Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.292
Filtrar
1.
PLoS One ; 15(9): e0237493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946440

RESUMO

The phyllosphere epiphytic microbiome is composed of microorganisms that colonize the external aerial portions of plants. Relationships of plant responses to specific microorganisms-both pathogenic and beneficial-have been examined, but the phyllosphere microbiome functional and metabolic profile responses are not well described. Changing crop growth conditions, such as increased drought, can have profound impacts on crop productivity. Also, epiphytic microbial communities provide a new target for crop yield optimization. We compared Zea mays leaf microbiomes collected under drought and well-watered conditions by examining functional gene annotation patterns across three physically disparate locations each with and without drought treatment, through the application of short read metagenomic sequencing. Drought samples exhibited different functional sequence compositions at each of the three field sites. Maize phyllosphere functional profiles revealed a wide variety of metabolic and regulatory processes that differed in drought and normal water conditions and provide key baseline information for future selective breeding.


Assuntos
Folhas de Planta/genética , Folhas de Planta/microbiologia , Zea mays/genética , Zea mays/microbiologia , Secas , Redes Reguladoras de Genes , Genes de Plantas , Metagenômica , Microbiota , Anotação de Sequência Molecular , Folhas de Planta/fisiologia , Estresse Fisiológico , Água/metabolismo , Zea mays/fisiologia
2.
Nat Commun ; 11(1): 4519, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908150

RESUMO

The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general show a shift within trait space along the same common slope as observed in non-wetland plants, with lower leaf mass per area, higher leaf nitrogen and phosphorus, faster photosynthetic rates, and shorter leaf life span compared to non-wetland plants. We conclude that wetland plants tend to cluster at the acquisitive end of the LES. The presented global quantifications of the LES in wetland plants enhance our understanding of wetland plant strategies in terms of resources acquisition and allocation, and provide a stepping-stone to developing trait-based approaches for wetland ecology.


Assuntos
Fotossíntese/genética , Folhas de Planta/genética , Plantas/genética , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Plantas/anatomia & histologia , Plantas/metabolismo
3.
Plant Mol Biol ; 104(3): 235-248, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757127

RESUMO

KEY MESSAGE: Two PaGL1-like genes were identified in London plane and functional in Arabidopsis, moreover, may play an important role in the regulation of trichome development in London plane. Trichome development is governed by a complex regulatory network. In Arabidopsis, subgroup 15 of the R2R3 MYB transcription factor family, which includes GLABRA1 (GL1), is involved in trichome development. In this study, we isolated and characterized two PaGL1-like genes from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that these PaGL1-like genes are homologous to AtGL1. Quantitative real-time PCR (qRT-PCR) analysis showed that PaGL1-like1 was expressed in all of the tested organs taken from adult London plane trees, including trichomes, petioles after trichome removal, stems after trichome removal, and leaves after trichome removal, and also in the roots, cotyledons, hypocotyls and true leaves of seedlings. By contrast, the PaGL1-like2 was expressed only in the trichomes and leaves after trichome removal from adult trees, and in the cotyledons and true leaves of seedlings. Overexpression of PaGL1-like genes caused trichome abortion when transferred into wild type Arabidopsis and promoted trichome formation in the gl1 mutant. The expression profiles of some trichome-related genes were changed in transgenic Arabidopsis lines, and yeast two-hybrid analysis indicated that PaGL1-like proteins can directly interact with trichome-related bHLH proteins from both P. acerifolia and Arabidopsis. These results suggest that PaGL1-like genes are functional in Arabidopsis and may play an important role in the regulation of trichome development in London plane.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Traqueófitas/genética , Tricomas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Filogenia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Traqueófitas/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Tricomas/crescimento & desenvolvimento
4.
Nat Commun ; 11(1): 4140, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811829

RESUMO

Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Processamento de RNA/genética , Alelos , Arabidopsis/metabolismo , Evolução Molecular , Pleiotropia Genética , Variação Genética , Íntrons , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética , Temperatura
5.
Nat Commun ; 11(1): 3847, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737299

RESUMO

Reporter systems are routinely used in plant genetic engineering and functional genomics research. Most such plant reporter systems cause accumulation of foreign proteins. Here, we demonstrate a protein-independent reporter system, 3WJ-4 × Bro, based on a fluorescent RNA aptamer. Via transient expression assays in both Escherichia coli and Nicotiana benthamiana, we show that 3WJ-4 × Bro is suitable for transgene identification and as an mRNA reporter for expression pattern analysis. Following stable transformation in Arabidopsis thaliana, 3WJ-4 × Bro co-segregates and co-expresses with target transcripts and is stably inherited through multiple generations. Further, 3WJ-4 × Bro can be used to visualize virus-mediated RNA delivery in plants. This study demonstrates a protein-independent reporter system that can be used for transgene identification and in vivo dynamic analysis of mRNA.


Assuntos
Aptâmeros de Nucleotídeos/genética , Arabidopsis/genética , Brassica/genética , Engenharia Genética/métodos , RNA Mensageiro/genética , Tabaco/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Arabidopsis/metabolismo , Compostos de Benzil/química , Brassica/metabolismo , Fluorescência , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Genes Reporter , Imidazolinas/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/metabolismo , Tabaco/metabolismo , Transformação Genética
6.
PLoS One ; 15(7): e0227785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673318

RESUMO

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers were used in the study to identify QTLs associated with grain yield per se and related traits. Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from 0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the genotypes within the population and 24% among the populations were observed (AMOVA). This information may help in identification of potential parents for development of transgressive segregants with very high yield. The association analysis using GLM and MLM models led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respectively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1, qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight (qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-localized with more than two traits. The highest co-localization was identified with RM5709 linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168, RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one trait and could be rated as important for marker-assisted backcross breeding programs, for pyramiding of these QTLs for important yield traits, to produce new-generation rice for prospective increment in yield potentiality and breaking yield ceiling.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Grão Comestível/genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Análise de Componente Principal
7.
Ecotoxicol Environ Saf ; 203: 110943, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678750

RESUMO

High temperature damage impairs the growth of tall fescue by inhibiting secondary metabolites. Little is known about the regulation pattern of the fatty acids and carbohydrate metabolism at the whole-transcriptome level in tall fescue under high temperature stress. Here, two tall fescue genotypes, heat tolerant PI578718 and heat sensitive PI234881 were subjected to high temperature stress for 36 h. PI 578718 showed higher SPAD chloroplast value, lower EL and leaf injury than PI 234881 during the first 36 h high-temperature stress. Furthermore, by transcriptomic analysis, 121 genes were found to be induced during the second energy production phase in tall fescue exposed to high-temperature conditions, indicating that there may be one energy-sensing system in cool-season turfgrass to adapt high-temperature conditions. PI 578718 showed higher differentially expressed unigenes involved in fatty acids and carbohydrate metabolism compared with PI 234881 for 36 h heat stress. Interestingly, a metabolomic analysis using GC-MS uncovered that the sugars and sugar alcohol accounted for more than 65.06% of the total 41 metabolites content and high-temperature elevated the rate to 82.89-91.16% in PI 578718. High-temperature damage decreased the rate of fatty acid in the total 41 metabolites content and PI 578718 showed lower content than in PI 234881, which might be attributed to the down-regulated genes in fatty acid biosynthesis pathway in tall fescue. The integration of deep transcriptome and metabolome analyses provides systems-wide datasets to facilitate the identification of crucial regulation factors in cool-season turfgrass in response to high-temperature damage.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Festuca , Resposta ao Choque Térmico , Temperatura Alta , Metabolismo dos Carboidratos/genética , Ácidos Graxos/genética , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Metabolômica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
8.
Plant Mol Biol ; 104(1-2): 113-136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627097

RESUMO

KEY MESSAGE: Present study revealed a complex relationship among histone H3 methylation (examined using H3K4/K27me3 marks), cytosine DNA methylation and differential gene expression during Lr28 mediated leaf rust resistance in wheat. During the present study, genome-wide histone modifications were examined in a pair of near isogenic lines (NILs) (with and without Lr28 in the background of cv. HD2329). The two histone marks used included H3K4me3 (an activation mark) and H3K27me3 (a repression mark). The results were compared with levels of expression (using RNA-seq) and DNA methylation (MeDIP) data obtained using the same pair of NILs. Some of the salient features of the present study include the following: (i) large scale differential binding sites (DBS) were available for only H3K4me3 in the susceptible cultivar, but for both H3K4me3 and H3K27me3 in its resistant NIL; (ii) DBSs for H3K27me3 mark were more abundant (> 80%) in intergenic regions, whereas DBSs for H3K4me3 were distributed in all genomic regions including exons, introns, intergenic, TTS (transcription termination sites) and promoters; (iii) fourteen (14) genes associated with DBSs showed co-localization for both the marks; (iv) only a small fraction (7% for H3K4me3 and 12% for H3K27me3) of genes associated with DBSs matched with the levels of gene expression inferred from RNA-seq data; (v) validation studies using qRT-PCR were conducted on 26 selected representative genes; results for only 11 genes could be validated. The proteins encoded by important genes involved in promoting infection included domains generally carried by R gene proteins such as Mlo like protein, protein kinases and purple acid phosphatase. Similarly, proteins encoded by genes involved in resistance included those carrying domains for lectin kinase, R gene, aspartyl protease, etc. Overall, the results suggest a very complex network of downstream genes that are expressed during compatible and incompatible interactions; some of the genes identified during the present study may be used in future validation studies involving RNAi/overexpression approaches.


Assuntos
Basidiomycota/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Genoma de Planta/genética , Histonas/genética , Doenças das Plantas/genética , Triticum/genética , Triticum/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ligação Genética , Histonas/metabolismo , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência , Análise de Sequência de RNA , Transcrição Genética , Triticum/microbiologia
9.
PLoS One ; 15(7): e0236588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706804

RESUMO

Xanthoceras sorbifolia, a medicinal and oil-rich woody plant, has great potential for biodiesel production. However, little study explores the link between gene expression level and metabolite accumulation of X. sorbifolia in response to cold stress. Herein, we performed both transcriptomic and metabolomic analyses of X. sorbifolia seedlings to investigate the regulatory mechanism of resistance to low temperature (4 °C) based on physiological profile analyses. Cold stress resulted in a significant increase in the malondialdehyde content, electrolyte leakage and activity of antioxidant enzymes. A total of 1,527 common differentially expressed genes (DEGs) were identified, of which 895 were upregulated and 632 were downregulated. Annotation of DEGs revealed that amino acid metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, galactose metabolism, fructose and mannose metabolism, and the citrate cycle (TCA) were strongly affected by cold stress. In addition, DEGs within the plant mitogen-activated protein kinase (MAPK) signaling pathway and TF families of ERF, WRKY, NAC, MYB, and bHLH were transcriptionally activated. Through metabolomic analysis, we found 51 significantly changed metabolites, particularly with the analysis of primary metabolites, such as sugars, amino acids, and organic acids. Moreover, there is an overlap between transcript and metabolite profiles. Association analysis between key genes and altered metabolites indicated that amino acid metabolism and sugar metabolism were enhanced. A large number of specific cold-responsive genes and metabolites highlight a comprehensive regulatory mechanism, which will contribute to a deeper understanding of the highly complex regulatory program under cold stress in X. sorbifolia.


Assuntos
Resposta ao Choque Frio/genética , Metaboloma , Metabolômica/métodos , Sapindaceae/metabolismo , Transcriptoma , Aminoácidos/metabolismo , Catalase/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , RNA de Plantas/genética , RNA de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sapindaceae/genética , Transdução de Sinais/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS One ; 15(7): e0236530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706831

RESUMO

Apple trees grafted on different rootstock types, including vigorous rootstock (VR), dwarfing interstock (DIR), and dwarfing self-rootstock (DSR), are widely planted in production, but the molecular determinants of tree branch architecture growth regulation induced by rootstocks are still not well known. In this study, the branch growth phenotypes of three combinations of 'Fuji' apple trees grafted on different rootstocks (VR: Malus baccata; DIR: Malus baccata/T337; DSR: T337) were investigated. The VR trees presented the biggest branch architecture. The results showed that the sugar content, sugar metabolism-related enzyme activities, and hormone content all presented obvious differences in the tender leaves and buds of apple trees grafted on these rootstocks. Transcriptomic profiles of the tender leaves adjacent to the top buds allowed us to identify genes that were potentially involved in signaling pathways that mediate the regulatory mechanisms underlying growth differences. In total, 3610 differentially expressed genes (DEGs) were identified through pairwise comparisons. The screened data suggested that sugar metabolism-related genes and complex hormone regulatory networks involved the auxin (IAA), cytokinin (CK), abscisic acid (ABA) and gibberellic acid (GA) pathways, as well as several transcription factors, participated in the complicated growth induction process. Overall, this study provides a framework for analysis of the molecular mechanisms underlying differential tree branch growth of apple trees grafted on different rootstocks.


Assuntos
Regulação da Expressão Gênica de Plantas , Malus/genética , Transdução de Sinais/genética , Açúcares/metabolismo , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Cromatografia Líquida de Alta Pressão , Citocininas/análise , Citocininas/metabolismo , Flores/genética , Flores/metabolismo , Giberelinas/análise , Giberelinas/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Malus/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Açúcares/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
11.
PLoS One ; 15(7): e0236376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722723

RESUMO

Grafting is a well-established agricultural practice in cherry production for clonal propagation, altered plant vigor and architecture, increased tolerance to biotic and abiotic stresses, precocity, and higher yield. Mobile molecules, such as water, hormones, nutrients, DNAs, RNAs, and proteins play essential roles in rootstock-scion interactions. Small RNAs (sRNAs) are 19 to 30-nucleotides (nt) RNA molecules that are a group of mobile signals in plants. Rootstock-to-scion transfer of transgene-derived small interfering RNAs enabled virus resistance in nontransgenic sweet cherry scion. To determine whether there was long-distance scion-to-rootstock transfer of endogenous sRNAs, we compared sRNAs profiles in bud tissues of an ungrafted 'Gisela 6' rootstock, two sweet cherry 'Emperor Francis' scions as well as their 'Gisela 6' rootstocks. Over two million sRNAs were detected in each sweet cherry scion, where 21-nt sRNA (56.1% and 55.8%) being the most abundant, followed by 24-nt sRNAs (13.1% and 12.5%). Furthermore, we identified over three thousand sRNAs that were potentially transferred from the sweet cherry scions to their corresponding rootstocks. In contrast to the sRNAs in scions, among the transferred sRNAs in rootstocks, the most abundant were 24-nt sRNAs (46.3% and 34.8%) followed by 21-nt sRNAs (14.6% and 19.3%). In other words, 21-nt sRNAs had the least transferred proportion out of the total sRNAs in sources (scions) while 24-nt had the largest proportion. The transferred sRNAs were from 574 cherry transcripts, of which 350 had a match from the Arabidopsis thaliana standard protein set. The finding that "DNA or RNA binding activity" was enriched in the transcripts producing transferred sRNAs indicated that they may affect the biological processes of the rootstocks at different regulatory levels. Overall, the profiles of the transported sRNAs and their annotations revealed in this study facilitate a better understanding of the role of the long-distance transported sRNAs in sweet cherry rootstock-scion interactions as well as in branch-to-branch interactions in a tree.


Assuntos
Raízes de Plantas/genética , Prunus avium/genética , Pequeno RNA não Traduzido/metabolismo , Arabidopsis/genética , Redes Reguladoras de Genes/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prunus avium/crescimento & desenvolvimento , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/isolamento & purificação
12.
PLoS One ; 15(7): e0235975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649704

RESUMO

Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Nitratos/metabolismo , Oryza/genética , Fotossíntese , Carboidratos/análise , Clorofila A/química , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , Análise de Sequência de RNA
13.
Mol Genet Genomics ; 295(6): 1393-1400, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32651630

RESUMO

Anthocyanins are a group of important secondary metabolites, functioning as colorant in plant organs as well as protective agents against several stresses. Sub-red plant (Rs) cottons, accumulating moderate level of anthocyanins in shoots, had increased photosynthesis efficiency compared to green- (GL) and red-plant (R1) cottons. The present work aimed to clarify the molecular base of anthocyanin regulation in Rs cotton. It was found that GhPAP1A was significantly up-regulated in Rs plants compared to GL cottons, but its expression level is lower than that of GhPAP1D in R1 plants. Virus induced gene silencing of GhPAP1s inhibited the red pigmentation in Rs plants. Comparative cloning revealed a 50-bp tandem repeat in the promoter of GhPAP1A in Rs cotton, which showed stronger activity to drive the expression of downstream genes in petals. Considered that the coding sequence of GhPAP1As from Rs and GL cottons had similar functions to promote anthocyanin biosynthesis in transgenic tobaccos, we attributed moderate anthocyanin accumulation in Rs cotton to increased transcription of GhPAP1A, resulted from varied promoter structure. Our works suggested GhPAP1s as useful tool to manipulate anthocyanin level and several breeding targets, including herbivore- and pathogen- resistance, high photosynthesis efficiency and colored fibers.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Pigmentação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética
14.
Gene ; 760: 144990, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721476

RESUMO

The MYB transcription factors are involved in the regulation of plant secondary metabolism, cell development and morphogenesis, and stress response. Here, a full-length, 816-bp NtMYB4a cDNA, which encodes a protein comprising 271 amino acids, was isolated from tobacco leaves. Phylogenetic analysis revealed that NtMYB4a is most similar to Nicotiana. attenuata MYB4, followed by Eriobotrya japonica MYB4, and NtMYB4a clustered with transcriptional activators rather than repressors. Subcellular localization assays showed that NtMYB4 localized in the nucleus, membrane, and cytoplasm. Expression analyses revealed differential expression of NtMYB4a among different tissues and organs and between different developmental stages, with most expression occurring in the stems and leaves during the full-bloom stage. Moreover, NtMYB4a expression was induced by cold, NaCl, PEG, abscisic acid, methyl jasmonate, and dark stressors, and the expression patterns and maximum expression levels varied with the type of stress. Overexpression of NtMYB4a upregulated NtPAL, Nt4CL, NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, which resulted in increased anthocyanin content in the tobacco corolla and darker colors. However, CRISPR/Cas9-mediated knockout of NtMYB4a downregulated NtPAL, NtC4H, Nt4CL, NtCHS, NtCHI, NtF3H, NtANS, and NtUFGT, which resulted in reduced anthocyanin content, and lighter corolla colors. These results indicated that NtMYB4a positively regulates anthocyanin biosynthesis and is involved in abiotic stress responses in tobacco plants.


Assuntos
Tabaco/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tabaco/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
15.
J Vis Exp ; (160)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32628154

RESUMO

Self-incompatibility in Rosaceae is determined by a Gametophytic Self-Incompatibility System (GSI) that is mainly controlled by the multiallelic locus S. In apricot, the determination of self- and inter-(in)compatibility relationships is increasingly important, since the release of an important number of new cultivars has resulted in the increase of cultivars with unknown pollination requirements. Here, we describe a methodology that combines the determination of self-(in)compatibility by hand-pollinations and microscopy with the identification of the S-genotype by PCR analysis. For self-(in)compatibility determination, flowers at balloon stage from each cultivar were collected in the field, hand-pollinated in the laboratory, fixed, and stained with aniline blue for the observation of pollen tube behavior under the fluorescence microscopy. For the establishment of incompatibility relationships between cultivars, DNA from each cultivar was extracted from young leaves and S-alleles were identified by PCR. This approach allows establishing incompatibility groups and elucidate incompatibility relationships between cultivars, which provides a valuable information to choose suitable pollinizers in the design of new orchards and to select appropriate parents in breeding programs.


Assuntos
Polinização , Prunus armeniaca/fisiologia , DNA de Plantas/análise , Flores/fisiologia , Genótipo , Microscopia de Fluorescência , Folhas de Planta/genética , Pólen/fisiologia , Reação em Cadeia da Polimerase , Prunus armeniaca/genética
16.
Nature ; 583(7815): 277-281, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32528176

RESUMO

Plant hormones known as strigolactones control plant development and interactions between host plants and symbiotic fungi or parasitic weeds1-4. In Arabidopsis thaliana and rice, the proteins DWARF14 (D14), MORE AXILLARY GROWTH 2 (MAX2), SUPPRESSOR OF MAX2-LIKE 6, 7 and 8 (SMXL6, SMXL7 and SMXL8) and their orthologues form a complex upon strigolactone perception and play a central part in strigolactone signalling5-10. However, whether and how strigolactones activate downstream transcription remains largely unknown. Here we use a synthetic strigolactone to identify 401 strigolactone-responsive genes in Arabidopsis, and show that these plant hormones regulate shoot branching, leaf shape and anthocyanin accumulation mainly through transcriptional activation of the BRANCHED 1, TCP DOMAIN PROTEIN 1 and PRODUCTION OF ANTHOCYANIN PIGMENT 1 genes. We find that SMXL6 targets 729 genes in the Arabidopsis genome and represses the transcription of SMXL6, SMXL7 and SMXL8 by binding directly to their promoters, showing that SMXL6 serves as an autoregulated transcription factor to maintain the homeostasis of strigolactone signalling. These findings reveal an unanticipated mechanism through which a transcriptional repressor of hormone signalling can directly recognize DNA and regulate transcription in higher plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Transdução de Sinais/genética , Transcrição Genética , Antocianinas/biossíntese , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas/genética , Reguladores de Crescimento de Planta/biossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Ecotoxicol Environ Saf ; 201: 110832, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563158

RESUMO

Ozone (O3), an oxidizing toxic air pollutant, is ubiquitous in industrialized and developing countries. To understand the effects of O3 exposure on apple (Malus) and to explore its defense mechanisms, we exposed 'Hongjiu' crabapple to O3 and monitored its responses using physiological, transcriptomics, and metabolomics analyses. Exposure to 300 nL L-1 O3 for 3 h caused obvious damage to the leaves of Malus crabapple, affected chlorophyll and anthocyanin contents, and activated antioxidant enzymes. The gene encoding phospholipase A was highly responsive to O3 in Malus crabapple. McWRKY75 is a key transcription factor in the response to O3 stress, and its transcript levels were positively correlated with those of flavonoid-related structural genes (McC4H, McDFR, and McANR). The ethylene response factors McERF019 and McERF109-like were also up-regulated by O3. Exogenous methyl jasmonate (MeJA) decreased the damaging effects of O3 on crabapple and was most effective at 200 µmol L -1. Treatments with MeJA altered the metabolic pathways of crabapple under O3 stress. In particular, MeJA activated the flavonoid metabolic pathway in Malus, which improved its resistance to O3 stress.


Assuntos
Acetatos/farmacologia , Poluentes Atmosféricos/toxicidade , Ciclopentanos/farmacologia , Malus , Oxilipinas/farmacologia , Ozônio/toxicidade , Reguladores de Crescimento de Planta/farmacologia , Transcriptoma/efeitos dos fármacos , Antocianinas/genética , Antocianinas/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Flavonoides/metabolismo , Malus/efeitos dos fármacos , Malus/genética , Malus/metabolismo , Metabolômica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética
18.
PLoS One ; 15(6): e0234317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555744

RESUMO

We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.


Assuntos
Lolium/genética , Lolium/metabolismo , Secas , Genótipo , Irã (Geográfico) , Fotossíntese , Fisiologia Comparada/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Polinização , Proteômica/métodos , Estresse Fisiológico/genética , Água/metabolismo
19.
Plant Mol Biol ; 104(1-2): 55-65, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32572798

RESUMO

Increase in atmospheric carbon dioxide (CO2) has a significant effect on plant growth and development. To explore the elevated-CO2 response, we generated transcriptional profiles over a time course (2 h-14 days) of exposure to elevated CO2 in Arabidopsis thaliana. Genes related to photosynthesis were down-regulated and circadian rhythm-related genes were abnormally regulated in the early to middle phase of elevated CO2 exposure. To understand the novel mechanism of elevated CO2 signaling, we focused on 42 unknown small coding genes that showed differential expression patterns under elevated CO2 conditions. Four transgenic plants overexpressing the small coding gene exhibited a growth-defective phenotype under elevated CO2 but not under current CO2. Transcriptome analysis showed that circadian rhythm-related genes were commonly regulated in four transgenic plants. These circadian rhythm-related genes were transcribed in the dark when CO2 concentrations in the leaf was high. Taken together, our identified four small coding genes are likely to participate in elevated CO2 signaling to the circadian rhythm.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Fotossíntese/genética , Desenvolvimento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Transcriptoma
20.
PLoS One ; 15(6): e0233800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497070

RESUMO

Several studies suggest the relation of DNA methylation to diseases in humans and important phenotypes in plants drawing attention to this epigenetic mark as an important source of variability. In the last decades, several methodologies were developed to assess the methylation state of a genome. However, there is still a lack of affordable and precise methods for genome wide analysis in large sample size studies. Methyl sensitive double digestion MS-DArT sequencing method emerges as a promising alternative for methylation profiling. We developed a computational pipeline for the identification of DNA methylation using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree sequenced for the species reference genome. Using a statistic framework as in differential expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites identified, several tissue specific, distributed along the species 11 chromosomes. We highlight a bias towards identification of DNA methylation in genic regions and the identification of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS, DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher than 95% for our approach. The availability of a reference genome is useful for determining the genomic context of methylated sites but not imperative, making this approach suitable for any species. Our approach provides a cost effective, broad and reliable examination of DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).


Assuntos
Análise Custo-Benefício , Metilação de DNA/genética , Eucalyptus/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Folhas de Planta/genética , Análise de Sequência de DNA/métodos , Árvores/genética , Cromossomos de Plantas/genética , Enzimas de Restrição do DNA/genética , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Técnicas de Genotipagem/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Projetos Piloto , Reprodutibilidade dos Testes , Mapeamento por Restrição , Análise de Sequência de DNA/economia , Sulfitos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA