO2, and time had significant interactive effects on the synthesis of flavonoids in the leaves of R. pseudoacacia L. seedlings. Elevated CO2 may improve the protection and defense system of seedlings grown in Cd-contaminated soils by promoting the synthesis of total flavonoids, although robinin, rutin, quercetin, and acacetin yields may reduce with time. Additionally, increased Cd in the leaves suggested that eCO2 could improve the phytoremediation of Cd-contaminated soils.


Assuntos
Cádmio/toxicidade , Dióxido de Carbono , Flavonoides/metabolismo , Folhas de Planta/efeitos dos fármacos , Robinia/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Clorofila/metabolismo , Folhas de Planta/metabolismo , Robinia/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
9.
Ecotoxicol Environ Saf ; 210: 111906, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429318

RESUMO

In the present work, the effect of seed pre-soaking with gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) in conferring subsequent tolerance to Cd stress in sunflower (Helianthus annuus) seedlings was investigated. Exposing sunflower seedlings to increasing Cd concentrations (5, 10 and 20 µM) caused a gradual decrease in root and shoot biomass and increased the metal accumulation in both organs. Seed pretreatment with 75 µM GA significantly restricted Cd uptake, markedly alleviated Cd-induced plant growth inhibition, and mitigated the oxidative damages caused by this metal, as compared to plants directly exposed to Cd. GA pre-soaking prior to Cd stress also enhanced catalase, ascorbate peroxidase and glutathione reductase activities, while inhibiting that of superoxide dismutase. This was associated with increased levels of total thiols and glutathione along with a decreased level of oxidized glutathione in leaves. Moreover, GA pre-soaking led to changes in leaf fatty acid composition of seedlings challenged with Cd, as evidenced by the higher total lipid content and lipid unsaturation degree. As a whole, this study provides strong arguments highlighting the potential role of GA as a growth promoter for sunflower seedlings submitted to Cd stress, notably by boosting the antioxidant defense system and improving leaf membrane stability.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Ácido Gálico/farmacologia , Helianthus/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Tolerância a Medicamentos , Glutationa/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo
10.
Chemosphere ; 262: 127749, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32805655

RESUMO

Beans of cacao (Theobroma cacaoL.) are used to produce a variety of chocolate products. Bioaccumulation of metals at toxic levels through the consumption of contaminated products has been identified as a health concern in humans. Both metal diversity and concentration as well as their interactions in the soil influence essential and non-essential metal uptake in plants; but the effects of these on bioaccumulation of metals in cacao is not understood across diverse soil types. In this study eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were investigated in 12 soil subgroups belonging to four soil orders across 15 locations in Trinidad, with the aim to investigate the effect of soil metal diversity and concentration on metal bioaccumulation in cacao. Soil metals were extracted using five methods (aqua regia, DTPA, Mehlich 3, nitric acid, and water). Cacao leaf metal concentrations were determined using the USEPA 3052 method. Metal extraction efficiency ranged between methods with aqua regia ≥ nitric acid > Mehlich 3 ≥ DTPA ≥ water across all metals. The soil extraction method that best predicted cacao leaf metal concentrations varied with the metal - Mehlich 3 or DTPA for Cd, Ni, Zn; aqua regia, Mehlich 3, or nitric acid for Pb, and water for Mn. A stepwise regression analysis showed that plant metal concentration can be predicted using soil physicochemical characteristics as well as the concentration of metals in the soil. The importance of soil type on cacao leaf metal bioaccumulation is discussed.


Assuntos
Bioacumulação , Cacau/química , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Disponibilidade Biológica , Cacau/efeitos dos fármacos , Cacau/crescimento & desenvolvimento , Humanos , Metais Pesados/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Trinidad e Tobago
11.
Ecotoxicol Environ Saf ; 207: 111307, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931968

RESUMO

Spray application is considered to be the most common method of insecticide use in apple orchard, while trunk injection has often be used in labor-intensive areas. Here, a comparison of both methods in aphid control efficiency and non-target effects was conducted. We evaluated the effects of thiamethoxam by either spray or injection on apple aphid Aphis citricola, and examined the temporal dynamic of thiamethoxam in leaves by using residue analysis. Results showed that thiamethoxam had a remarkable suppression effect on Aphis citricola, and both application methods had obvious control efficiency with the highest value above 90%. The control effect of spray method on Aphis citricola reached the maximum at 7 days after application, while that of injection method reached the maximum at 14 days after application. Moreover, the control effect of injection after 14 days and that of spray after 7 days were not significant, suggesting the spray method had a higher quick-acting effect than the injection method, and the two methods had a similar persistence effect. The population dynamics of non-target insects (ladybugs, parasitoid wasps and predatory bugs) showed basically the same as that of blank controlled. The control effect evaluation of thiamethoxam on Aphis citricola suggest that injection treatment was more effective in protecting natural enemies than spray treatment, and thiamethoxam didn't interfere with natural enemies to control Aphis citricola with both two application methods.


Assuntos
Afídeos/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/administração & dosagem , Malus/crescimento & desenvolvimento , Tiametoxam/administração & dosagem , Animais , Afídeos/crescimento & desenvolvimento , China , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento , Inseticidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Dinâmica Populacional , Tiametoxam/farmacologia
12.
Aquat Toxicol ; 228: 105646, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33011648

RESUMO

2,4-dinitrophenol (2,4-DNP) is a phenolic compound used as a wood preservative or pesticide. The chemical is hazardous to freshwater organisms. Although 2,4-DNP poses ecological risks, only a few of its aquatic environmental risks have been investigated and very limited guidelines for freshwater aquatic ecosystems have been established by governments. This study addresses the paucity of 2,4-DNP toxicity data for freshwater ecosystems and the current lack of highly reliable trigger values for this highly toxic compound. We conducted acute bioassays using 12 species from nine taxonomic groups and chronic assays using five species from four taxonomic groups to improve the quality of the dataset and enable the estimation of protective concentrations based on species sensitivity distributions. The acute and hazardous concentrations of 2,4-DNP in 5% of freshwater aquatic species (HC5) were determined to be 0.91 (0.32-2.65) mg/L and 0.22 (0.11-0.42) mg/L, respectively. To the best of our knowledge, this is the first report of a suggested chronic HC5 for 2,4-DNP and it provides the much-needed fundamental data for the risk assessment and management of freshwater ecosystems.


Assuntos
2,4-Dinitrofenol/análise , Ecossistema , Monitoramento Ambiental , Água Doce/química , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Chlamydomonas/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Euglena/efeitos dos fármacos , Oryzias , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Qualidade da Água
13.
Ecotoxicol Environ Saf ; 203: 111010, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888587

RESUMO

Manganese (Mn) toxicity is common in plants grown on very acid soils. However, some plants species that grow in this condition can take up high amounts of Mn and are referred to as hyperaccumulating species. In this study, we evaluated the capacity of Ilex paraguariensis to accumulate Mn and the effect of excessive concentrations on plant growth and nutrition. For this, a container experiment was conducted using soils from different parent materials (basalt and sandstone), with and without liming, and at six doses of applied Mn (0, 30, 90, 270, 540 and 1,080 mg kg-1). Clonal plants grown for 203 days were harvested to evaluate yield, and leaf tissue samples were evaluated for Mn and other elements. Without liming and with high Mn doses, leaf Mn concentrations reached 13,452 and 12,127 mg kg-1 in sandstone and basalt soils, respectively; concentrations in excess of 10,000 mg kg-1 are characteristic of hyperaccumulating plants. Liming reduced these values to 7203 and 8030 mg kg-1. More plant growth accompanied increased Mn leaf concentrations, with a growth reduction noted at the highest dose in unlimed soils. Elemental distribution showed Mn presence in the mesophyll, primarily in vascular bundles, without high Mn precipitates. Interveinal chlorosis of young leaves associated with high Mn concentration and lower Fe concentrations was observed, especially in sandstone soil without liming. However, the occurrence of this symptom was not associated with decreased plant growth.


Assuntos
Ácidos/farmacologia , Ilex paraguariensis/metabolismo , Manganês/metabolismo , Doenças das Plantas/induzido quimicamente , Poluentes do Solo/metabolismo , Ácidos/análise , Compostos de Cálcio/análise , Compostos de Cálcio/farmacologia , Ilex paraguariensis/efeitos dos fármacos , Ilex paraguariensis/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/análise , Manganês/toxicidade , Óxidos/análise , Óxidos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
14.
Ecotoxicol Environ Saf ; 203: 111019, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888606

RESUMO

Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.


Assuntos
Poluentes Atmosféricos/toxicidade , Arabidopsis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Dióxido de Enxofre/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação para Baixo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação para Cima
15.
Ecotoxicol Environ Saf ; 205: 111298, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950806

RESUMO

Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.


Assuntos
Bioacumulação , Cádmio/toxicidade , Morus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Perfilação da Expressão Gênica , Morus/crescimento & desenvolvimento , Morus/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico/genética
16.
Ecotoxicol Environ Saf ; 203: 111024, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32741747

RESUMO

Pontederia cordata can tolerate heavy metal toxicity and possesses great potential for phytoremediation of heavy-metal-contaminated wetlands, yet how it copes with heavy metal stress has still not been determined. Hydroponic experiments were used to assess the effects of various levels of Cd2+ on the photosynthesis and activity of redox-regulatory systems in the plant leaves, and we also sought to elucidate the tolerance mechanism of the plant to Cd2+ by investigating Cd2+ enrichment characteristics and chemical forms. The plant can manage a low cadmium concentration (≤0.04 mM) with relatively stable biomass and photosynthetic performance. Cd2+ at the highest concentration (0.44 mM) decreased superoxide dismutase and peroxidase activities by 37.17% and 93.29%, respectively. Similar trends were demonstrated in the contents of ascorbic acid, carotenoids, lutein, glutathione, and non-protein thiol, as well as phytochelation in the leaves, exacerbating membrane peroxidation despite the significantly increased catalase activity observed. Moreover, the highest Cd2+ concentration disturbed the biosynthesis of chlorophyll precursors in the leaves, reduced chlorophyll a and b, as well as total chlorophyll contents by 60.47%, 67.47%, and 68.12%, respectively, which inhibited photosynthesis, leading to a decline in biomass. Compared with maximum quantum efficiency (Fv/Fm) and the potential activity (Fv/Fo) of photosystem II, the performance index for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors (PIabs), and of PSI end acceptors (PItotal), can indicate Cd2+ toxicity to the photosynthetic apparatus in the leaves. 49.95%-76.90% of the Cd2+ was sequestered in the plant roots, restraining translocation from roots to shoots, which is considered a tolerance mechanism, probably resulting from disturbed transpiration in leaves and increased Cd2+ content with low activity. Pontederia cordata is a candidate plant for phytoremediation of heavy-metal -contaminated wetlands.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Cádmio/toxicidade , Pontederiaceae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Organismos Aquáticos/metabolismo , Ácido Ascórbico/farmacologia , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Carotenoides/metabolismo , Clorofila A/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Pontederiaceae/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
17.
Chemosphere ; 261: 127721, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32745740

RESUMO

The uptake and distribution of Pb and the mechanisms involved in the metal tolerance have been investigated in a mine population of Biscutella auriculata. Seedlings were exposed to 125 µM Pb(NO3)2 for 15 days under semihydroponic conditions. The results showed an increase in the size of Pb-treated seedlings and symptoms of toxicity were not observed. ICP-OES analyses showed that Pb accumulation was restricted to root tissue. Imaging of Pb accumulation by dithizone histochemistry revealed the presence of the metal in vacuoles and cell wall in root cells. The accumulation of Pb in vacuoles could be stimulated by an increase in phytochelatin PC2 content. Pb did not promote oxidative damage and this is probably due the increase of antioxidative defenses. In the leaves, Pb produced a significant increase in superoxide dismutase activity, while in roots an increase in catalase and components of the Foyer- Halliwell-Asada cycle were observed. The results indicated that Biscutella auriculata has a high capacity to tolerate Pb and this is mainly due to a very efficient mechanism to sequester the metal in roots and a capacity to avoid oxidative stress. This species could therefore be very useful for phytostabilization and repopulation of areas contaminated with Pb.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/metabolismo , Bioacumulação/efeitos dos fármacos , Brassicaceae/metabolismo , Chumbo/metabolismo , Mineração , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Catalase/metabolismo , Chumbo/análise , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fitoquelatinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Poluentes do Solo/análise
18.
Ecotoxicol Environ Saf ; 205: 111160, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853864

RESUMO

The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.


Assuntos
Amaranthus/efeitos dos fármacos , Secas , Espécies Introduzidas , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Amaranthus/crescimento & desenvolvimento , Modelos Teóricos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento
19.
Ecotoxicol Environ Saf ; 206: 111184, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861009

RESUMO

The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.


Assuntos
Carvão Vegetal/química , Cromo/análise , Ipomoea/efeitos dos fármacos , Selênio/farmacologia , Poluentes do Solo/análise , Transporte Biológico , Biomassa , Cromo/metabolismo , Ipomoea/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Selênio/metabolismo , Solo/química , Poluentes do Solo/metabolismo
20.
Ecotoxicol Environ Saf ; 204: 111056, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763566

RESUMO

Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals. In this study, we examined the global expression profile of miRNAs under Sr stress using small RNA sequencing analysis in Arabidopsis to better understand the molecular basis of plant responses to Sr stress. To identify specific Sr-responsive miRNAs, we performed comparative miRNA expression profiling analysis using control, CaCl2-, and SrCl2-treated seedlings. Compared to the control treatment, the expressions of most miRNAs were considerably decreased in the Sr-treated seedlings. However, under Sr stress, the expressions of primary miRNAs (pri-miRNAs) and their target genes were significantly increased; the protein levels of HYPONASTIC LEAVES 1 (HYL1), one of the core components of the microprocessor complex, were strongly reduced despite the increased HYL1 mRNA expression. In addition, hyl1-2 mutant plants were shown to be more sensitive to Sr stress than wild-type plants. Collectively, our results strongly suggested that Sr stress may be associated with the disruption of miRNA biogenesis by reducing the protein level of HYL1, which is required to maintain proper growth and development for plants. Our findings further indicated that some miRNAs may play important roles in plant responses to Sr stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , MicroRNAs/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Poluentes do Solo/toxicidade , Estrôncio/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA