Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.684
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076954

RESUMO

Phosphatidylinositol 3-phosphate (PI(3)P) serves important functions in endocytosis, phagocytosis, and autophagy. PI(3)P is generated by Vps34 of the class III phosphatidylinositol 3-kinase (PI3K) complex. The Vps34-PI3K complex can be divided into Vps34-PI3K class II (containing Vps38, endosomal) and Vps34-PI3K class I (containing Atg14, autophagosomal). Most PI(3)Ps are associated with endosomal membranes. In yeast, the endosomal localization of Vps34 and PI(3)P is tightly regulated by Vps21-module proteins. At yeast phagophore assembly site (PAS) or mammalian omegasomes, PI(3)P binds to WD-repeat protein interacting with phosphoinositide (WIPI) proteins to further recruit two conjugation systems, Atg5-Atg12·Atg16 and Atg8-PE (LC3-II), to initiate autophagy. However, the spatiotemporal regulation of PI(3)P during autophagy remains obscure. Therefore, in this study, we determined the effect of Vps21 on localization and interactions of Vps8, Vps34, Atg21, Atg8, and Atg16 upon autophagy induction. The results showed that Vps21 was required for successive colocalizations and interactions of Vps8-Vps34 and Vps34-Atg21 on endosomes, and Atg21-Atg8/Atg16 on the PAS. In addition to disrupted localization of the PI3K complex II subunits Vps34 and Vps38 on endosomes, the localization of the PI3K complex I subunits Vps34 and Atg14, as well as Atg21, was partly disrupted from the PAS in vps21∆ cells. The impaired PI3K-PI(3)P-Atg21-Atg16 axis in vps21∆ cells might delay autophagy, which is consistent with the delay of early autophagy when Atg21 was absent. This study provides the first insight into the upstream sequential regulation of the PI3K-PI(3)P-Atg21-Atg16 module by Vps21 in autophagy.


Assuntos
Autofagossomos , Proteínas de Saccharomyces cerevisiae , Animais , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Endopeptidases/metabolismo , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077529

RESUMO

Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Humanos , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
3.
Dis Markers ; 2022: 1195875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046376

RESUMO

Renal cell carcinoma is a common renal malignancy of the urinary system and the most malignant type of kidney cancer. Phosphatidylinositol 3-kinase (PI3K) is an intracellular phosphatidylinositol kinase associated with oncogene products such as v-src and with serine/threonine kinase activity, and its increased activity correlates with the development of several cancers. Protein kinase B (AKT) is a cyclic guanosine phosphate-dependent protein kinase that plays an important role in cell survival and apoptosis. Phosphatase and tensin homolog (PTEN), a newly discovered oncogene in recent years, participates in tumorigenesis and development by competing with tyrosine kinases for common substrates. The product encoded by PTEN was found to negatively regulate the PI3K/Akt signaling pathway, thereby inhibiting cell proliferation and promoting apoptosis. The PI3K/PTEN/AKT signaling pathway has also been identified in several studies as being involved in the development of several malignancies, including renal cell carcinoma. Radiotherapy is currently one of the most effective means of treatment for renal cell carcinoma, whereas it is predisposed to significant tolerance during the course of radiotherapy, thereby leading to treatment failure. Therefore, new treatment options may potentiate the efficiency of renal cell carcinoma treatment. With the development of tumor molecular biology, targeted biological therapy for malignant tumors has gradually become a research hotspot. Given the above research background, this study reviews the application of the PI3K/PTEN/AKT signaling pathway in renal cell carcinoma, aiming to provide more references for the treatment of clinical renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proliferação de Células , Humanos , Neoplasias Renais/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
Hematology ; 27(1): 977-986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053135

RESUMO

OBJECTIVES: Multiple myeloma (MM) is an incurable plasma cell malignancy associated with poor survival. Novel therapeutic drugs are urgently needed to improve MM therapy and patient outcomes. This study aimed to investigate the effect of formosanin C (FC), a Chinese medicine monomer, on MM in vitro and disclose the underlying molecular mechanism. METHODS: The effect of FC on the viability, proliferation, apoptosis, and autophagy of MM cell lines (NCI-H929 and ARP1) was studied through CCK-8, colony formation, flow cytometry, GFP-LC3, and western blotting assays, respectively. A pharmacological approach and network pharmacology technology were implemented to explore the potential mechanisms of the action of FC on MM cells. RESULTS: FC efficiently suppressed the viability and colony-forming capacity, but promoted the number of autophagic vacuoles with GFP-LC3 localization and the percentage of apoptotic cells in MM cells. Additionally, FC significantly increased the levels of the autophagy-related proteins LC3-Ⅱ and Beclin 1, as well as the apoptosis-related proteins Bax and cleaved caspase-3, but blocked the expression of the proapoptotic protein Bcl-2 in the cells; these effects were reversed by an inhibitor of autophagy, 3-methyladenine. What's more, we found that the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was involved in the FC-mediated inhibition of MM. Pharmacological inhibition of this pathway dramatically relieved FC-triggered excessive expression of autophagy-related proteins and rescued MM cells from FC-induced apoptosis. CONCLUSION: Our findings indicate that FC exhibits an anti-MM effect by activating cell autophagy through the PI3K/AKT/mTOR signaling pathway.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/farmacologia , Linhagem Celular Tumoral , Diosgenina/análogos & derivados , Humanos , Mieloma Múltiplo/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
J Cardiovasc Pharmacol ; 80(3): 442-452, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067399

RESUMO

ABSTRACT: This study aimed to explore whether vaspin could alleviate cardiac remodeling through attenuating oxidative stress in heart failure rats and to determine the associated signaling pathway. Cardiac remodeling was induced by myocardial infarction, transverse aortic constriction, or angiotensin (Ang) II infusion in vivo, and the neonatal rat cardiomyocytes (NRCMs) and neonatal rat cardiac fibroblasts (NRCFs) were treated with Ang II. Vaspin treatment alleviated fibrosis in myocardial infarction, transverse aortic constriction, and Ang II-treated rats. The Ang II-induced increases of atrial natriuretic peptide and brain natriuretic peptide in NRCMs and Ang II-induced increases of collagen I and collagen III in NRCFs were reduced after vaspin treatment. Vaspin administration inhibited the Ang II-induced increases of phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, superoxide anions, malondialdehyde, and NADPH oxidases activity in NRCMs and NRCFs. The overexpression of PI3K, Akt, or NADPH oxidases 1 reversed the attenuating effects of vaspin on Ang II-induced elevation of atrial natriuretic peptide and brain natriuretic peptide in NRCMs, as well as Ang II-induced increases of collagen I and collagen III in NRCFs. The administration of wortmannin (PI3K inhibitor) or MK2206 (Akt inhibitor) inhibited the oxidative stress induced by Ang II in NRCMs and NRCFs. The above results suggest that vaspin can alleviate cardiac dysfunction and remodeling in heart failure rats. Vaspin attenuates Ang II-induced hypertrophy of NRCMs and fibrosis of NRCFs through suppressing PI3K/Akt pathway to alleviate oxidative stress.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Angiotensina II/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Colágeno/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos , NADPH Oxidases/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Remodelação Ventricular
6.
Nutrients ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145191

RESUMO

This study investigated the effect of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone) on palmitate-induced insulin resistance and elucidated the underlying mechanism in L6 skeletal muscle cells. Glucose uptake was markedly decreased due to palmitate-induced insulin resistance in these cells; however, 10, 25, and 50 µM HM-chromanone remarkably improved glucose uptake in a concentration-dependent manner. HM-chromanone treatment downregulated protein tyrosine phosphatase 1B (PTP1B) and phosphorylation of c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß), which increased because of palmitate mediating the insulin-resistance status in cells. HM-chromanone promoted insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and suppressed palmitate-induced phosphorylation of IRS-1 serine. This activated phosphoinositide 3-kinase (PI3K) and stimulated protein kinase B (AKT) phosphorylation. Phosphorylated AKT promoted the translocation of Glucose transporter type 4 to the plasma membrane and significantly enhanced glucose uptake into muscle cells. Additionally, HM-chromanone increased glycogen synthesis through phosphorylating glycogen synthase kinase 3 alpha/beta (GSK3 α/ß) via AKT. Consequently, HM-chromanone may improve insulin resistance by downregulating the phosphorylation of IRS-1 serine through inhibition of negative regulators of insulin signaling and inflammation-activated protein kinases in L6 skeletal muscle cells.


Assuntos
Resistência à Insulina , Portulaca , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Isoflavonas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Portulaca/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Tirosina/metabolismo
7.
Redox Biol ; 56: 102468, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113339

RESUMO

Acute myocardial infarction (MI) triggers oxidative stress, which worsen cardiac function, eventually leads to remodeling and heart failure. Unfortunately, effective therapeutic approaches are lacking. Fibroblast growth factor 7 (FGF7) is proved with respect to its proliferative effects and high expression level during embryonic heart development. However, the regulatory role of FGF7 in cardiovascular disease, especially MI, remains unclear. FGF7 expression was significantly decreased in a mouse model at 7 days after MI. Further experiments suggested that FGF7 alleviated MI-induced cell apoptosis and improved cardiac function. Mechanistic studies revealed that FGF7 attenuated MI by inhibiting oxidative stress. Overexpression of FGF7 actives nuclear factor erythroid 2-related factor 2 (Nrf2) and scavenging of reactive oxygen species (ROS), and thereby improved oxidative stress, mainly controlled by the phosphatidylinositol-3-kinase α (PI3Kα)/AKT signaling pathway. The effects of FGF7 were partly abrogated in Nrf2 deficiency mice. In addition, overexpression of FGF7 promoted hexokinase2 (HXK2) and mitochondrial membrane translocation and suppressed mitochondrial superoxide production to decrease oxidative stress. The role of HXK2 in FGF7-mediated improvement of mitochondrial superoxide production and protection against MI was verified using a HXK2 inhibitor (3-BrPA) and a HXKII VDAC binding domain (HXK2VBD) peptide, which competitively inhibits localization of HXK2 on mitochondria. Furthermore, inhibition of PI3Kα/AKT signaling abolished regulation of Nrf2 and HXK2 by FGF7 upon MI. Together, these results indicate that the cardio protection of FGF7 under MI injury is mostly attributable to its role in maintaining redox homeostasis via Nrf2 and HXK2, which is mediated by PI3Kα/AKT signaling.


Assuntos
Infarto do Miocárdio , Fator 2 Relacionado a NF-E2 , Animais , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos
8.
Int J Biol Sci ; 18(14): 5575-5590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147460

RESUMO

Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Caderinas/metabolismo , Cálcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Cátions , Movimento Celular/genética , Neoplasias Colorretais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM
9.
Chem Biol Interact ; 366: 110174, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089060

RESUMO

Dibutyl phthalate (DBP) is an endocrine disruptor that has been widely used in various products of human use. DBP exposure has been associated with reproductive and cardiovascular diseases and metabolic disorders. Although dysfunction of the vascular endothelium is responsible for many cardiovascular and metabolic diseases, little is known about the effects of DBP on human endothelium. In this study, we investigated the effect of three concentrations of DBP (10-6, 10-5, and 10-4 M) on angiogenesis in human endothelial cell (EC) line EA.hy926 after acute exposure. Tube formation assay was used to investigate in vitro angiogenesis, whereas qRT-PCR was employed to measure mRNA expression. The effect of DBP on extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), and endothelial nitric oxide (NO) synthase (eNOS) activation was examined using Western blotting, whereas the Griess method was used to assess NO production. Results show that the 24-h-long exposure to 10-4 M DBP increased endothelial tube formation, which was prevented by addition of U0126 (ERK1/2 inhibitor), wortmannin (PI3K-Akt inhibitor), and l-NAME (NOS inhibitor). Short exposure to 10-4 M DBP (from 15 to 120 min) phosphorylated ERK1/2, Akt, and eNOS in different time points and increased NO production after 24 and 48 h of exposure. Application of nuclear estrogen receptor (ER) and G protein-coupled ER (GPER) inhibitors ICI 182,780 and G-15, respectively, abolished the DBP-mediated ERK1/2, Akt, and eNOS phosphorylation and increase in NO production. In this study, we report for the first time that DBP exerts a pro-angiogenic effect on human vascular ECs and describe the molecular mechanism involving ER- and GPER-dependent activation of ERK1/2, PI3K-Akt, and NO signaling pathways.


Assuntos
Disruptores Endócrinos , Proteínas Proto-Oncogênicas c-akt , Dibutilftalato/toxicidade , Fulvestranto , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Wortmanina/farmacologia
10.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142578

RESUMO

Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Saponinas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Caspase 3/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Chá , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4574-4582, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164862

RESUMO

Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3ß(GSK3ß) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.


Assuntos
Carthamus tinctorius , Chalcona , AVC Isquêmico , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , AVC Isquêmico/tratamento farmacológico , Janus Quinase 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prostaglandina D2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinonas/farmacologia
12.
Nutrients ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014933

RESUMO

Helicobacter pylori (H. pylori) increases production of reactive oxygen species (ROS) and activates signaling pathways associated with gastric cell invasion, which are mediated by matrix metalloproteinases (MMPs). We previously demonstrated that H. pylori activated mitogen-activated protein kinase (MAPK) and increased expression of MMP-10 in gastric epithelial cells. MMPs degrade the extracellular matrix, enhancing tumor invasion and cancer progression. The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is associated with MMP expression. ROS activates PIK3/AKT/mTOR signaling in cancer. Astaxanthin, a xanthophyll carotenoid, shows antioxidant activity by reducing ROS levels in gastric epithelial cells infected with H. pylori. This study aimed to determine whether astaxanthin inhibits MMP expression, cell invasion, and migration by reducing the PI3K/AKT/mTOR signaling in H. pylori-infected gastric epithelial AGS cells. H. pylori induced PIK3/AKT/mTOR and NF-κB activation, decreased IκBα, and induced MMP (MMP-7 and -10) expression, the invasive phenotype, and migration in AGS cells. Astaxanthin suppressed these H. pylori-induced alterations in AGS cells. Specific inhibitors of PI3K, AKT, and mTOR reversed the H. pylori-stimulated NF-κB activation and decreased IκBα levels in the cells. In conclusion, astaxanthin suppressed MMP expression, cell invasion, and migration via inhibition of PI3K/AKT/mTOR/NF-κB signaling in H. pylori-stimulated gastric epithelial AGS cells.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Metaloproteinases da Matriz/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
13.
Cells ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010585

RESUMO

Phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT) and mechanistic target of rapamycin (mTOR) (PAM) pathways play important roles in breast tumorigenesis and confer worse prognosis in breast cancer patients. The inhibitors targeting three key nodes of these pathways, PI3K, AKT and mTOR, are continuously developed. For breast cancer patients to truly benefit from PAM pathway inhibitors, it is necessary to clarify the frequency and mechanism of abnormal alterations in the PAM pathway in different breast cancer subtypes, and further explore reliable biomarkers to identify the appropriate population for precision therapy. Some PI3K and mTOR inhibitors have been approved by regulatory authorities for the treatment of specific breast cancer patient populations, and many new-generation PI3K/mTOR inhibitors and AKT isoform inhibitors have also been shown to have good prospects for cancer therapy. This review summarizes the changes in the PAM signaling pathway in different subtypes of breast cancer, and the latest research progress about the biomarkers and clinical application of PAM-targeted inhibitors.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Contrast Media Mol Imaging ; 2022: 6217234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992541

RESUMO

Curcumin (Cur), a natural polyphenol compound, has been testified to modulate innate immune responses and also showed anti-inflammatory properties. Nevertheless, the mechanism was still poorly unknown, especially regarding Cur-modulated microRNAs (miRNAs) under the inflammatory response. CD39+ regulatory T cells (Tregs) were provided with distinct immunosuppressive action and exerted a critical role in the modulation of immune balance in sepsis. Nevertheless, the impact of Cur on the immune function of sepsis mice has not been reported. In this study, the influence of Cur on the inflammatory response and immune function of sepsis mice via augment of miR-183-5p and Cathepsin B (CTSB)-mediated phosphatidylinositol 3-kinase (PI3K)/AKT pathway was explored. Adoption of 20 mg/kg Cur was for gavage. In the meantime, injection of plasmid vectors of interference with miR-183-5p or CTSB was into the tail vein. Intraperitoneal injection of lipopolysaccharide (10 mg/kg) was to stimulate model of sepsis mice. Histopathological changes of sepsis mice were observed. The contents of tumor necrosis factor-α and Interleukin (IL)-1ß and IL-6 in serum of mice were examined. Detection of alanine aminotransferase, aspartate aminotransferase (AST), urea nitrogen (BUN), and creatinine in serum of mice was performed. Test of the percentage of CD39+ Tregs in tail venous blood of mice was implemented. Examination of miR-183-5p, CTSB, and PI3K/AKT was performed. The targeting of miR-183-5p and CTSB was detected. Cur was available to ameliorate the histological damage, to reduce the content of inflammatory factors, AST, and BUN, and to decline the percentage of CD39+ Tregs in tail venous blood of sepsis mice. Elevated miR-183-5p or silenced CTSB was available to further enhance the protection of Cur. Cur was available to accelerate miR-183-5p, which negatively modulated CTSB and Cur-mediated PI3K/AKT pathway via the miR-183-5p/CTSB axis to restrain inflammation of sepsis mice and enhance its immune function.


Assuntos
Curcumina , MicroRNAs , Sepse , Animais , Catepsina B/metabolismo , Imunidade , Lipopolissacarídeos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Transdução de Sinais
15.
BMC Oral Health ; 22(1): 345, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953782

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) is located within cells, and is involved in regulating cell survival, proliferation, apoptosis and angiogenesis. The purpose of this study was to investigate the role of PI3K in the process of bone destruction in apical periodontitis, and provide reference data for the treatment of this disease. METHODS: The relative mRNA expression of PI3K, Acp5 and NFATc1 in the normal human periodontal ligament and in chronic apical periodontitis were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A mouse model of apical periodontitis was established by root canal exposure to the oral cavity, and HE staining was used to observe the progress of apical periodontitis. Immunohistochemical staining was used to detect the expression of PI3K and AKT in different stages of apical periodontitis, while enzymatic histochemical staining was used for detection of osteoclasts. An Escherichia coli lipopolysaccharide (LPS)-mediated inflammatory environment was also established at the osteoclast and osteoblast level, and osteoclasts or osteoblasts were treated with the PI3K inhibitor LY294002 to examine the role of PI3K in bone resorption. RESULTS: The expression of PI3K, Acp5 and NFATc1 genes in chronic apical periodontitis sample groups was significantly increased relative to healthy periodontal ligament tissue (P < 0.05). Mouse apical periodontitis was successfully established and bone resorption peaked between 2 and 3 weeks (P < 0.05). The expression of PI3K and Akt increased with the progression of inflammation, and reached a peak at 14 days (P < 0.05). The gene and protein expression of PI3K, TRAP and NFATc1 in osteoclasts were significantly increased (P < 0.05) in the E. coli LPS-mediated inflammatory microenvironment compared to the normal control group. Meanwhile in osteoblasts, the gene and protein expression of PI3K, BMP-2 and Runx2 were significantly reduced (P < 0.05) in the inflammatory microenvironment. With the addition of LY294002, expressions of bone resorption-related factors (TRAP, NFATc1) and bone formation-related factors (BMP-2, Runx2) significantly decreased (P < 0.05). CONCLUSIONS: Under the inflammatory environment induced by LPS, PI3K participates in the occurrence and development of chronic apical periodontitis by regulating the proliferation and differentiation of osteoclasts and osteoblasts.


Assuntos
Reabsorção Óssea , Lipopolissacarídeos/metabolismo , Periodontite Periapical , Periodontite , Fosfatidilinositol 3-Quinase , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Escherichia coli , Humanos , Camundongos , Osteoclastos , Periodontite/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Oncol Rep ; 48(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35920185

RESUMO

Thalidomide (THD) has been found to synergize with cisplatin (DDP) in certain types of cancers; however, their combined use in the treatment of cervical cancer has not been reported to date, at least to the best of our knowledge. Thus, the present study aimed to explore the synergistic effects of THD and DDP and determine their regulatory effects on the phosphoinositide 3­kinase (PI3K)/protein kinase B (AKT) and Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathways in cervical cancer. For this purpose, 0­160 µM THD and 0­64 µM DDP monotherapy or in combination were used to treat the HeLa and SiHa cervical cancer cell lines. This was followed by the calculation of the combination index (CI) and 160 µM THD and 16 µM DDP were then used to treat the cells. Relative cell viability and apoptosis, as well as the mRNA and protein levels of PI3K, AKT, JAK1 and STAT3 were evaluated. The results revealed that THD and DDP monotherapy suppressed the viability of the HeLa and SiHa cells in a concentration­dependent manner. Moreover, THD and DDP treatment exerted a more prominent suppressive effect on the relative viability of HeLa and SiHa cells compared with DDP monotherapy at several concentration settings; further CI calculation revealed that the optimal synergistic concentrations were 160 µM for THD and 16 µM for DDP. Subsequently, combined treatment with THD and DDP suppressed relative cell viability, whereas it promoted cell apoptosis compared with THD or DPP monotherapy; it also inhibited the PI3K/AKT and JAK1/STAT3 signaling pathways compared with DPP or THD monotherapy in both HeLa and SiHa cells. On the whole, the present study demonstrated that THD synergizes with DDP to exert suppressive effects on cervical cancer cell lines. This synergistic action also inactivated the PI3K/AKT and JAK1/STAT3 pathways. Thus, these findings suggest that the combined use of THD and DPP may have potential for use in the treatment of cervical cancer.


Assuntos
Cisplatino , Talidomida , Neoplasias do Colo do Útero , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Janus Quinase 1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Talidomida/farmacologia , Talidomida/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
17.
Gen Physiol Biophys ; 41(4): 263-274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35938960

RESUMO

Platycodin D (PD) is a triterpenoid saponin, a major bioactive constituent of the roots of Platycodon grandiflorum, which is well known for possessing various pharmacological properties. However, the anti-cancer mechanism of PD in bladder cancer cells remains poorly understood. In the current study, we investigated the effect of PD on the growth of human bladder urothelial carcinoma cells. PD treatment significantly reduced the cell survival of bladder cancer cells associated with induction of apoptosis and DNA damage. PD inhibited the expression of inhibitor of apoptosis family members, activated caspases, and induced cleavage of poly (ADP-ribose) polymerase. PD also increased the release of cytochrome c into the cytoplasm by disrupting the mitochondrial membrane potential while upregulating the expression ratio of Bax to Bcl-2. The PD-mediated anti-proliferative effect was significantly inhibited by pre-treatment with a pancaspase inhibitor, but not by an inhibitor of necroptosis. Moreover, PD suppressed the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and the apoptosis-inducing effect of PD was further enhanced by a PI3K inhibitor. In addition, PD increased the accumulation of reactive oxygen species (ROS), whereas N-acetyl cysteine (NAC), an ROS inhibitor, significantly attenuated the growth inhibition and inactivation of the PI3K/Akt/mTOR signaling caused by PD. Furthermore, NAC significantly suppressed apoptosis, DNA damage, and decreased cell viability induced by PD treatment. Collectively, our findings indicated that PD blocked the growth of bladder urothelial carcinoma cells by inducing ROS-mediated inactivation of the PI3K/Akt/mTOR signaling.


Assuntos
Carcinoma de Células de Transição , Saponinas , Triterpenos , Neoplasias da Bexiga Urinária , Apoptose , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
18.
Vet Microbiol ; 272: 109514, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917623

RESUMO

Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.


Assuntos
Infecções por Circoviridae , Circovirus , Animais , Linhagem Celular , Infecções por Circoviridae/veterinária , Circovirus/genética , Interleucina-4 , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Suínos , Replicação Viral
19.
Cells ; 11(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954188

RESUMO

Bile salts accumulating during cholestatic liver disease are believed to promote liver fibrosis. We have recently shown that chenodeoxycholate (CDC) induces expansion of hepatic stellate cells (HSCs) in vivo, thereby promoting liver fibrosis. Mechanisms underlying bile salt-induced fibrogenesis remain elusive. We aimed to characterize the effects of different bile salts on HSC biology and investigated underlying signaling pathways. Murine HSCs (mHSCs) were stimulated with hydrophilic and hydrophobic bile salts. Proliferation, cell mass, collagen deposition, and activation of signaling pathways were determined. Activation of the human HSC cell line LX 2 was assessed by quantification of α-smooth muscle actin (αSMA) expression. Phosphatidyl-inositol-3-kinase (PI3K)-dependent signaling was inhibited both pharmacologically and by siRNA. CDC, the most abundant bile salt accumulating in human cholestasis, but no other bile salt tested, induced Protein kinase B (PKB) phosphorylation and promoted HSC proliferation and subsequent collagen deposition. Pharmacological inhibition of the upstream target PI3K-inhibited activation of PKB and pro-fibrogenic proliferation of HSCs. The PI3K p110α-specific inhibitor Alpelisib and siRNA-mediated knockdown of p110α ameliorated pro-fibrogenic activation of mHSC and LX 2 cells, respectively. In summary, pro-fibrogenic signaling in mHSCs is selectively induced by CDC. PI3K p110α may be a potential therapeutic target for the inhibition of bile salt-induced fibrogenesis in cholestasis.


Assuntos
Colestase , Células Estreladas do Fígado , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Proliferação de Células , Colestase/patologia , Colágeno/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno/metabolismo
20.
Phytomedicine ; 106: 154401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029647

RESUMO

BACKGROUND: Ovarian cancer has the highest mortality among all gynecological malignancies; currently, no effective therapeutics are available for its treatment. Naringenin has been shown to inhibit the progression of various cancers, but its inhibitory effect on ovarian cancer remains unknown. PURPOSE: This study aimed to evaluate the inhibitory effects of naringenin on ovarian cancer and elucidate the underlying mechanisms. METHODS: Cancer cell proliferation was detected by cell counting kit-8 and crystal violet assays, and the migration capability was determined by wound healing and transwell assays. Western blotting and immunohistochemistry assays were employed to determine the expression levels of the epidermal growth factor receptor, phosphatidylinositol 3-kinase (PI3K) and cyclin D1 in vitro and in vivo, respectively. An ES-2 xenograft nude mouse model was established for the in vivo experiments, and fecal samples were collected for intestinal microbiota analysis by 16S rDNA sequencing. RESULTS: Naringenin suppressed the proliferation and migration of A2780 and ES-2 cancer cell lines and downregulated PI3K in vitro. In animal experiments, naringenin treatment significantly decreased the tumor weight and volume, and oral administration exhibited greater effects than intraperitoneal injection. Additionally, naringenin treatment ameliorated the population composition of the microbiota in animals with ovarian cancer and significantly increased the abundances of Alistipes and Lactobacillus. CONCLUSION: Naringenin suppresses epithelial ovarian cancer by inhibiting PI3K pathway expression and ameliorating the gut microbiota, and the oral route is more effective than parenteral administration.


Assuntos
Microbioma Gastrointestinal , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1 , DNA Ribossômico/farmacologia , Receptores ErbB/metabolismo , Feminino , Flavanonas , Violeta Genciana/farmacologia , Violeta Genciana/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...