Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.756
Filtrar
1.
Adv Exp Med Biol ; 1255: 165-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949399

RESUMO

PI3K inhibitors are a common area of research in finding a successful treatment of cancer. The PI3K pathway is important for cell growth, apoptosis, cell metabolism, cell survival, and a multitude of other functions. There are multiple isoforms of PI3K that can be broken down into three categories: class I, II, and III. Each isoform has at least one subunit that helps with the functionality of the isoform. Mutations found in the PI3K isoforms are commonly seen in many different types of cancer and the use of inhibitors is being tested to stop the cell survival of cancer cells. Individual PI3K inhibitors have shown some inhibition of the pathway; however, there is room for improvement. To better treat cancer, PI3K inhibitors are being combined with other pathway inhibitors. These combination therapies have shown better results with cancer treatments. Both the monotherapy and dual therapy treatments are still currently being studied and data collected to better understand cancer and other treatment options.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Humanos , Isoformas de Proteínas/antagonistas & inibidores
2.
Anticancer Res ; 40(9): 4829-4841, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878771

RESUMO

Most breast cancers express the estrogen receptor (ER) receptor and are negative for the human epidermal growth factor receptor 2 (HER2) receptor. ER+/HER2- cancers are treated with hormone-based therapies in the adjuvant setting and derive significant survival benefit from these therapies in the metastatic setting. However, hormone resistance develops in most metastatic patients. An increased understanding of the biology of ER+/HER2- breast cancers has led to the development of new therapies for this disease including CDK4/6 inhibitors and PI3K inhibitors. Several other neoplastic processes are targeted by novel drugs in clinical development, addressing cancer vulnerabilities. These include newer ways to block the ER and targeting the HER2 receptors in ER+/HER2- cancers expressing HER2 in low levels not qualifying for clinical positivity. In addition, promising therapeutic options include targeting other surface receptors or their downstream pathways, as well as targeting the apoptotic machinery and boosting the immune response which is initially insufficient in these cancers. A selection of new drugs in advanced development for ER+/HER2- breast cancer will be discussed in this review.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Receptores Estrogênicos/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptores Estrogênicos/antagonistas & inibidores , Receptores Estrogênicos/genética , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
DNA Cell Biol ; 39(10): 1779-1788, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32865424

RESUMO

Today, mesenchymal stem cells (MSCs) are candidates for various autoimmune disease treatments due to immunomodulatory activity in these cells. Much research has recently been done to improve the immunomodulatory activity of MSCs. Genetic variation is one of these methods. microRNAs (miRNAs) are small noncoding RNAs that control most of the cell's biological activities. Recent studies have shown that miRNAs play a significant role in the regulation of MSC immunomodulatory activity. Pomegranate is a fruit that has antioxidant, anti-inflammatory, and anticancer properties and has been used for many years for therapeutic purposes. The objective of this research is to evaluate the immunoregulatory-related miRNAs level of adipose-derived MSCs (Ad-MSCs) obtained from adipose tissue in the presence or lack of pomegranate (Punica granatum) extract (PGE). Our results showed that miRNA-23 and miRNA-126 were upregulated by PGE treatment in MSCs, and in contrast, miRNA-21 and miRNA-155 were downregulated by PGE treatment in MSCs. In addition this research shows that PGE can downregulate the expression of PI3K\AKT1\NF-[Formula: see text]B in Ad-MSCs. Our bioinformatics data have shown that the target of these four miRNAs and the signaling pathways, in which these targets are involved, can play an important role in regulating the immunomodulation function of stem cells. In conclusion, PGE can inhibit the expression of PI3K\AKT1\NF-[Formula: see text]B genes involved in inflammatory pathways via miRNA-23 and miRNA-126 overexpression or miRNA-21 and miRNA-155 downregulation that plays a role in the pathways of immune modulation in Ad-MSCs. These results may provide insight into the mechanism underlying the regulation of the immunomodulatory activity of Ad-MSCs by PGE.


Assuntos
Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/genética , Romã (Fruta)/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
Adv Exp Med Biol ; 1274: 203-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894512

RESUMO

The lipid kinases that generate the lipid signalling phosphoinositides have been established as fundamental signalling enzymes that control numerous aspects of how cells respond to their extracellular environment. In addition, they play critical roles in regulating membrane trafficking and lipid transport within the cell. The class I phosphoinositide kinases which generate the critical lipid signal PIP3 are hyperactivated in numerous human pathologies including cancer, overgrowth syndromes, and primary immunodeficiencies. The type III phosphatidylinositol 4-kinase beta isoform (PI4KB), which are evolutionarily similar to the class I PI3Ks, have been found to be essential host factors mediating the replication of numerous devastating pathogenic viruses. Finally, targeting the parasite variant of PI4KB has been established as one of the most promising strategies for the development of anti-malarial and anti-cryptosporidium strategies. Therefore, the development of targeted isoform selective inhibitors for these enzymes are of paramount importance. The first generation of PI3K inhibitors have recently been clinically approved for a number of different cancers, highlighting their therapeutic value. This review will examine the history of the class I PI3Ks, and the type III PI4Ks, their relevance to human disease, and the structural basis for their regulation and inhibition by potent and selective inhibitors.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Doenças do Sistema Imunitário/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Parasitárias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Doenças da Imunodeficiência Primária/tratamento farmacológico , Viroses/tratamento farmacológico , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Humanos , Doenças do Sistema Imunitário/enzimologia , Neoplasias/enzimologia , Doenças Parasitárias/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Doenças da Imunodeficiência Primária/enzimologia , Viroses/enzimologia
5.
Ecotoxicol Environ Saf ; 202: 110914, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800249

RESUMO

Bombyx mori(Linnaeus, 1758) is an important economical insect, and the sericulture is a flourishing industry in many developing countries. Pyriproxyfen, a juvenile hormone pesticide, is often applied to cultivations widely in the world, and its exposure often resulted in silk yield reduction and non-cocooning. However, the effect of pyriproxyfen exposure on cocooning and gene expression level in the silk gland of B. mori has not been studied yet, and this study focused on the above issues. The result indicated that pyriproxyfen exposure can lead to silk gland injury, reduction of silk yield and cocooning rate. Furthermore, the expression levels of silk protein synthesis related genes were down regulated significantly. The same change trends were shown between PI3K/Akt and CncC/Keap1 pathway, which is the expressions of key genes can be elevated by pyriproxyfen exposure. In addition, the activity of detoxification enzymes (P450, GST and CarE) and the expression levels of detoxification genes were elevated after pyriproxyfen exposure, suggesting that detoxification enzymes may play an important role in detoxification of pyriproxyfen in silk gland. These results provided possible clues to the silk gland injury and gene transcriptional level changes in silkworm after pyriproxyfen exposure.


Assuntos
Bombyx/fisiologia , Inseticidas/toxicidade , Piridinas/toxicidade , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Regulação para Baixo , Proteínas de Insetos/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Larva/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Seda/biossíntese , Seda/genética , Seda/metabolismo
6.
Chem Biol Interact ; 330: 109230, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828744

RESUMO

Although physiological levels of iron are essential for numerous biological processes, excess iron causes critical tissue injury. Under iron overload conditions, non-chelated iron generates reactive oxygen species that mediate iron-induced tissue injury with subsequent induction of apoptosis, necrosis, and inflammatory responses. Because liver is a central player in iron metabolism and storage, it is vulnerable to iron-induced tissue injury. Taxifolin is naturally occurring compound that has shown potent antioxidant and potential iron chelation competency. The aim of the current study was to investigate the potential protective effects of taxifolin against iron-induced hepatocellular injury and to elucidate the underlining mechanisms using rats as a mammalian model. The results of the current work indicated that taxifolin inhibited iron-induced apoptosis and enhanced hepatocellular survival as demonstrated by decreased activity of caspase-3 and activation of the pro-survival signaling PI3K/AKT, respectively. Western blotting analysis revealed that taxifolin enhanced liver regeneration as indicated by increased PCNA protein abundance. Taxifolin mitigated the iron-induced histopathological aberration and reduced serum activity of liver enzymes (ALT and AST), highlighting enhanced liver cell integrity. Mechanistically, taxifolin modulated the redox-sensitive MAPK signaling (p38/c-Fos) and improved redox status of the liver tissues as indicated by decreased lipid peroxidation and protein oxidation along with enhanced total antioxidant capacity. Interestingly, it decreased liver iron content and down-regulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß. Collectively, these data highlight, for the first time, the ameliorating effects of taxifolin against iron overload-induced hepatocellular injury that is potentially mediated through anti-inflammatory, antioxidant, and potential iron chelation activities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Sobrecarga de Ferro/complicações , Regeneração Hepática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quercetina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos
7.
Yonsei Med J ; 61(7): 587-596, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32608202

RESUMO

PURPOSE: The current study aimed to investigate the synergistic antitumor effect of combined treatment with 17-DMAG (HSP90 inhibitor) and NVP-BEZ235 (PI3K/mTOR dual inhibitor) on cisplatin-resistant human bladder cancer cells. MATERIALS AND METHODS: Human bladder cancer cells exhibiting cisplatin resistance (T24R2) were exposed to escalating doses of 17-DMAG (2.5-20 nM) with or without NVP-BEZ236 (0.5-4 µM) in combination with cisplatin. Antitumor effects were assessed by CCK-8 analysis. Based on the dose-response study, synergistic interactions between the two regimens were evaluated using clonogenic assay and combination index values. Flow cytometry and Western blot were conducted to analyze mechanisms of synergism. RESULTS: Dose- and time-dependent antitumor effects for 17-DMAG were observed in both cisplatin-sensitive (T24) and cisplatin-resistant cells (T24R2). The antitumor effect of NVP-BEZ235, however, was found to be self-limiting. The combination of 17-DMAG and NVP-BEZ235 in a 1:200 fixed ratio showed a significant antitumor effect in cisplatin-resistant bladder cancer cells over a wide dose range, and clonogenic assay showed compatible results with synergy tests. Three-dimensional analysis revealed strong synergy between the two drugs with a synergy volume of 201.84 µM/mL²%. The combination therapy resulted in G1-phase cell cycle arrest and caspase-dependent apoptosis confirmed by the Western blot. CONCLUSION: HSP90 inhibitor monotherapy and in combination with the PI3K/mTOR survival pathway inhibitor NVP-BEZ235 shows a synergistic antitumor effect in cisplatin-resistant bladder cancers, eliciting cell cycle arrest at the G1 phase and induction of caspase-dependent apoptotic pathway.


Assuntos
Antineoplásicos/uso terapêutico , Benzoquinonas/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Lactamas Macrocíclicas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Humanos , Imidazóis , Lactamas Macrocíclicas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Quinolinas , Serina-Treonina Quinases TOR/metabolismo
8.
Int J Nanomedicine ; 15: 4705-4716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636626

RESUMO

Purpose: Ultra-small gold nanoclusters (AuNCs), as emerging fluorescent nanomaterials with excellent biocompatibility, have been widely investigated for in vivo biomedical applications. However, their effects in guiding osteogenic differentiation have not been investigated, which are important for osteoporosis therapy and bone regeneration. Herein, for the first time, lysozyme-protected AuNCs (Lys-AuNCs) are used to stimulate osteogenic differentiation, which have the potential for the treatment of bone disease. Methods: Proliferation of MC3T3E-1 is important for osteogenic differentiation. First, the proliferation rate of MC3T3E-1 was studied by Cell Counting Kit-8 (CCK8) assays. Signaling pathways of PI3K/Akt play central roles in controlling proliferation throughout the body. The expression of PI3K/Akt was investigated in the presence of lysozyme, and lysozyme-protected AuNCs (Lys-AuNCs) by Western blot (WB) and intracellular cell imaging to evacuate the osteogenic differentiation mechanisms. Moreover, the formation of osteoclasts (OC) plays a negative role in the differentiation of osteoblasts. Nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) signaling pathways are used to understand the negative influence of the osteogenic differentiation by the investigation of Raw 264.7 cell line. Raw 264.7 (murine macrophage-like) cells and NIH/3T3 (mouse fibroblast) cells were treated with tyloxapol, and the cell viability was assessed. Raw 264.7 cells have also been used for in vitro studies, on understanding the osteoclast formation and function. The induced osteoclasts were identified by TRAP confocal fluorescence imaging. These key factors in osteoclast formation, such as (NFATc-1, c-Fos, V-ATPase-2 and CTSK), were investigated by Western blot. Results: Based on the above investigation, Lys-AuNCs were found to promote osteogenic differentiation and decrease osteoclast activity. It is noteworthy that the lysozyme (protected template), AuNPs, or the mixture of Lysozyme and AuNPs have negligible effects on osteoblastic differentiation compared to Lys-AuNCs. Conclusion: This study opens up a novel avenue to develop a new gold nanomaterial for promoting osteogenic differentiation. The possibility of using AuNCs as nanomedicines for the treatment of osteoporosis can be expected.


Assuntos
Nanopartículas Metálicas/química , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Muramidase/química , Muramidase/metabolismo , Fatores de Transcrição NFATC/metabolismo , Nanomedicina/métodos , Osteoblastos/citologia , Osteoclastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células RAW 264.7
9.
PLoS Pathog ; 16(6): e1008610, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603377

RESUMO

Newcastle disease virus (NDV), a member of the Paramyxoviridae family, can activate PKR/eIF2α signaling cascade to shutoff host and facilitate viral mRNA translation during infection, however, the mechanism remains unclear. In this study, we revealed that NDV infection up-regulated host cap-dependent translation machinery by activating PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways. In addition, NDV infection induced p38 MAPK/Mnk1 signaling participated 4E-BP1 hyperphosphorylation for efficient viral protein synthesis when mTOR signaling is inhibited. Furthermore, NDV NP protein was found to be important for selective cap-dependent translation of viral mRNAs through binding to eIF4E during NDV infection. Taken together, NDV infection activated multiple signaling pathways for selective viral protein synthesis in infected cells, via interaction between viral NP protein and host translation machinery. Our results may help to design novel targets for therapeutic intervention against NDV infection and to understand the NDV anti-oncolytic mechanism.


Assuntos
Proteínas Aviárias , Fator de Iniciação 4E em Eucariotos , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle , Nucleoproteínas , RNA Mensageiro , RNA Viral , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Galinhas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Nucleoproteínas/biossíntese , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
PLoS One ; 15(6): e0225173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603328

RESUMO

Vascular hyperplasia after vascular trauma is one of the difficult problems in clinical treatment. Nowadays, there is no effective treatment for vascular hyperplasia. Previous studies have shown that integrinß1 andß3 activity play an important role in vascular hyperplasia. Kindlin-2 has been shown to modulate integrinß1 andß3 activity in cancer. Therefore, in this study, we hope to explore the relationship between Kindlin-2 and vascular hyperplasia. We overexpressed or knocked down Kindlin-2 by adenovirus. The results showed that Kindlin-2 overexpression could regulate integrinß1 andß3 activity through FAK-PIK3 signaling pathways ex vivo and in vivo, thereby affecting the proliferation and migration of VSMC, and then it causes the consequences of vascular hyperplasia. Therefore, Our results show that Kindlin-2 may be a potential target for the treatment of vascular hyperplasia.


Assuntos
Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Músculo Liso Vascular/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Técnicas de Silenciamento de Genes , Hiperplasia/metabolismo , Hiperplasia/patologia , Ratos
11.
Toxicon ; 185: 76-90, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32649934

RESUMO

This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, ß-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, ß-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.


Assuntos
Picaduras de Aranhas , Venenos de Aranha/toxicidade , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Aranhas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Anticancer Res ; 40(8): 4513-4522, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727781

RESUMO

BACKGROUND/AIM: Hepatocellular carcinoma (HCC) arises from hepatocytes, and is the most frequently occurring malignancy of primary liver cancer. In this study, we investigated the anti-metastatic effects of the quaternary ammonium compound, cetyltrimethylammonium bromide (CTAB), on HA22T/VGH HCC cells. MATERIALS AND METHODS: According to our preliminary data, the effect of CTAB on cell cycle distribution, migration, invasion and the associated protein levels was examined using flow cytometry, wound-healing migration, Matrigel transwell invasion assay and western blotting under sub-lethal concentrations. RESULTS: CTAB treatment of HA22T/VGH cells casued dose-dependent mesenchymal-epithelial transition (MET)-like changes and impaired migration and invasion capabilities. In addition, CTAB reduced the levels of metastasis-related proteins including c-Met, phosphoinositide 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), Twist, N-cadherin, and Vimentin. Moreover, pretreatment with hepatocyte growth factor (HGF) rescued CTAB-mediated effects. CONCLUSION: CTAB exhibited potent anti-EMT and anti-metastatic activities through the inhibition of migration and invasion of HA22T/VGH cells. CTAB interrupted the mesenchymal characteristics of HA22T/VGH cells, which were significantly alleviated by HGF in a dose-dependent manner. CTAB has the potential to evolve as a therapeutic agent for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cetrimônio/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Nat Commun ; 11(1): 3520, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665551

RESUMO

PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Distribuição Aleatória , Fatores de Transcrição/genética , Transcriptoma/genética
14.
Korean J Parasitol ; 58(3): 237-247, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32615737

RESUMO

Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.


Assuntos
Células Dendríticas/metabolismo , Interações Hospedeiro-Parasita , NADPH Oxidase 4/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Toxoplasma/fisiologia , Animais , Linhagem Celular , Regulação para Baixo , Humanos , Camundongos
15.
Nat Commun ; 11(1): 3412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641742

RESUMO

Regulatory B cells restrict immune and inflammatory responses across a number of contexts. This capacity is mediated primarily through the production of IL-10. Here we demonstrate that the induction of a regulatory program in human B cells is dependent on a metabolic priming event driven by cholesterol metabolism. Synthesis of the metabolic intermediate geranylgeranyl pyrophosphate (GGPP) is required to specifically drive IL-10 production, and to attenuate Th1 responses. Furthermore, GGPP-dependent protein modifications control signaling through PI3Kδ-AKT-GSK3, which in turn promote BLIMP1-dependent IL-10 production. Inherited gene mutations in cholesterol metabolism result in a severe autoinflammatory syndrome termed mevalonate kinase deficiency (MKD). Consistent with our findings, B cells from MKD patients induce poor IL-10 responses and are functionally impaired. Moreover, metabolic supplementation with GGPP is able to reverse this defect. Collectively, our data define cholesterol metabolism as an integral metabolic pathway for the optimal functioning of human IL-10 producing regulatory B cells.


Assuntos
Linfócitos B Reguladores/metabolismo , Colesterol/metabolismo , Interleucina-10/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Animais , Antígenos CD19/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Cocultura , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Deficiência de Mevalonato Quinase/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Análise de Componente Principal , Transdução de Sinais , Células Th1/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Gene ; 758: 144946, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32649978

RESUMO

Hepatic injury is one of the most challenging diseases in clinical medicine. Hepatic injury is accompanied by hepatocyte apoptosis and leads to hepatic fibrosis and cirrhosis, which may cause liver cancer and increased mortality. Therefore, it is essential to investigate the regulation mechanism and therapeutic strategies for hepatic injury. In the study, the effects of Thymosin ß4 (Tß4) on Long intergenic noncoding RNA-p21 (lincRNA-p21)-mediated liver injury were investigated. Results showed that lincRNA-p21 overexpression promoted hepatocytes apoptosis, which was blocked by Tß4. Besides, Tß4 reversed the levels of cleaved caspase-3 and caspase-9 induced by lincRNA-p21. LincRNA-p21 overexpression also caused the pathological injury and fibrosis in hepatic tissues and increased the levels of fibrosis-related proteins (Collagen I, α-SMA and TIMP-1), and induced hydroxyproline and ALT production. However, Tß4 reversed the effects of overexpression of lincRNA-p21 on hepatic injury and fibrosis. In vitro experiments, after lincRNA-p21 was overexpressed in hepatic stellate cells (HSCs), the proliferation ability and the levels of HSCs markers α-SMA and Desmin were increased. However, Tß4 reversed the effects of lincRNA-p21 on HSCs. Furthermore, the PI3K-AKT-NF-κB pathway was activated by lincRNA-p21, which was then reversed by the Tß4 administration. After the mice treated by insulin-like growth factor-1 (IGF-1) (the activator of PI3K-AKT), the inhibitory effect of Tß4 on activated the PI3K-AKT-NF-κB pathway was abrogated. Besides, IGF-1 abolished the protective effects of Tß4 on hepatic apoptosis and fibrosis induced by lincRNA-p21. Therefore, Tß4 reversed. lincRNA-p21-mediated liver injury through inhibiting PI3K-AKT-NF-κB pathway. Tß4 may be a promising drug for fibrosis therapy.


Assuntos
Apoptose/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/lesões , RNA Longo não Codificante/genética , Timosina/farmacologia , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Hepatócitos/patologia , Proteínas I-kappa B/antagonistas & inibidores , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-1/metabolismo
17.
Nat Commun ; 11(1): 3669, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699356

RESUMO

Recent characterization of spatiotemporal genomic architecture of IDH-wild-type multifocal glioblastomas (M-GBMs) suggests a clinically unobserved common-ancestor (CA) with a less aggressive phenotype, generating highly genetically divergent malignant gliomas/GBMs in distant brain regions. Using serial MRI/3D-reconstruction, whole-genome sequencing and spectral karyotyping-based single-cell phylogenetic tree building, we show two distinct types of tumor evolution in p53-mutant driven mouse models. Malignant gliomas/GBMs grow as a single mass (Type 1) and multifocal masses (Type 2), respectively, despite both exhibiting loss of Pten/chromosome 19 (chr19) and PI3K/Akt activation with sub-tetraploid/4N genomes. Analysis of early biopsied and multi-segment tumor tissues reveals no evidence of less proliferative diploid/2N lesions in Type 1 tumors. Strikingly, CA-derived relatively quiescent tumor precursors with ancestral diploid/2N genomes and normal Pten/chr19 are observed in the subventricular zone (SVZ), but are distantly segregated from multi focal Type 2 tumors. Importantly, PI3K/Akt inhibition by Rictor/mTORC2 deletion blocks distant dispersal, restricting glioma growth in the SVZ.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Evolução Clonal , Evolução Molecular , Glioblastoma/genética , Animais , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Cariotipagem , Imagem por Ressonância Magnética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais/genética , Análise de Célula Única , Sequenciamento Completo do Genoma
18.
Gene ; 759: 144969, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32712064

RESUMO

Sepsis-induced acute lung injury (ALI) remains one of the most common disorders in hospitals. The aim of this research was to explore the underlying characteristics and mechanisms of artesunate (AS) in protecting rat lungs from sepsis. The sepsis-induced ALI model was generated in SD rats by the intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg) for 24 h. The rats were randomly assigned into 4 groups: Sham, LPS, LPS + AS, and LPS + AS + LY294002. Pathological evaluation of the lungs was conducted by HE staining, immunofluorescence, and TUNEL assay, and the MPO activity and the W/D ratio of each group were evaluated. The levels of inflammatory mediators (TNF-α and IL-6) were measured by immunoblotting, immunofluorescence and real-time PCR. Western blotting was used to determine the protein levels of PI3K, cleaved Caspase-3, p-mTOR, mTOR, p-Akt, and Akt in the lungs. The MPO activity, W/D ratio and lung injury score were obviously elevated after induction of ALI by LPS. Nevertheless, these alterations could be inhibited by AS. In addition, sepsis decreased the levels of p-mTOR, p-Akt, and PI3K and elevated the expression of cl-caspase-3, TNF-α, and IL-6 in the lungs. After AS administration, these alterations were obviously decreased, but treatment with the PI3K antagonist LY294002 inhibited the function of AS. AS could partially protect against LPS-induced ALI by inhibiting apoptosis and inflammatory mediator production, and this function is perhaps associated with the regulation of the mTOR/AKT/PI3K axis. These findings suggest that AS may possess certain beneficial characteristics in protecting the lungs from sepsis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Artesunato/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/etiologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Artesunato/farmacologia , Interleucina-6/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(28): 16500-16508, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601199

RESUMO

Despite the implementation of multiple HER2-targeted therapies, patients with advanced HER2+ breast cancer ultimately develop drug resistance. Stromal fibroblasts represent an abundant cell type in the tumor microenvironment and have been linked to poor outcomes and drug resistance. Here, we show that fibroblasts counteract the cytotoxic effects of HER2 kinase-targeted therapy in a subset of HER2+ breast cancer cell lines and allow cancer cells to proliferate in the presence of the HER2 kinase inhibitor lapatinib. Fibroblasts from primary breast tumors, normal breast tissue, and lung tissue have similar protective effects on tumor cells via paracrine factors. This fibroblast-mediated reduction in drug sensitivity involves increased expression of antiapoptotic proteins and sustained activation of the PI3K/AKT/MTOR pathway, despite inhibition of the HER2 and the RAS-ERK pathways in tumor cells. HER2 therapy sensitivity is restored in the fibroblast cocultures by combination treatment with inhibitors of MTOR or the antiapoptotic proteins BCL-XL and MCL-1. Expression of activated AKT in tumor cells recapitulates the effects of fibroblasts resulting in sustained MTOR signaling and poor lapatinib response. Lapatinib sensitivity was not altered by fibroblasts in tumor cells that exhibited sustained MTOR signaling due to a strong gain-of-function PI3KCA mutation. These findings indicate that in addition to tumor cell-intrinsic mechanisms that cause constitutive PI3K/AKT/MTOR pathway activation, secreted factors from fibroblasts can maintain this pathway in the context of HER2 inhibition. Our integrated proteomic-phenotypic approach presents a strategy for the discovery of protective mechanisms in fibroblast-rich tumors and the design of rational combination therapies to restore drug sensitivity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Fibroblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Lapatinib/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
20.
Cancer Sci ; 111(9): 3279-3291, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32619088

RESUMO

Chemoresistance has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Long noncoding RNAs play important roles in breast cancer tumorigenesis and chemoresistance. However, the involvement and regulation of lncRNAs in breast cancer chemoresistance are not completely understood. Here, we reported that Linc00839 was localized in the nucleus and upregulated in chemoresistant breast cancer cells and tissues, and high level of Linc00839 was associated with a poor prognosis. Knockdown of Linc00839 significantly suppressed proliferation, invasion, and migration, sensitized cells to paclitaxel in vitro and inhibited transplant tumor development in vivo. Mechanistically, we found that Myc could directly bind to the promoter region of Linc00839 and activate its transcription. Furthermore, Linc00839 overexpression increased the expression of Myc and the RNA-binding protein Lin28B and activated the PI3K/AKT signaling pathway. We also discovered that Lin28B positively interacted with Linc00839 and was upregulated in breast cancer tissues. Taken together, for the first time, we showed that Linc00839 was activated by Myc and promoted proliferation and chemoresistance in breast cancer through binding with Lin28B. These findings provide new insight into the regulatory mechanism of Linc00839 and propose a Myc/Linc00839/Lin28B feedback loop that could be used as a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genes myc , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Camundongos , RNA Longo não Codificante/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA