RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Hemsleya amabilis Diels, belongs to cucurbitaceae, was traditional Chinese medicine (TCM). It is widely used to treat various diseases. However, these diseases may contribute to the development of RCC. AIM OF THE STUDY: investigated the anticancer activities of root extract of Hemsleya amabilis Diels (HRE), and elucidated the underlying molecular mechanism in vivo and in vitro. MATERIALS AND METHODS: Dried Hemsleya amabilis Diels roots were extracted by ethyl acetate and used to treat RCC4, OS-RC-2 and ACHN cells. UHPLC-MS was used to analyze the chemical composition of the extract. CCK-8 and colony formation assay were used to investigate proliferation. PI staining was used to detect cell cycle. Annexin-V-FITC, AO/EB and TEM were used to evaluate apoptosis. Transwell and wound healing assays were used to evaluate migration and invasion. RNA-seq, Network pharmacology, autodocking for virtual screening and molecular dynamics simulation were used to analyze potential molecular mechanisms and active components of HRE inhibiting proliferation of RCC. LY294002 and UC2288 were used to inhibit PI3K and P21 expression, respectively. IGF-1 was used to activate PI3K. Xenograft tumor model was established to evaluate its anti-tumor potential in vivo. Immunohistochemistry and Western blot were used to test protein expression levels. H&E staining was used to explore the side effects of HRE in vivo. Applying bioinformatics to analyze the effect of P21 on RCC. RESULTS: HRE consists of 739 compounds. CCK-8 and colony formation assay showed that HRE significantly inhibited RCC cells proliferation. PI staining indicated that HRE caused G2/M phase arrest. Annexin-V-FITC, AO/EB and TEM experiments revealed that HRE significantly promoted apoptosis of RCC cells. Transwell and wound healing assays showed that HRE can inhibit the migration and invasion of RCC cells. RNA-seq showed that HRE induced 230 gene changes. Network pharmacology analysis found the relationship between HRE-component-target-RCC. Auto-docking found that Epitulipinolide diepoxide in HRE can stably bind to PIK3CA (-7.22 kJ/mol), and molecular dynamics simulation verified the combination between Epitulipinolide diepoxide of PIK3CA. In RCC4 cells, pretreatment with IGF-1, attenuated HRE-induced apoptosis and G2/M arrest. When pretreated with PIK3 inhibitor LY294002, the opposite result appears. Pretreatment with CDKN1A (P21) inhibitor UC2288 attenuated HRE-induced G2/M arrest. Xenograft tumor model showed that HRE inhibited tumor growth. Western blot analysis indicated that HRE can regulating Bax, Bcl-2, PARP, cleared-PARP, Caspase-9, Caspase-8, Caspase-3, Survivin, Cyclin-B1, CDK1, N-cadherin, snail, slug, E-cadherin, MMP-9. Immunohistochemical staining showed that in the treated group, expression of E-cadherin, Bax, P21 was up-regulated, while N-cadherin, PI3K, AKT and Bcl-2 were down-regulated. H&E staining showed that compared to control groups, the main organs in the HRE-treated groups showed no histological abnormalities. The overall survival rate of RCC patients in the high-expression group of P21 was higher than in the low-expression group of P21 on bioinformatics analysis. CONCLUSIONS: HRE inhibited RCC migration and invasion through EMT, and inhibited proliferation in vivo and in vitro. In addition, HRE inhibited proliferation through promoting apoptosis and P21-induced G2/M phase arrest via PI3K/AKT signaling pathway. Overall, these results suggest that HRE may be a promising chemotherapy agent for RCC.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sincalida/metabolismo , Sincalida/farmacologia , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células , Neoplasias Renais/tratamento farmacológico , Divisão Celular , Anexinas/metabolismo , Anexinas/farmacologia , Linhagem Celular TumoralRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY: This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS: High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aß25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3ß pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS: We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aß25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3ß signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS: QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3ß pathway in vitro and in vivo.
Assuntos
Doença de Alzheimer , Ratos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/complicações , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosforilação , Camundongos Transgênicos , Aprendizagem em LabirintoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata and Patrinia villosa (S&P) are two natural herbal medicine widely used for treatment of various inflammatory diseases in Traditional Chinese Medicine, whereas the mode of action needs to be further investigated. AIM OF THE STUDY: This study aimed to explore the anti-inflammatory effects and unravel the involved mechanism of S&P extract. MATERIALS AND METHODS: The components of S&P extract were first detected using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of S&P extract on the viability and migration ability of macrophages were detected using CCK8, LDH, adhesion and transwell assays. Cytokine release and macrophage phenotype transition were measured using a cytometric bead array and flow cytometry. The potential mechanism was uncovered using an integrative approach combining RNA sequencing and LC-MS/MS-based metabolic analysis. The expression of related proteins was further validated using western blotting. RESULTS: S&P extract inhibited the proliferation and migration of LPS-induced macrophages, changed the morphology of macrophages, and inhibited the production of NO and the expression of iNOS. Furthermore, the extract inhibited tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production and the expression of the M1 phenotype markers CD11c and CD16/32, whereas it promoted interleukin-10 (IL-10) production and the expression of the M2 phenotype markers CD206 and arginase 1 (Arg1). RNA sequencing analysis demonstrated that the upregulated genes by S&P extract treatment were involved in M2 macrophages: Il10, Ccl17, Ccl22, Cd68. The downregulated genes were involved in M1 macrophages and glycolysis processes: Stat1, Il18, Cd80, Cd86, Nos2, Il6, Pik3ap1, Raf1, Pdhb, etc. Metabolomics results showed that the S&P extract strongly ameliorated lipopolysaccharide (LPS)-induced metabolic disturbances. KEGG analysis indicated that most of these metabolites were involved in glucose metabolism, which is involved in the tumor necrosis factor (TNF), phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt), Glycolysis, and mitogen-activated protein kinase (MAPK) pathways. In vitro experiments further confirmed that the extract significantly inhibited the phosphorylation of focal adhesion kinase (FAK), PI3K and Akt, and the expression of glucose metabolism-related proteins. Adding a FAK inhibitor (defactinib) further inhibited the expression of M1/M2 phenotypic markers and the phosphorylation of FAK, PI3K, and Akt. CONCLUSIONS: S&P extract can induce M2 polarization and shift macrophages from M1 to M2 tissue repair in LPS-induced inflammation by regulating glucose metabolism and the FAK/PI3K/Akt pathway.
Assuntos
Patrinia , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos , Fator de Necrose Tumoral alfa/metabolismo , Glucose/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute-on-chronic liver failure (ACLF) progresses rapidly with a high short-term death rate. Although JianPi LiShi YangGan formula (YGF) has been used to treat ACLF by managing inflammatory responses and reducing endotoxemia, hepatocyte injury, and mortality, the underlying mechanisms remain unclear. AIM OF THE STUDY: This study aims to investigate the potential mechanisms underlying the efficacy and protective benefits of YGF in mice with ACLF. MATERIALS AND METHODS: YGF composition was determined using high-performance liquid chromatography coupled with mass spectrometry. We constructed a mouse model of ACLF using carbon tetrachloride, lipopolysaccharide (LPS), and D-galactosamine (D-Gal), as well as an in vitro model of D-Gal/LPS-induced hepatocyte injury. The therapeutic effects of YGF in ACLF mice were verified using hematoxylin-eosin, Sirius red, and Masson staining, and by measuring serum alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokine levels. Mitochondrial damage in hepatocytes was evaluated using electron microscopy, while superoxide anion levels in liver tissue were investigated using dihydroethidium. Transcriptome analysis, immunohistochemistry, western blotting, and immunofluorescence assays were performed to explore the mechanisms underlying the ameliorative effects of YGF against ACLF. RESULTS: In mice with ACLF, YGF therapy partially decreased serum inflammatory cytokine levels, as well as hepatocyte injury and liver fibrosis. The livers of ACLF mice treated with YGF exhibited decreased mitochondrial damage and reactive oxygen species generation, as well as a decreased number of M1 macrophages and increased number of M2 macrophages. Transcriptome analysis revealed that YGF may regulate biological processes such as autophagy, mitophagy, and PI3K/AKT signaling. In ACLF mice, YGF promoted mitophagy and inhibited PI3K/AKT/mTOR pathway activation in hepatocytes. Meanwhile, the autophagy inhibitor 3M-A reduced the capacity of YGF to induce autophagy and protect against hepatocyte injury in vitro. In contrast, the PI3K agonist 740 Y-P suppressed the ability of YGF to control PI3K/AKT/mTOR pathway activation and induce autophagy. CONCLUSIONS: Together, our findings suggest that YGF mediates autophagy, tight junctions, cytokine generation, and other biological processes. In addition, YGF inhibits hepatic inflammatory responses and ameliorates hepatocyte injury in mice with ACLF. Mechanistically, YGF can promote mitophagy to ameliorate acute-on-chronic liver failure by inhibiting the PI3K/AKT/mTOR pathway.
Assuntos
Insuficiência Hepática Crônica Agudizada , Camundongos , Animais , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Insuficiência Hepática Crônica Agudizada/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Echinacoside (ECH) is the dominant phenylethanoid glycoside-structured compound identified from our developed herbal formula Huangci granule, which has been previously reported to inhibit the invasion and metastasis of CRC and prolong patients' disease-free survival duration. Though ECH has inhibitory activity against aggressive colorectal cancer (CRC) cells, its anti-metastasis effect in vivo and the action mechanism is undetermined. Given that ECH has an extremely low bioavailability and gut microbiota drives the CRC progression, we hypothesized that ECH could inhibit metastatic CRC by targeting the gut microbiome. AIM OF THE STUDY: The purpose of this study was to investigate the impact of ECH on colorectal cancer liver metastasis in vivo and its potential mechanisms. MATERIALS AND METHODS: An intrasplenic injection-induced liver metastatic model was established to examine the efficiency of ECH on tumor metastasis in vivo. Fecal microbiota from the model group and the ECH group were separately transplanted into pseudo-sterile CRLM mice in order to verify the role of gut flora in the ECH anti-metastatic effect. The 16S rRNA gene sequence was applied to analyze the structure and composition of the gut microbiota after ECH intervention, and the effect of ECH on short-chain fatty acid (SCFAs)-producing bacteria growth was proven by anaerobic culturing in vitro. GC-MS was applied to quantitatively analyze the serum SCFAs levels in mice. RNA-seq was performed to detect the gene changes involving tumor-promoting signaling pathway. RESULTS: ECH inhibited CRC metastasis in a dose-dependent manner in the metastatic colorectal cancer (mCRC) mouse model. Manipulation of gut bacteria in the mCRC mouse model further proved that SCFA-generating gut bacteria played an indispensable role in mediating the antimetastatic action of ECH. Under an anaerobic condition, ECH benefited SCFA-producing microbiota without affecting the total bacterial load, presenting a dose-dependent promotion on the growth of a butyrate producer, Faecalibacterium prausnitzii (F.p). Furthermore, ECH-reshaped or F.p-colonized microbiota with a high butyrate-producing capability inhibited liver metastasis by suppressing PI3K/AKT signaling and reversing the epithelial-mesenchymal transition (EMT) process, whereas this anti-metastatic ability was abrogated by the butyrate synthase inhibitor heptanoyl-CoA. CONCLUSION: This study demonstrated that ECH exhibits oral anti-metastatic efficacy by facilitating butyrate-producing gut bacteria, which downregulates PI3K/AKT signaling and EMT. It hints at a novel role for ECH in CRC therapy.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Neoplasias Hepáticas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Ribossômico 16S , Transdução de Sinais , Ácidos Graxos Voláteis/metabolismo , Butiratos/uso terapêutico , Neoplasias do Colo/patologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Naringenin (NGN) is a widely distributed flavonoid with potent antioxidant and neuroprotective properties. Neuroprotective agents play a crucial role in the treatment of hypoxic-ischemic encephalopathy (HIE). It has shown potential therapeutic effects for neurological disorders. However, its efficacy on HIE is yet to be investigated. AIM OF THE STUDY: This study aims to investigate the potential neuroprotective effect of naringenin and its underlying molecular mechanisms in reducing oxidative stress, apoptosis, and improving brain outcomes following HIE. Additionally, the study aims to identify the potential targets, mechanisms, and functions of naringenin using network pharmacology analysis. MATERIALS AND METHODS: Neonatal mice were exposed to the hypoxic-ischemic brain damage (HIBD) model to determine brain water content, and brain tissue was subjected to hematoxylin and eosin (HE), immunohistochemistry (IHC), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Nissl staining to investigate its neuroprotective effects. Furthermore, the neonatal mouse primary neuron oxygen-glucose deprivation (OGD) model to measure reactive oxygen species (ROS) production in vitro. The protein levels were characterized by Western Blot, and mRNA levels were evaluated by a real-time quantitative PCR detecting system (qPCR). Transmission electron microscopy (TEM) and mitochondrial fluorescent staining were used to observe mitochondrial morphology. Neuronal nuclei (NeuN) and microtubule-associated protein 2 (MAP2) were detected by Immunofluorescence (IF). Finally, network pharmacology was employed to determine the common target of naringenin and HIE. The core genes were obtained via protein-protein interaction networks (PPI) analysis and molecular docking was examined, and the mechanism of action was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, small interfering RNA (siRNA) was constructed for verification. RESULTS: Naringenin has a neuroprotective effect in HIBD by modulating Vegfa expression and activating the PI3K/AKT pathway to inhibit apoptosis. Furthermore, molecular docking results suggest that Vegfa is a potential binding target of naringenin, and silencing Vegfa partially reverses the pharmacological effects of NGN. CONCLUSION: Our findings suggest that naringenin demonstrates potential clinical application for treating HIE as a novel neuroprotective agent.
Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Camundongos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Simulação de Acoplamento Molecular , Apoptose , Encéfalo/metabolismo , Modelos Animais de Doenças , RNA Interferente PequenoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY: Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS: Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS: We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS: The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Colo , Anti-Inflamatórios/efeitos adversos , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BLRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury is a kind of clinical emergency severe syndrome which might trigger acute respiratory distress syndrome. Jingfang Granules () is a traditional Chinese medicine which has been proven to improve acute lung injury induced by bleomycin through inhibiting recruitment and overactive of inflammation. However, the potential mechanisms are still not well evaluated. AIM OF STUDY: The aim of this study was to evaluate the protective function of Jingfang Granules on bleomycin caused acute lung injury and further discuss the potential pharmacological mechanisms. MATERIALS AND METHODS: C57BL/6J mice were intratracheal injected bleomycin to induce model with acute lung injury. The protective impact of Jingfang Granules on acute lung injury and lung fibrosis triggered by bleomycin were evaluated through detecting mice body weight, lung appearance, lung index, and histopathology. The potential pharmacological mechanism of Jingfang Granules in treating acute lung injury was further elucidated by the methods of network pharmacology, proteomics, metabolomics, as well as western blot. Additionally, the network pharmacology analysis and molecular docking technology were integrated to investigate the targets of Jingfang Granules improving acute lung injury. RESULTS: Our results indicated that Jingfang Granules effectively protected mice from acute lung injury induced by bleomycin, which was confirmed by higher body weight, lower pulmonary edema and lung index, and improved pathology and fibrosis of lung tissue compared to model group. Proteomics, western blot, and metabolomics were integrated and the results confirmed that Jingfang Granules regulated the Glycolysis/Gluconogenesis and Pyruvate metabolism through downregulating the PI3K/Akt/mTOR signaling pathway. The network pharmacology analysis and molecular docking technology results showed that the targets of Jingfang Granules for treating acute lung injury were enriched in the PI3K/Akt signaling pathway, which included 7 target proteins such as MAPK1, MAPK3, JAK2, HRAS, EGFR, PIK3R1, and PIK3CA. CONCLUSION: This study indicates that Jingfang Granules displays a markedly protective effect on acute lung injury caused by bleomycin through downregulating PI3K/Akt/mTOR signaling pathway, which in turn regulates Glycolysis/Gluconogenesis and Pyruvate metabolism.
Assuntos
Lesão Pulmonar Aguda , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Bleomicina/toxicidade , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Piruvatos/efeitos adversosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of allergic disease is constantly increasing, but its pathogenesis is not fully understood. Saposhnikovia divaricata (SD), called 'Fangfeng' in China, not only can be used for antipyretic, analgesic and anti-inflammatory as a traditional Chinese medicine, but also as an active ingredient in about 8% prescriptions. However, its effects on type I allergy and pseudoallergy have not been clarified. AIM OF THE STUDY: To explore the treatment and potential mechanisms of SD and its major bioactive component Prim-O-glucosylcimifugin (POG) on type I allergy and pseudoallergy in vitro and in vivo. MATERIALS AND METHODS: The inhibitory effect of SD decoction and POG on type I allergy and its possible mechanism were evaluated by using RBL-2H3 cells model in vitro and the passive cutaneous anaphylaxis (PCA) mouse model in vivo. The cell degranulation of RBL-2H3 cells induced by DNP-IgE/DNP-BSA and Compound 48/80 (C48/80) was investigated, and the molecules of degranulation related signaling pathway was further detected by qRT-PCR and Western Blot analysis. Meanwhile, therapeutic effect of SD Decoction and POG were evaluated using PCA models in vivo. The molecular docking technology was conducted to explore the potential mechanisms. RESULTS: In cells model induced by DNP-IgE/DNP-BSA, the release rate of ß-Hex in high dose of SD and POG groups were 43.79% and 57.01%, and the release amount of HA in high dose of SD and POG groups were 26.19 ng/mL and 24.20 ng/mL. They were significantly lower than that in the model group. Besides, SD decoction and POG could significantly inhibit intracellular Ca2+ increasing and cell apoptosis. But there is no obvious effect on cells degranulation induced by C48/80. The molecular docking results showed that 5-O-Methylvisamioside and POG could bind with FcεRI α with stronger binding ability, but weak binding ability to Mrgprx2. Moreover, qPCR and Western blot analyses indicated that SD could down-regulate Lyn/Syk/PLCγ, MAPK and PI3K/AKT/NF-κB signal pathway to inhibit IgE-dependent cell degranulation. In mice PCA model, both SD and POG could dose-dependently attenuate the Evans Blue extravasation, paw and ear swelling induced by DNP-IgE/DNP-BSA, but no significant inhibition under the PCA models induced by C48/80. CONCLUSION: In conclusion, SD is effective for the therapeutic of type I allergies, suggesting that SD is a potential candidate for the treatment of type I allergy, and the underlying mechanism of these effects needs to be further studied.
Assuntos
Hipersensibilidade , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Imunoglobulina E/metabolismo , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/patologia , Transdução de Sinais , p-Metoxi-N-metilfenetilamina , Mastócitos , Degranulação CelularRESUMO
BACKGROUND: Acute myeloid leukemia (AML) presents ongoing therapeutic challenges due to its intricate molecular pathogenesis. This study aimed to elucidate the role of RNA binding motif protein 39 (RBM39) in AML cell proliferation, apoptosis, and chemosensitivity, and its potential modulation of the PI3K/AKT pathway. METHODS: In vitro and in vivo experiments were conducted using AML cell lines (K562 and U937) and bone marrow mononuclear cells (BM-MNCs) from AML patients and healthy donors. RBM39 mRNA and protein levels were measured using qRT-PCR and Western blotting. Cells were transfected with sh-RBM39 or sh-control, and then treated with daunorubicin (DNR) or homoharringtonine (HHT) at varied concentrations. Cell proliferation, chemosensitivity, and apoptosis were assessed through CCK-8 assay and Annexin V-APC/PI staining. RNA sequencing identified differentially expressed genes (DEGs) post RBM39 knockdown. An in vivo xenograft AML model using E7070, a selective RBM39 inhibitor, was employed to evaluate RBM39 modulation effects. RESULTS: Elevated RBM39 levels were found in AML patients and cell lines compared to controls. RBM39 knockdown promoted apoptosis, curtailed cell proliferation, and enhanced chemosensitivity to DNR and HHT in vitro. Drug-resistant or relapsed AML patients displayed higher RBM39 levels. RNA sequencing after RBM39 knockdown revealed downregulated PI3K/AKT signaling. The xenograft model validated in vitro results, as E7070 treatment suppressed AML xenograft growth via RBM39-mediated PI3K/AKT pathway suppression. CONCLUSION: RBM39 plays a pivotal role in AML progression through the PI3K/AKT signaling pathway. Targeting RBM39, potentially with E7070, could inhibit proliferation and induce apoptosis in AML cells, offering a promising avenue for future AML research and treatment.
Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêuticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum roeperianum is a medicinal spice traditionally used in West Africa to treat female sterility, fungal infections, and cancer. It has previously been reported that H. roeperianum exhibits cytotoxic potential by reducing the viability of cancer cells involving multidrug-resistant phenotypes, but its underlying molecular mechanism remains unknown. AIM OF THE STUDY: The mechanistic involvement of H. roeperianum methanolic crude extract (HRC) in attenuating breast cancer progression by exploring the effects on mitochondrial apoptosis and epithelial-mesenchymal transition (EMT) was investigated. MATERIALS AND METHODS: In the present study, we examined the anticancer properties of HRC through MTT assay, colony formation, wound healing assay, spheroid formation, DNA fragmentation and flow cytometry for cell cycle arrest, apoptosis (Annexin V/PI staining) and mitochondrial membrane potential (MMP) (JC-1) detection. In addition, western blot analysis of various proteins and quantitative real time PCR of various genes involved in apoptosis, EMT and the PI3K/Akt/mToR signal transduction pathway were performed. RESULTS: This study revealed that HRC treatment significantly decreased breast cancer cell viability, colony forming efficiency and reduced the ability of cell migration and spheroid formation. HRC also induced apoptosis in MDA-MB-231 and MCF-7 via promoting G0/G1 cell cycle arrest, disruption of mitochondrial membrane potential and induction of DNA damage. The crude extract induced apoptosis by activating the intrinsic pathway with a stronger effect that relies on the combined potency of associated molecular markers including Bax, Bad, Bcl-2, cytochrome C, caspase-9, and cleaved-PARP. It was also found that HRC regulates the PI3K/Akt/mToR pathway. In addition, HRC inhibited EMT by expressional alteration of Vimentin and E-cadherin, as well as the regulatory transcription factors such as Snail and Slug. The in vitro findings reflected similar mechanistic approach in 4T1 cell induced syngeneic mice model, indicating the reduction of tumor volume along with the significant expressional alteration of EMT and apoptotic markers. CONCLUSION: Taken together the findings concluded that H. roeperianum is a potential source of cytotoxic phytochemicals that exhibit abortifacient effect on breast cancer, both in vitro and in vivo, thus could further be utilized in breast cancer therapy.
Assuntos
Antineoplásicos , Hypericum , Neoplasias , Feminino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal , Casca de Planta/metabolismo , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Antineoplásicos/farmacologia , Misturas Complexas/farmacologia , Linhagem Celular TumoralRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Pinctada martensii (Dunker) and other marine shellfish flesh have been traditionally used in China as folk remedies regulate blood sugar. AIM OF THE STUDY: To investigate the main active constituents and the pharmacological mechanism of Pinctada martensii flesh enzymatic hydrolysate (PMH) against T2DM. MATERIALS AND METHODS: The hypoglycemic activity of enzymolysis peptides from Pinctada martensii was evaluated by using db/db mice, through the influence of glycemic index, blood lipid and key protein expression of PI3K-Akt pathway. In addition, label-free quantitative proteomics was used to screen the key proteins for Pinctada martensii hydrolysate (PMH) to improve T2DM, and Western blot and qRT-PCR were used to verify the expression difference of differential proteins at protein and mRNA levels between different groups. RESULTS: PMH were prepared and characterized. In vivo investigations revealed that the PMH could regulate blood glucose and improve glucose tolerance and insulin tolerance, reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and increase high-density lipoprotein cholesterol levels in db/db mice. Western blot results showed that PMH could up-regulate IRS-1, P-PI3K/PI3K and P-Akt/Akt levels in db/db mice. Label-free quantitative proteomic approach was used to analyze the proteome in db/db mouse liver, 231 proteins were reversed significantly (p < 0.05), and these proteins were involved in oxidative phosphorylation, glycolysis/gluconeogenesis and other pathways. Further screened 15 proteins with FC > 1.2 could be enriched in the retinol metabolic pathway, and the proteins in this pathway were also verified. CONCLUSIONS: PMH has hypoglycemic effect and can be used as a potential natural T2DM intervener. The hypoglycemic activity of PMH is related to its regulation of the PI3K/AKT pathway. The PI3K/AKT pathway and the retinol pathway are considered as another potential pathway for PMH to exert hypoglycemic effects.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Pinctada , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pinctada/metabolismo , Insulina , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteômica , Vitamina A/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia , Camundongos Endogâmicos , Colesterol/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Leech, a classical traditional Chinese medicine for promoting blood circulation and removing blood stasis, is mainly used in the clinical treatment of cardiovascular and cerebrovascular diseases. The discovery of activity proteins or peptides in the dead and dried medicinal leech is an important task with great challenges. AIM OF THE STUDY: The aim of this study was to provide a basic proteome profile and help further discover active proteins and quality control for medicinal leeches, which would also provide insight into the research of animal medicines. MATERIALS AND METHODS: Seventeen batches of dried medicinal leeches covering three species were collected from medicinal markets, which were authenticated by DNA barcoding. Then the proteome of different species leeches was profiled to reveal the signiï¬cantly different proteins using label-free proteomics. The characteristic peptides were screened out based on biological pathways analysis, which were further absolutely quantified using the developed stable isotope-labeled based parallel reaction monitoring method. RESULTS: Seventeen batches of leech materials were Whitmania pigra Whitman (WP), Whitmania laevis Whitman (WL) and Poecilobdella manillensis Lesson (PM), respectively. A total of 1,035 proteins (452 in WP, 425 in WL and 158 in PM) were identified. Among them, 90 overlapping proteins were mainly concentrated in diverse metabolic pathways and primarily localized in the cytoplasm and mitochondrial inner membrane, which mainly related to ATP binding, catalytic activity and structural molecular activity. In total of 51 uniquely expressed proteins (21 in WP, 23 in WL and 7 in PM), associated with multiple key signaling pathways, including Rap1, cGMP-PKG, PI3K-Akt, Wnt and HIF-1, etc., relevant to treating cardiovascular diseases, diabetes, cancer and even a variety of neurodegenerative diseases. Three proteins with potential bioactivities, including Neurohemerythrin, Hirudin and Eglin C, were selected as the quality makers and then quantified based on the characteristic peptides. CONCLUSIONS: This work profiled the proteome of three species of leeches, and addressed potential active proteins of the medicinal leech, which would help to provide the potential molecular mechanisms involved in disease treatment. The proteomics-based approach developed in this work is not only useful for the discovery of proteins with potential bioactivities but also helpful for the bioactivity relevant quality control of animal medicines.
Assuntos
Hirudo medicinalis , Sanguessugas , Animais , Proteoma , Proteômica , Fosfatidilinositol 3-Quinases/metabolismo , Sanguessugas/química , Peptídeos/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary injury and fibrosis can be caused by various factors because of their inflammatory nature, both can lead to serious clinical consequences. Inula japonica Thunb. is used in traditional Chinese medicine for the treatment of lung diseases. However, the effect and mechanism of action of the essential oil of I. japonica (EOI) on pulmonary injury and fibrosis are not well understood. AIM OF THE STUDY: To investigate the therapeutic effects of EOI on mice with bleomycin (BLM)-induced acute pulmonary injury and chronic fibrosis formation, as well as its potential mechanism. MATERIALS AND METHODS: A short-term mouse model of pulmonary injury was established by intratracheal injection of BLM to investigate the anti-inflammatory effect of EOI, and a long-term model of pulmonary fibrosis was used to explore the anti-fibrosis effect of EOI. High-dose EOI (200 mg/kg) was administered intragastrically, and low-dose (50 mg/kg) was administered by intratracheal injection. Gas chromatography-mass spectrometry (GC-MS) was used to identify the ingredients in EOI, and high-performance liquid chromatography (HPLC) was performed for the preparation of EOI compounds. Western blot and real-time qPCR were used to verify the effects of EOI and its active composition on inflammation, oxidative stress and fibrosis signaling pathway. RESULTS: Treatment with EOI significantly reduced the inflammation and oxidative stress by reducing the levels of inflammatory and oxidative cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde in BLM-treated mice with acute pulmonary injury. EOI treatment could also suppress the formation of fibrous tissue in mice with BLM-induced pulmonary fibrosis through inhibiting TGF-ß/Smad and PI3K/Akt pathways. Chromatographic analysis and preparation suggested that fatty acid and phenol derivatives are present in EOI. Based on cellular inflammation and fibrosis models, the phenolic compounds in EOI can represent the anti-inflammatory and anti-fibrotic effects of EOI by regulating pro-inflammatory and pro-fibrotic cytokines such as NO, TNF-α, IL-6, TGF-ß1, and α-SMA. CONCLUSION: EOI ameliorated BLM-induced pulmonary injury and fibrosis in mice by inhibiting the inflammatory response and regulating the redox equilibrium, as well as by mediating TGFß/Smad and PI3K/Akt, which suggested that EOI has potential to treat pulmonary diseases.
Assuntos
Inula , Lesão Pulmonar , Óleos Voláteis , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Bleomicina/toxicidade , Lesão Pulmonar/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Fenóis/farmacologia , PulmãoRESUMO
Hypertrophic scar (HS) is a fibrotic skin condition and characterized by abnormal proliferation of myofibroblasts and accumulation of extracellular matrix. Melatonin, an endogenous hormone, can alleviate fibrosis in multiple models of diseases. This study examined the effect of melatonin on fibrosis in primary fibroblasts from human HS (HSFs) and a rabbit ear model and potential mechanisms. Melatonin treatment significantly decreased the migration and contraction capacity, collagen and α-smooth muscle actin (α-SMA) production in HSFs. RNA-sequencing and bioinformatic analyses indicated that melatonin modulated the expression of genes involved in autophagy and oxidative stress. Mechanistically, melatonin treatment attenuated the AKT/mTOR activation through affecting the binding of MT2 receptor with PI3K to enhance autophagy, decreasing fibrogenic factor production in HSFs. Moreover, melatonin treatment inhibited HS formation in rabbit ears by enhancing autophagy. The anti-fibrotic effects of melatonin were abrogated by treatment with an autophagy inhibitor (3-methyladenine, 3-MA), an Akt activator (SC79), or an MT2 selective antagonist (4-phenyl-2propionamidotetralin, 4-P-PDOT). Therefore, melatonin may be a potential drug for prevention and treatment of HS.
Assuntos
Cicatriz Hipertrófica , Melatonina , Animais , Humanos , Coelhos , Autofagia , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Fibroblastos/metabolismo , Fibrose , Melatonina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: Colorectal cancer (CRC) metastasis is a complicated process that not only involves tumor cells but also the effects of M2 type tumor-associated macrophages, a key component of the tumor microenvironment (TME), act a crucial role in cancer metastasis. Macelignan, an orally active lignan isolated from Myristica fragrans, possesses various beneficial biological activities, including anti-cancer effects, but its effect on macrophage polarization in the TME remains unknown. PURPOSE: To evaluate the inhibitory potency and prospective mechanism of macelignan on M2 polarization of macrophages and CRC metastasis. METHODS: The polarization and specific mechanism of M1 and M2 macrophage regulated by macelignan were determined by western blot, flow cytometry, immunofluorescence and network pharmacology. In vitro and in vivo function assays were performed to investigate the roles of macelignan in CRC metastasis. RESULTS: Macelignan efficiently inhibited IL-4/13-induced polarization of M2 macrophages by suppressing the PI3K/AKT pathway in a reactive oxygen species (ROS)-dependent manner. The proportion of CD206+ M2 macrophages was elevated in patients with CRC liver metastasis. Furthermore, macelignan inhibited M2 macrophage-mediated metastasis of CRC cells in vitro and in vivo. Mechanistically, macelignan reduced secretion of IL-1ß from M2 macrophages, which in turn blocked NF-κB p65 nuclear translocation and inhibited metastasis. CONCLUSION: Macelignan suppressed macrophage M2 polarization via ROS-mediated PI3K/AKT signaling pathway, thus preventing IL-1ß/NF-κB-dependent CRC metastasis. In the present study, we reveal a previously unrecognized mechanism of macelignan in the prevention of CRC metastasis and demonstrate its effectively and safely therapeutic potential in CRC treatment.
Assuntos
Neoplasias Colorretais , Lignanas , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lignanas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/metabolismo , Macrófagos , Microambiente TumoralRESUMO
As an ultrasmall derivative of black phosphorus (BP) sheets, BP quantum dots (BP-QDs) have been effectively used in many fields. Currently, information on the cardiotoxicity induced by BP-QDs remains limited. We aimed to evaluate BP-QD-induced cardiac toxicity in mice. Histopathological examination of heart tissue sections was performed. Transcriptome sequencing, real-time quantitative PCR (RTâqPCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) assays were used to detect the mRNA and/or protein expression of proinflammatory cytokines, nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT), peroxisome proliferator-activated receptor gamma (PPARγ), and glucose/lipid metabolism pathway-related genes. We found that heart weight and heart/body weight index (HBI) were significantly reduced in mice after intragastric administration of 0.1 or 1 mg/kg BP-QDs for 28 days. In addition, obvious inflammatory cell infiltration and increased cardiomyocyte diameter were observed in the BP-QD-treated groups. Altered expression of proinflammatory cytokines and genes related to the NF-κB signaling pathway further confirmed that BP-QD exposure induced inflammatory responses. In addition, BP-QD treatment also affected the PI3K-AKT, PPARγ, thermogenesis, oxidative phosphorylation, and cardiac muscle contraction signaling pathways. The expression of genes related to glucose/lipid metabolism signaling pathways was dramatically affected by BP-QD exposure, and the effect was primarily mediated by the PPAR signaling pathway. Our study provides new insights into the toxicity of BP-QDs to human health.
Assuntos
Doenças Metabólicas , Pontos Quânticos , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pontos Quânticos/toxicidade , Citocinas/metabolismo , GlucoseRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medicinal application of Lycium barbarum is centered on the improvement of eyesight, as well as the nourishment of liver and kidney functions. Lycium barbarum polysaccharide (LBP), serving as the principal active constituent of Lycium barbarum, has been identified as the main contributor to these beneficial effects. Previous studies have indicated that Lycium barbarum polysaccharide exhibits a renoprotective effect against lead-induced injury, but its mechanism and efficacy remain unclear. AIM OF THE STUDY: The objective of this study was to examine the effectiveness of LBP in preventing lead-induced renal injury and investigate both the toxic mechanism of lead-induced renal injury and the efficacy mechanism of LBP against it, with a focus on the PI3K/AKT/mTOR signaling pathway. MATERIALS AND METHODS: The drug effect and mechanism of LBP on lead-induced kidney injury were investigated by administering positive drugs and LBP to mice with established lead-induced kidney injury. RESULTS: The renal function of mice with lead-induced renal injury was significantly restored, renal tissue lesions and renal mitochondrial damage were delayed, a disorder of hematological parameters induced by lead was improved, the increase of lead-induced renal index was reduced, and the body weight of mice with lead-induced renal injury was increased by the LBP intervention, as revealed by the results of pharmacodynamic experiments. Based on PI3K /AKT /mTOR signaling pathway, the toxic mechanism of lead-induced kidney injury and the pharmacodynamic mechanism of LBP against lead-induced kidney injury were studied. The results showed that lead could activate the TLR4 receptor, and then activate PI3K /AKT /mTOR signaling pathway, inhibit autophagy of kidney tissue cells, and enhance apoptosis of kidney tissue cells to induce kidney injury; LBP inhibits the activation of TLR4 receptor, which in turn inhibits the PI3K/AKT/mTOR signaling pathway, enhances the autophagy of kidney tissue cells, reduces the apoptosis of kidney tissues, and delays lead-induced kidney injury.
Assuntos
Medicamentos de Ervas Chinesas , Lycium , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Lycium/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition that can have multiple underlying causes. There are no satisfactory chemical or biological drugs for the treatment of NAFLD. Longyasongmu, the bark and root of Aralia elata (Miq.) Seem, is used extensively in traditional Chinese medicine (TCM) and has been used in treating diverse liver diseases including NAFLD. Based on Aralia elata (Miq.) Seem as the main ingredient, Longya Gantai Capsules have been approved for use in China for the treatment of acute hepatitis and chronic hepatitis. Calenduloside E (CE), a natural pentacyclic triterpenoid saponin, is a significant component of saponin isolated from the bark and root of Aralia elata (Miq.) Seem. However, the role and mechanism of anti-NAFLD effects of CE is still unclear. AIM OF THE STUDY: The objective of this study was to examine the potential mechanisms underlying the protective effect of CE on NAFLD. MATERIALS AND METHODS: In this study, an NAFLD model was established by Western diet in apoE-/- mice, followed by treatment with various doses of CE (5 mg/kg, 10 mg/kg). The anti-NAFLD effect of CE was assessed by the liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype. The mechanism of CE in ameliorating NAFLD was studied through transcriptome sequencing (RNA-seq). In vitro, the mouse hepatocytes (AML-12) were stimulated in lipid mixtures with CE and performed the exploration and validation of the relevant pathways using Western blot, immunofluorescence, etc. RESULTS: The findings revealed a significant improvement in liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype upon CE administration. Furthermore, RNAseq analysis indicated that the primary pathway through which CE alleviates NAFLD involves pyroptosis-related inflammatory cascade pathways. Furthermore, it was observed that CE effectively suppressed inflammasome-mediated pyroptosis both in vivo and in vitro. Remarkably, the functional enrichment analysis of RNA-seq data revealed that the PI3K-Akt signaling pathway is the primarily Signaling transduction pathway modulated by CE treatment. Subsequent experimental outcomes provided further validation of CE's ability to hinder inflammasome-mediated pyroptosis through the inhibition of PI3K/AKT/NF-κB signaling pathway. CONCLUSIONS: These findings present a novel pharmacological role of CE in exerting anti-NAFLD effects by inhibiting pyroptosis signaling pathways.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Saponinas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piroptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inflamassomos/metabolismo , Fígado , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/metabolismo , Inflamação/metabolismo , Lipídeos/farmacologia , Dieta HiperlipídicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Cortex fraxini (also known as qinpi)-the bark of Fraxinus rhynchophylla Hance (Oleaceae)-is widely used as a Chinese traditional medicinal for its anti-inflammatory and anti-hyperuricemic activities. AIM OF THE STUDY: Obesity-induced insulin resistance (IR) is driving the rising incidence of type 2 diabetes mellitus and is related to pathological adipose tissue remodeling. Esculin, a major active component of Cortex fraxini, has anti-diabetic effects. However, whether esculin improves obesity-induced IR by regulating adipose tissue remodeling is unclear. The aims of the present study were to assess the effects of esculin on obesity-induced IR and to explore the underlying mechanisms. MATERIALS AND METHODS: Obese IR C57BL/6J mice were treated with esculin (40 or 80 mg/kg/day) for 4 weeks. Oral glucose tolerance tests were used to assess insulin sensitivity. Histological analyses were performed to analyze the number and size distribution of adipocytes. Glucose uptake was assessed using 2-NBDG. RESULTS: Esculin had no effect on body weight gain but reduced fasting blood glucose, improved oral glucose tolerance, and increased insulin sensitivity. Esculin reduced adipocyte size and the expression levels of collagen 4A1 and tumor necrosis factor α and increased the number of adipocytes and the expression of vascular endothelial growth factor A. Esculin promoted the differentiation of 3T3-L1 cells and upregulated the mRNA expression of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ, activated the insulin receptor substrate 1 (IRS1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, and enhanced the translocation of glucose transporter type 4 (GLUT4) and glucose uptake in adipocytes treated with palmitic acid. CONCLUSIONS: These data suggest that esculin increases insulin sensitivity by improving adipose tissue remodeling and activating the IRS1/PI3K/AKT/GLUT4 pathway.