Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.794
Filtrar
1.
Gene ; 823: 146320, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35218893

RESUMO

Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.


Assuntos
Capsicum/crescimento & desenvolvimento , Resistência à Doença , Perfilação da Expressão Gênica/métodos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Tospovirus/patogenicidade , Capsicum/genética , Capsicum/metabolismo , Capsicum/virologia , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/virologia , RNA-Seq , Transdução de Sinais
2.
Nat Commun ; 13(1): 716, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132090

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.


Assuntos
Proteínas 14-3-3/imunologia , Proteínas do Capsídeo/imunologia , MAP Quinase Quinase Quinases/imunologia , Imunidade Vegetal/genética , Tombusviridae/patogenicidade , Proteínas 14-3-3/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Ligação Proteica , Tabaco/genética , Tabaco/imunologia , Tabaco/virologia , Tombusviridae/classificação , Tombusviridae/metabolismo
3.
Mol Biol Rep ; 49(1): 237-247, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705219

RESUMO

BACKGROUND: Early, precise and simultaneous identification of plant viruses is of great significance for preventing virus spread and reducing losses in agricultural yields. METHODS AND RESULTS: In this study, the identification of plant viruses from symptomatic samples collected from a cigar tobacco planting area in Deyang and a flue-cured tobacco planting area in Luzhou city, Sichuan Province, China, was conducted by deep sequencing of small RNAs (sRNAs) through an Illumina sequencing platform, and plant virus-specific contigs were generated based on virus-derived siRNA sequences. Additionally, sequence alignment and phylogenetic analysis were performed to determine the species or strains of these viruses. A total of 27930450, 21537662 and 28194021 clean reads were generated from three pooled samples, with a total of 105 contigs mapped to the closest plant viruses with lengths ranging from 34 ~ 1720 nt. The results indicated that the major viruses were potato virus Y, Chilli veinal mottle virus, tobacco vein banding mosaic virus, tobacco mosaic virus and cucumber mosaic virus. Subsequently, a fast and sensitive multiplex reverse transcription polymerase chain reaction assay was developed for the simultaneous detection of the most frequent RNA viruses infecting cigar and flue-cured tobacco in Sichuan. CONCLUSIONS: These results provide a theoretical basis and convenient methods for the rapid detection and control of viruses in cigar- and flue-cured tobacco.


Assuntos
Perfilação da Expressão Gênica/métodos , Pequeno RNA não Traduzido/genética , RNA-Seq/métodos , Tabaco/virologia , Vírus/classificação , Cucumovirus/genética , Cucumovirus/isolamento & purificação , Cucumovirus/patogenicidade , Resistência à Doença , Evolução Molecular , Reação em Cadeia da Polimerase Multiplex , Filogenia , Folhas de Planta/genética , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Tabaco/genética , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/isolamento & purificação , Vírus do Mosaico do Tabaco/patogenicidade , Vírus/genética , Vírus/isolamento & purificação
4.
Nat Commun ; 12(1): 7087, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873158

RESUMO

Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


Assuntos
Afídeos/genética , Cucumovirus/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , RNA Satélite/genética , RNA Viral/genética , Animais , Afídeos/fisiologia , Afídeos/virologia , Cucumovirus/fisiologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , RNA Satélite/fisiologia , RNA Viral/fisiologia , Tabaco/genética , Tabaco/parasitologia , Tabaco/virologia , Vírion/genética , Vírion/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
5.
Viruses ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34960677

RESUMO

The Chinaberry tree, a member of the Meliaceae family, is cultivated in China for use in traditional medicines. In 2020, Chinaberry trees with leaf deformation symptoms were found in Hangzhou, Zhejiang province, China. In order to identify possible pathogenic viruses, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to the identification of a novel badnavirus, provisionally designated Chinaberry tree badnavirus 1 (ChTBV1). With the recent development of China's seedling industry and increasing online shopping platforms, the risk of tree virus transmission has increased substantially. Therefore, it is important to detect the occurrence of ChTBV1 to ensure the safety of the Chinaberry tree seedling industry. Here, we describe the development and validation of a sensitive and robust method relying on a loop-mediated isothermal amplification (LAMP) assay, targeting a 197 nt region, to detect ChTBV1 from Chinaberry tree leaves. The LAMP assay was also adapted for rapid visualization of results by a lateral flow dipstick chromatographic detection method.


Assuntos
Badnavirus/classificação , Badnavirus/isolamento & purificação , Melia azedarach/virologia , Doenças das Plantas/virologia , Árvores/virologia , China , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Folhas de Planta/virologia , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944040

RESUMO

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


Assuntos
Afídeos/fisiologia , Cálcio/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Caulimovirus/fisiologia , Mutação/genética , Folhas de Planta/genética
7.
Viruses ; 13(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34835039

RESUMO

The use of high throughput sequencing (HTS) for the analysis of Spanish olive trees showing leaf yellowing discoloration, defoliation, and/or decline has provided new insights into the olive viruses present in Spain and has opened discussions about the pros and cons of these technologies for diagnostic purposes. In this study, we report for the first time in Spanish orchards the presence of olive leaf yellowing-associated virus (OLYaV), for which the second full coding sequence has been determined. This virus has also been detected in a putative vector, the psyllid Euphyllura olivina. In addition, the presence in Spain of Olea europaea geminivirus (OEGV), recently reported in Italy, has been confirmed, and the full-length sequence of two isolates was obtained by HTS and Sanger sequencing. These results, as well as the detection of other viral sequences related to olive latent virus 3 (OLV-3) and olive viral satellite RNA, raises questions on the biological significance of the findings, about the requirement of standardization on the interpretation of HTS results, and the necessity of additional tests to confirm the relevance of the HTS detection of viral sequences.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Olea/virologia , Viroma/genética , Animais , Closteroviridae/classificação , Closteroviridae/genética , Closteroviridae/isolamento & purificação , Geminiviridae/classificação , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Genoma Viral , Hemípteros/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Espanha , Incerteza
8.
Viruses ; 13(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835016

RESUMO

Cotton is the most important fiber crop worldwide. To determine the presence of viruses in cotton plants showing leaf roll and vein yellowing symptoms in Henan Province of China, a small RNA-based deep sequencing approach was performed. Analysis of the de novo-assembled contigs followed by reverse transcription PCR allowed the reconstruction of watermelon mosaic virus and an unknown virus. The genome of the unknown virus was determined to be 5870 nucleotides in length, and has a genomic organization with characteristic features of previously reported poleroviruses. Sequence analysis revealed that the virus was closely related to, but significantly different from, cotton leafroll dwarf virus, a polerovirus of the family Solemoviridae. This virus had less than 90% amino acid sequence identity in the products of both ORF0 and ORF1. According to the polerovirus species demarcation criteria set by the International Committee on Taxonomy of Viruses, this virus should be assigned to a new polerovirus species, for which we propose the name "cotton leaf roll virus".


Assuntos
Coinfecção/virologia , Gossypium/virologia , Luteoviridae/genética , Doenças das Plantas/virologia , Potyvirus/genética , Sequência de Aminoácidos , China , Genoma Viral , Gossypium/genética , Sequenciamento de Nucleotídeos em Larga Escala , Luteoviridae/classificação , Filogenia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase , Potyvirus/classificação
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638559

RESUMO

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and ß-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and ß-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Assuntos
Resistência à Doença/imunologia , Peroxissomos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Potyviridae , Triticum/imunologia , Triticum/virologia , Quitinases/metabolismo , Clorofila/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Oxirredução , Peroxidases/metabolismo , Peroxissomos/genética , Peroxissomos/virologia , Fenótipo , Folhas de Planta/imunologia , Folhas de Planta/virologia , Espécies Reativas de Oxigênio/metabolismo
10.
Sci Rep ; 11(1): 20680, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667194

RESUMO

Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.


Assuntos
Piper nigrum/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Tobamovirus/genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Fotossíntese/genética , Piper nigrum/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , RNA-Seq/métodos , Tabaco/genética , Tabaco/virologia
11.
BMC Plant Biol ; 21(1): 425, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537002

RESUMO

BACKGROUND: The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. RESULTS: In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. CONCLUSIONS: This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


Assuntos
Catharanthus/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Tabaco/genética , Catharanthus/enzimologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Interações Hospedeiro-Patógeno , Filogenia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Tabaco/microbiologia , Tabaco/virologia , Fatores de Transcrição/genética
12.
PLoS One ; 16(9): e0255820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506491

RESUMO

The vast majority of plant viruses are unenveloped, i.e., they lack a lipid bilayer that is characteristic of most animal viruses. The interactions between plant viruses, and between viruses and surfaces, properties that are essential for understanding their infectivity and to their use as bionanomaterials, are largely controlled by their surface charge, which depends on pH and ionic strength. They may also depend on the charge of their contents, i.e., of their genes or-in the instance of virus-like particles-encapsidated cargo such as nucleic acid molecules, nanoparticles or drugs. In the case of enveloped viruses, the surface charge of the capsid is equally important for controlling its interaction with the lipid bilayer that it acquires and loses upon leaving and entering host cells. We have previously investigated the charge on the unenveloped plant virus Cowpea Chlorotic Mottle Virus (CCMV) by measurements of its electrophoretic mobility. Here we examine the electrophoretic properties of a structurally and genetically closely related bromovirus, Brome Mosaic Virus (BMV), of its capsid protein, and of its empty viral shells, as functions of pH and ionic strength, and compare them with those of CCMV. From measurements of both solution and gel electrophoretic mobilities (EMs) we find that the isoelectric point (pI) of BMV (5.2) is significantly higher than that of CCMV (3.7), that virion EMs are essentially the same as those of the corresponding empty capsids, and that the same is true for the pIs of the virions and of their cleaved protein subunits. We discuss these results in terms of current theories of charged colloidal particles and relate them to biological processes and the role of surface charge in the design of new classes of drug and gene delivery systems.


Assuntos
Bromovirus/química , Proteínas do Capsídeo/metabolismo , Hordeum/virologia , Folhas de Planta/virologia , RNA Viral/genética , Montagem de Vírus , Replicação Viral , Bromovirus/genética , Bromovirus/crescimento & desenvolvimento , Bromovirus/metabolismo , Proteínas do Capsídeo/genética , Concentração Osmolar
13.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571927

RESUMO

Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Caulimovirus/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Folhas de Planta/virologia , Proteínas Virais/metabolismo , Viroses/virologia , Acetilação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Caulimovirus/fisiologia , Proteínas de Ligação a DNA/genética , Histona Desacetilases/química , Histona Desacetilases/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Tabaco/genética , Tabaco/crescimento & desenvolvimento , Tabaco/metabolismo , Tabaco/virologia , Proteínas Virais/genética , Viroses/genética , Viroses/metabolismo
14.
Viruses ; 13(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578448

RESUMO

Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases.


Assuntos
Micovírus/genética , Helianthus/microbiologia , Helianthus/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Viroma , Micovírus/classificação , Micovírus/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Perfilação da Expressão Gênica , Genoma Viral , Microbiota , Filogenia , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Totivirus/classificação , Totivirus/genética , Totivirus/isolamento & purificação
15.
Sci Rep ; 11(1): 15730, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344928

RESUMO

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Luteoviridae/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genótipo , Filogenia , Melhoramento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Saccharum/crescimento & desenvolvimento , Saccharum/virologia
16.
Virology ; 562: 158-175, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339930

RESUMO

The Abutilon mosaic virus (AbMV) encodes a nuclear shuttle protein (NSP), and a movement protein (MP) which cooperatively accomplish viral DNA transport through the plant. Subcellular distribution patterns of fluorescent protein-tagged NSP and MP were tracked in Nicotiana benthamiana leaves in presence or absence of an AbMV infection using light microscopy. NSP was located within the nucleus and associated with early endosomes in the presence of MP. MP appeared at the plasma membrane, plasmodesmata and in motile vesicles, trafficking along the endoplasmic reticulum in an actin-dependent manner. MP and NSP did not co-localize and employed separate cellular pathways. Correspondingly, Förster resonance energy transfer analysis did not support physical interaction between NSP and MP. Time lapse movies illustrate the cellular dynamics of both proteins on their way around the nucleus and to the cell periphery and provide a first hint for the nuclear egress of NSP complexes.


Assuntos
Begomovirus/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas Virais/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , DNA Viral/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia , Folhas de Planta/virologia , Plasmodesmos/metabolismo , Imagem com Lapso de Tempo , Tabaco/virologia
17.
Arch Virol ; 166(10): 2905-2909, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34383166

RESUMO

Golden trumpet (Allamanda cathartica) plants were observed to exhibit mottling and distortion symptoms on leaves. The genome of an associated begomovirus (Al-K1) was amplified by rolling-circle amplification, cloned, and sequenced. The viral genome consisted of two circular ssDNA molecules, and the organization of the ORFs was similar to those of DNA-A and DNA-B components of bipartite begomoviruses. The size of DNA-A (KC202818) and DNA-B (MG969497) of the begomovirus was 2772 and 2690 nucleotides, respectively. Sequence analysis revealed that the DNA-A and DNA-B components shared the highest sequence identity with duranta leaf curl virus (MN537564, 87.8%) and cotton leaf curl Alabad virus (MH760452, 81.0%), respectively. Interestingly, the Al-K1 isolate shared significantly less nucleotide sequence identity with allamanda leaf curl virus (EF602306, 71.6%), the only monopartite begomovirus reported previously in golden trumpet from China. Al-K1 shared less than 91% sequence identity with other begomoviruses, and hence, according to the latest ICTV guidelines for species demarcation of begomoviruses, Al-K1 is proposed to be a member of a new species, and we propose the name "allamanda leaf mottle distortion virus" (AllLMoDV-[IN-Al_K1-12]) for this virus. AllLMoDV was detected in various golden trumpet samples from different locations by PCR with specific primers based on the genome sequence determined in this study. Our study provides evidence of the occurrence of a new bipartite begomovirus in a perennial ornamental plant in India.


Assuntos
Apocynaceae/virologia , Begomovirus/genética , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/classificação , DNA Viral/genética , Genoma Viral/genética , Índia , Fases de Leitura Aberta/genética , Filogenia , Folhas de Planta/virologia , Análise de Sequência de DNA , Especificidade da Espécie
18.
PLoS Pathog ; 17(8): e1009823, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428260

RESUMO

Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation.


Assuntos
Ascomicetos/virologia , Evolução Biológica , Brassica napus/virologia , Linhagem da Célula , Micovírus/classificação , Doenças das Plantas/virologia , Folhas de Planta/virologia , Micovírus/genética , Micovírus/crescimento & desenvolvimento , Genoma Viral , Filogenia , RNA Viral
19.
Virology ; 563: 1-19, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399236

RESUMO

To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzotiazóis/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Compostos de Piridínio/farmacologia , RNA Viral/fisiologia , Tabaco/metabolismo , Tabaco/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359841

RESUMO

Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.


Assuntos
Begomovirus/genética , DNA Viral/genética , Flores/virologia , Frutas/virologia , Genoma Viral , Lycopersicon esculentum/virologia , Folhas de Planta/virologia , Begomovirus/metabolismo , Begomovirus/patogenicidade , DNA Viral/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/virologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...