Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.980
Filtrar
1.
Medicine (Baltimore) ; 99(40): e22544, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33019464

RESUMO

BACKGROUND: Clinical studies have shown that celecoxib can significantly inhibit the development of tumors, and basic experiments and in vitro experiments also provide a certain basis, but it is not clear how celecoxib inhibits tumor development in detail. METHODS: A literature search of all major academic databases was conducted (PubMed, China National Knowledge Internet (CNKI), Wan-fang, China Science and Technology Journal Database (VIP), including the main research on the mechanisms of celecoxib on tumors. RESULTS: Celecoxib can intervene in tumor development and reduce the formation of drug resistance through multiple molecular mechanisms. CONCLUSION: Celecoxib mainly regulates the proliferation, migration, and invasion of tumor cells by inhibiting the cyclooxygenases-2/prostaglandin E2 signal axis and thereby inhibiting the phosphorylation of nuclear factor-κ-gene binding, Akt, signal transducer and activator of transcription and the expression of matrix metalloproteinase 2 and matrix metalloproteinase 9. Meanwhile, it was found that celecoxib could promote the apoptosis of tumor cells by enhancing mitochondrial oxidation, activating mitochondrial apoptosis process, promoting endoplasmic reticulum stress process, and autophagy. Celecoxib can also reduce the occurrence of drug resistance by increasing the sensitivity of cancer cells to chemotherapy drugs.


Assuntos
Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Celecoxib/efeitos adversos , Celecoxib/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Life Sci ; 259: 118383, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896555

RESUMO

AIMS: Previous studies have shown that the widespread use of estrogen preparations can cause adverse outcomes such as thrombosis and cardiovascular disease. Autophagy is a biochemical process necessary to maintain cell homeostasis. The present study investigated whether E-2 mediates autophagy-induced endothelial cell dysfunction. The role of aspirin in this process was then studied. MAIN METHODS: Western blot, fluorescence microscopy, electron transmission microscopy, plasma construction and transfection, vasoreactivity study in wire myograph are all used in this study. KEY FINDINGS: We found that E-2 activated the PI3K/mTOR signaling pathway and inhibited the formation of the Atg14L-Beclin1-Vps34-Vps15 complex, thereby inhibiting autophagy. Aspirin promoted Beclin1 phosphorylation in autophagy initiation complexes and enhanced autophagy. Furthermore, E-2 treatment of HAECs resulted in endothelial dysfunction by inhibiting autophagy and leading to accumulation of α-smooth muscle actin (α-SMA). E-2 inhibited the activation of eNOS and reduced the expression of eNOS protein. In the mouse aortic vascular function test, E-2 disrupted endothelium-dependent vasodilation. An α-SMA-shRNA lentivirus eliminated the disruption to endothelium-dependent vasodilation by E-2. Aspirin inhibited α-SMA accumulation by enhancing autophagy, reversed endothelial functional impairment caused by E-2, and promoted endothelium-dependent vasodilation. SIGNIFICANCE: This study provides new evidence that E-2 inhibits autophagy and induces abnormal accumulation of α-SMA, resulting in endothelial cell dysfunction and affecting vasodilation. Aspirin can effectively restore the endothelial cell function disrupted E-2.


Assuntos
Actinas/metabolismo , Aspirina/farmacologia , Autofagia/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Estradiol/metabolismo , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Animais , Western Blotting , Células Cultivadas , Endotélio Vascular/ultraestrutura , Feminino , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Fosforilação/efeitos dos fármacos
3.
Nat Commun ; 11(1): 4607, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929081

RESUMO

Drug tolerance is the basis for acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) including osimertinib, through mechanisms that still remain unclear. Here, we show that while AXL-low expressing EGFR mutated lung cancer (EGFRmut-LC) cells are more sensitive to osimertinib than AXL-high expressing EGFRmut-LC cells, a small population emerge osimertinib tolerance. The tolerance is mediated by the increased expression and phosphorylation of insulin-like growth factor-1 receptor (IGF-1R), caused by the induction of its transcription factor FOXA1. IGF-1R maintains association with EGFR and adaptor proteins, including Gab1 and IRS1, in the presence of osimertinib and restores the survival signal. In AXL-low-expressing EGFRmut-LC cell-derived xenograft and patient-derived xenograft models, transient IGF-1R inhibition combined with continuous osimertinib treatment could eradicate tumors and prevent regrowth even after the cessation of osimertinib. These results indicate that optimal inhibition of tolerant signals combined with osimertinib may dramatically improve the outcome of EGFRmut-LC.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Acrilamidas/farmacologia , Idoso de 80 Anos ou mais , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Pirazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Chem Biol Interact ; 330: 109245, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866465

RESUMO

The calcineurin inhibitor, cyclosporin A (CsA) is one of the most common immunosuppressive agents used in organ transplantation. However, its clinical use is often limited by several unwanted effects including nephrotoxicity and hepatotoxicity. By using immunohistochemical and ELISA techniques, it was found that CsA administration causes a rapid activation of a disintegrin and metalloproteases-17 (ADAM-17), epidermal growth factor receptor (EGFR) and subsequent ERK1/2 phosphorylation in the liver and kidney of albino mice. Furthermore, this study presents mechanistic relevance of this signaling cascade involving reactive oxygen species (ROS)-mediated ADAM-17/EGFR/ERK1/2 activation as indicated by a clear reduction in ADAM-17 and EGFR activities as well as ERK1/2 phosphorylation when the animals pretreated with Polyethylene glycol-superoxide dismutase (PEG-SOD) before CsA administration. Collectively, our findings demonstrate that CsA has the ability to activate ADAM-17-mediated EGFR/ERK1/2 phosphorylation in the liver and kidney of albino mice in ROS-dependent manner. Finally, these data may support the concept of using antioxidant therapy as a valuable approach for the prevention of CsA-induced nephrotoxicity and hepatotoxicity.


Assuntos
Ciclosporina/toxicidade , Rim/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Superóxido Dismutase/farmacologia , Proteína ADAM17/metabolismo , Animais , Ciclosporina/farmacologia , Interações Medicamentosas , Receptores ErbB/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Anticancer Res ; 40(9): 4913-4919, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878779

RESUMO

BACKGROUND/AIM: A new class of imidazo[2,1-b][1,3,4]thiadiazole compounds have recently been evaluated as inhibitors of phosphorylation of focal adhesion kinase (FAK) in pancreatic cancer. FAK is overexpressed in mesothelioma and has recently emerged as an interesting target for the treatment of this disease. MATERIALS AND METHODS: Ten imidazo[2,1-b][1,3,4]thiadiazole compounds characterized by indole bicycle and a thiophene ring, were evaluated for their cytotoxic activity in two primary cell cultures of peritoneal mesothelioma, MesoII and STO cells. RESULTS: Compounds 1a and 1b showed promising antitumor activity with IC50 values in the range of 0.59 to 2.81 µM in both cell lines growing as monolayers or as spheroids. Their antiproliferative and antimigratory activity was associated with inhibition of phospho-FAK, as detected by a specific ELISA assay in STO cells. Interestingly, these compounds potentiated the antiproliferative activity of gemcitabine, and these results might be explained by the increase in the mRNA expression of the key gemcitabine transporter human equilibrative nucleoside transporter-1 (hENT-1). CONCLUSION: These promising results support further studies on new imidazo[2,1-b][1,3,4]thiadiazole compounds as well as on the role of both FAK and hENT-1 modulation in order to develop new drug combinations for peritoneal mesothelioma.


Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Transportador Equilibrativo 1 de Nucleosídeo/genética , Quinase 1 de Adesão Focal/metabolismo , Imidazóis/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Estrutura Molecular , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Fosforilação/efeitos dos fármacos , Tiadiazóis/síntese química , Tiadiazóis/química , Células Tumorais Cultivadas
6.
Nat Commun ; 11(1): 4634, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929078

RESUMO

The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder.


Assuntos
Cromatina/metabolismo , Corpo Estriado/enzimologia , Dependência de Heroína/enzimologia , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Genoma , Células HEK293 , Heroína/efeitos adversos , Humanos , Masculino , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Ratos Long-Evans , Autoadministração , Transcrição Genética/efeitos dos fármacos , Proteínas tau/metabolismo
7.
PLoS Biol ; 18(9): e3000866, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881857

RESUMO

The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. Many signal transduction pathways activate RhoA-for instance, Gαq-coupled Histamine 1 Receptor signaling via Gαq-dependent activation of RhoGEFs such as p63. Although multiple upstream regulators of RhoA have been identified, the temporal regulation of RhoA and the coordination of different upstream components in its regulation have not been well characterized. In this study, live-cell measurement of RhoA activation revealed a biphasic increase of RhoA activity upon histamine stimulation. We showed that the first and second phase of RhoA activity are dependent on p63 and Ca2+/PKC, respectively, and further identified phosphorylation of serine 240 on p115 RhoGEF by PKC to be the mechanistic link between PKC and RhoA. Combined approaches of computational modeling and quantitative measurement revealed that the second phase of RhoA activation is insensitive to rapid turning off of the receptor and is required for maintaining RhoA-mediated transcription after the termination of the receptor signaling. Thus, two divergent pathways enable both rapid activation and persistent signaling in receptor-mediated RhoA signaling via intricate temporal regulation.


Assuntos
Histamina/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores Histamínicos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
PLoS One ; 15(8): e0235634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760078

RESUMO

Otitis media, the most common disease of childhood, is characterized by extensive changes in the morphology of the middle ear cavity. This includes hyperplasia of the mucosa that lines the tympanic cavity, from a simple monolayer of squamous epithelium into a greatly thickened, respiratory-type mucosa. The processes that control this response, which is critical to otitis media pathogenesis and recovery, are incompletely understood. Given the central role of protein phosphorylation in most intracellular processes, including cell proliferation and differentiation, we screened a library of kinase inhibitors targeting members of all the major families in the kinome for their ability to influence the growth of middle ear mucosal explants in vitro. Of the 160 inhibitors, 30 were found to inhibit mucosal growth, while two inhibitors enhanced tissue proliferation. The results suggest that the regulation of infection-mediated tissue growth in the ME mucosa involves multiple cellular processes that span the kinome. While some of the pathways and processes identified have been previously implicated in mucosa hyperplasia others are novel. The results were used to generate a global model of growth regulation by kinase pathways. The potential for therapeutic applications of the results are discussed.


Assuntos
Proliferação de Células/efeitos dos fármacos , Otite Média/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Haemophilus influenzae/patogenicidade , Ensaios de Triagem em Larga Escala , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/microbiologia , Hiperplasia/patologia , Camundongos , Membrana Mucosa/efeitos dos fármacos , Membrana Mucosa/microbiologia , Membrana Mucosa/patologia , Otite Média/microbiologia , Otite Média/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Técnicas de Cultura de Tecidos
9.
Gene ; 760: 145003, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739587

RESUMO

Imiquimod (IMQ) is approved as a first-line treatment for genital warts caused by human papillomavirus (HPV) infection. However, the recurrence rate is very high. HPV E7 protein plays a critical role in HPV immune escape. However, the role of HPV11 E7 protein in genital warts recurrence during IMQ treatment is not clear. Here, we found that the expression profile of NHEK cells was obviously changed after IMQ treatment, and a large number of genes encoding cytokines and genes involved in cytokine-mediated signaling pathways and cellular metabolic signaling pathways were up- or downregulated. HPV11E7 overexpression inhibited the IMQ-induced production of of multiple chemokines and colony-stimulating factors in NHEK cells. Furthermore, we found that HPV11E7 could impair the activation of mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, our results suggested that HPV11 E7 diminishes the production of chemokines, colony-stimulating factors and other cytokines via inhibition of the MAPK signaling pathway, which suppresses the therapeutic effect of IMQ and promotes the recurrence of diseases, such as condyloma acuminatum.


Assuntos
Imiquimode/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Quimiocinas/biossíntese , Quimiocinas/genética , Quimiocinas/metabolismo , Fatores Estimuladores de Colônias/biossíntese , Fatores Estimuladores de Colônias/metabolismo , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Papillomavirus Humano 11/metabolismo , Humanos , Imiquimode/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Life Sci ; 258: 118175, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750436

RESUMO

AIMS: Human podocytes (hPC) play an important role in the pathogenesis of renal diseases. In this context, angiotensin II (Ang II) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) play a crucial role in podocyte injury. Recently, transmembrane protein (Tmem) 63c, a member of the Tmem-family was found to be expressed in kidney and associated with podocyte function. In this study, we analysed the expression regulation and functional impact of Tmem63c on cell viability and apoptosis in hPC in the context of Ang II activation. MATERIALS AND METHODS: Expression of Tmem63c in response to Ang II and the NFκB inhibitor Bay 11-7082 was analysed by Real-Time PCR and Western blotting. Cellular functions were determined by functional assays. KEY FINDINGS: We found Ang II to induce Tmem63c expression in hPC in a concentration-dependent manner. Inhibition of NFκB by Bay 11-7082 reduced basal as well as Ang II-induced Tmem63c expression. SiRNA-mediated down-regulation of Tmem63c diminished cell viability and protein kinase B (Akt) signaling and increased cell apoptosis of resting as well as Ang II-activated hPC. SIGNIFICANCE: These data show that Ang II induced the expression of Tmem63c in hPC, possibly via NFκB-dependent mechanisms. Moreover, down-regulation of Tmem63c was associated with reduced cell viability, indicating Tmem63c to be a potential pro-survival factor in hPC.


Assuntos
Angiotensina II/farmacologia , Canais de Cálcio/metabolismo , Podócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 205: 111146, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827965

RESUMO

Cadmium (Cd) exposure in environment is associated with development of esophageal cancer. However, the mechanisms of Cd-induced carcinogenesis are still not been fully cleared, and the present study aimed to explore the possible etiological mechanism of Cd-induced esophageal cancer. Human esophageal epithelial cell lines (HET-1A and KYSE450) were treated with CdCl2 at 0.05 mg/l for 12, 24 h, and the then the apoptosis were detected using flow cytometry with annexin-V-FITC/PI staining. Results showed that apoptosis of treatment groups was significantly inhibited, and decreased reactive oxygen species (ROS) production played a key role in the inhibitory effects by upregulating Bcl-2 and downregulating Caspase-3/9. The relief of oxidative stress during Cd exposure was actively promoted by the increased nicotinamide adenine dinucleotide phosphoric acid and glutathione levels. To investigate the causes of enhanced intracellular antioxidant capacity, the activity of pyruvate kinase (PK), a key enzyme of glycolysis, was detected. Our results showed that PK activity was inhibited, suggesting that glycolysis process was blocked which promoted more intermediate metabolites of glycolysis to be used for reduced nicotinamide adenine dinucleotide phosphoric acid (NADPH) or other antioxidants synthesis. PK activity was closely correlated with phosphorylation of pyruvate kinase M2 (PKM2), and a highly negative correlation (correlation coefficients: -0.835, p < 0.05) between them was found. Western blotting showed the overphosphorylation of PKM2 in Cd-exposed cells, resulting from increased expression of cyclin-dependent kinases 6 (CDK6). These results suggested a possible mechanism of carcinogenic: Cd-induced upregulation of CDK6 in esophageal cell lines caused PKM2 overphosphorylation inhibiting PK activity, thereby shunting glucose-derived carbon into the pentose phosphate pathway and promoting the production of NADPH and reduced glutathione (GSH) to neutralize ROS, which finally results in the inhibited apoptosis.


Assuntos
Cádmio/toxicidade , Quinase 6 Dependente de Ciclina/metabolismo , Apoptose/efeitos dos fármacos , Cádmio/metabolismo , Caspase 3 , Neoplasias Esofágicas , Glicólise/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2 , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
PLoS One ; 15(8): e0237845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813721

RESUMO

Aluminum (Al3+) toxicity is one of the most important limitations to agricultural production worldwide. The overall response of plants to Al3+ stress has been documented, but the contribution of protein phosphorylation to Al3+ detoxicity and tolerance in plants is unclear. Using a combination of tandem mass tag (TMT) labeling, immobilized metal affinity chromatography (IMAC) enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS), Al3+-induced phosphoproteomic changes in roots of Tamba black soybean (TBS) were investigated in this study. The Data collected in this study are available via ProteomeXchange with the identifier PXD019807. After the Al3+ treatment, 189 proteins harboring 278 phosphosites were significantly changed (fold change > 1.2 or < 0.83, p < 0.05), with 88 upregulated, 96 downregulated and 5 up-/downregulated. Enrichment and protein interaction analyses revealed that differentially phosphorylated proteins (DPPs) under the Al3+ treatment were mainly related to G-protein-mediated signaling, transcription and translation, transporters and carbohydrate metabolism. Particularly, DPPs associated with root growth inhibition or citric acid synthesis were identified. The results of this study provide novel insights into the molecular mechanisms of TBS post-translational modifications in response to Al3+ stress.


Assuntos
Alumínio/toxicidade , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Soja/metabolismo , Citratos/metabolismo , Fosforilação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Soja/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcrição Genética/efeitos dos fármacos
13.
Nature ; 584(7820): 252-256, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760004

RESUMO

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Ocitocina/metabolismo , Comportamento Social , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos
14.
Int J Nanomedicine ; 15: 5561-5571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801704

RESUMO

Purpose: Platinum/paclitaxel-based chemotherapy is the strategy for ovarian cancer, but chemoresistance, inherent or acquired, occurs and hinders therapy. Therefore, further understanding of the mechanisms of drug resistance and adoption of novel therapeutic strategies are urgently needed. Methods: In this study, we report that sphingosine-1-phosphate receptor-1 (S1PR1)-mediated chemoresistance for ovarian cancer. Then we developed nanoparticles with a hydrophilic PEG2000 chain and a hydrophobic DSPE and biodegradable CaP (calcium ions and phosphate ions) shell with pH sensitivity as a delivery system (CaP-NPs) to carry BAF312, a selective antagonist of S1PR1 (BAF312@CaP-NPs), to overcome the cisplatin (DDP) resistance of the ovarian cancer cell line SKOV3DR. Results: We found that S1PR1 affected acquired chemoresistance in ovarian cancer by increasing the phosphorylated-signal transduction and activators of transcription 3 (P-STAT3) level. The mean size and zeta potential of BAF312@CaP-NPs were 116 ± 4.341 nm and -9.67 ± 0.935 mV, respectively. The incorporation efficiency for BAF312 in the CaP-NPs was 76.1%. The small size of the nanoparticles elevated their enrichment in the tumor, and the degradable CaP shell with smart pH sensitivity of the BAF312@CaP-NPs ensured the release of BAF312 in the acidic tumor niche. BAF312@CaP-NPs caused substantial cytotoxicity in DDP-resistant ovarian cancer cells by downregulating S1PR1 and P-STAT3 levels. Conclusion: We found that BAF312@CaP-NPs act as an effective and selective delivery system for overcoming S1PR1-mediated chemoresistance in ovarian carcinoma by inhibiting S1PR1 and P-STAT3.


Assuntos
Azetidinas/administração & dosagem , Compostos de Benzil/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Azetidinas/farmacocinética , Compostos de Benzil/farmacocinética , Fosfatos de Cálcio/química , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Polietilenoglicóis/química , Fator de Transcrição STAT3/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Nat Commun ; 11(1): 4015, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782246

RESUMO

Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Fosforilação/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
PLoS One ; 15(8): e0231806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817622

RESUMO

The cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. PKA substrate phosphorylation was decreased in Akita ACMs, as compared to wild type, and unresponsive to the effects of insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Insulina/metabolismo , Insulina/farmacologia , Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos
17.
PLoS Genet ; 16(7): e1008908, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639995

RESUMO

The human fungal pathogen Candida albicans is constantly exposed to environmental challenges impacting the cell wall. Signaling pathways coordinate stress adaptation and are essential for commensalism and virulence. The transcription factors Sko1, Cas5, and Rlm1 control the response to cell wall stress caused by the antifungal drug caspofungin. Here, we expand the Sko1 and Rlm1 transcriptional circuit and demonstrate that Rlm1 activates Sko1 cell wall stress signaling. Caspofungin-induced transcription of SKO1 and several Sko1-dependent cell wall integrity genes are attenuated in an rlm1Δ/Δ mutant strain when compared to the treated wild-type strain but not in a cas5Δ/Δ mutant strain. Genome-wide chromatin immunoprecipitation (ChIP-seq) results revealed numerous Sko1 and Rlm1 directly bound target genes in the presence of caspofungin that were undetected in previous gene expression studies. Notable targets include genes involved in cell wall integrity, osmolarity, and cellular aggregation, as well as several uncharacterized genes. Interestingly, we found that Rlm1 does not bind to the upstream intergenic region of SKO1 in the presence of caspofungin, indicating that Rlm1 indirectly controls caspofungin-induced SKO1 transcription. In addition, we discovered that caspofungin-induced SKO1 transcription occurs through self-activation. Based on our ChIP-seq data, we also discovered an Rlm1 consensus motif unique to C. albicans. For Sko1, we found a consensus motif similar to the known Sko1 motif for Saccharomyces cerevisiae. Growth assays showed that SKO1 overexpression suppressed caspofungin hypersensitivity in an rlm1Δ/Δ mutant strain. In addition, overexpression of the glycerol phosphatase, RHR2, suppressed caspofungin hypersensitivity specifically in a sko1Δ/Δ mutant strain. Our findings link the Sko1 and Rlm1 signaling pathways, identify new biological roles for Sko1 and Rlm1, and highlight the complex dynamics underlying cell wall signaling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/efeitos dos fármacos , Caspofungina/farmacologia , Proteínas de Domínio MADS/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/patogenicidade , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Fosforilação/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
18.
J Toxicol Sci ; 45(7): 401-409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612008

RESUMO

Dihydropyrazines (DHPs), including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are glycation products that are spontaneously generated in vivo and ingested via food. DHPs generate various radicals and reactive oxygen species (ROS), which can induce the expression of several antioxidant genes in HepG2 cells. However, detailed information on DHP-response pathways remains elusive. To address this issue, we investigated the effects of DHP-3 on the nuclear factor-κB (NF-κB) pathway, a ROS-sensitive signaling pathway. In lipopolysaccharide-stimulated (LPS-stimulated) HepG2 cells, DHP-3 decreased phosphorylation levels of inhibitor of NF-κB (IκB) and NF-κB p65, and nuclear translocation of NF-κB p65. In addition, DHP-3 reduced the expression of Toll-like receptor 4 (TLR4) and the adaptor protein myeloid differentiation primary response gene 88 (MyD88). Moreover, DHP-3 suppressed the mRNA expression of tumor necrosis factor-alpha (TNFα), and interleukin-1 beta (IL-1ß). Taken together, these results suggest that DHP-3 acts as a negative regulator of the TLR4-MyD88-mediated NF-κB signaling pathway.


Assuntos
Dicarbetoxi-Di-Hidrocolidina/análogos & derivados , Lipopolissacarídeos/efeitos adversos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Dicarbetoxi-Di-Hidrocolidina/efeitos adversos , Dicarbetoxi-Di-Hidrocolidina/toxicidade , Produtos Finais de Glicação Avançada , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Anticancer Res ; 40(8): 4491-4504, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727779

RESUMO

BACKGROUND: Peroxiredoxin II (PRDX2) performs unique roles in cells. It can reduce peroxides through cysteine residues, and helps prevent the effects of oxidative stress on cells. It is closely related to the occurrence and development of various diseases, especially alcoholic liver injury and even liver cancer. The metabolism of alcohol in hepatocytes leads to the increase in the levels of reactive oxygen species (ROS), oxidative stress, injury, and apoptosis. Therefore, this study focused on the investigating the protection conferred by PRDX2 against alcohol-induced apoptosis of hepatocytes. MATERIALS AND METHODS: PRDX2 inhibition of alcohol-induced apoptosis in L02 hepatocytes was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, fluorescence microscopy, flow cytometry, western blotting and hematoxylin and eosin staining. RESULTS: The results showed that the levels of reactive oxygen species, protein kinase B, ß-catenin, B-cell lymphoma-2 (BCL2), BCL-XL, BCL2-associated X, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in PRDX2-silenced cells were increased significantly after the treatment of cells with ethanol. Similar results were obtained in an in vivo Prdx2-knockout mouse model of alcoholic liver injury. Therefore, PRDX2 may regulate the phosphorylation of the AKT signal protein by eliminating reactive oxygen species from cells, and it inhibits the downstream mitochondria-dependent apoptosis pathway, and, thereby, the apoptosis of cells. CONCLUSION: Thus, PRDX2 may be a potential molecular target for the prevention and treatment of alcoholic liver injury.


Assuntos
Etanol/efeitos adversos , Hepatócitos/citologia , Peroxirredoxinas/genética , Transdução de Sinais , Apoptose , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
20.
PLoS One ; 15(6): e0235360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603346

RESUMO

The sodium (Na+)-chloride cotransporter (NCC) expressed in the distal convoluted tubule (DCT) is a key molecule regulating urinary Na+ and potassium (K+) excretion. We previously reported that high-K+ load rapidly dephosphorylated NCC and promoted urinary K+ excretion in mouse kidneys. This effect was inhibited by calcineurin (CaN) and calmodulin inhibitors. However, the detailed mechanism through which high-K+ signal results in CaN activation remains unknown. We used Flp-In NCC HEK293 cells and mice to evaluate NCC phosphorylation. We analyzed intracellular Ca2+ concentration ([Ca2+]in) using live cell Ca2+ imaging in HEK293 cells. We confirmed that high-K+-induced NCC dephosphorylation was not observed without CaN using Flp-In NCC HEK29 cells. Extracellular Ca2+ reduction with a Ca2+ chelator inhibited high-K+-induced increase in [Ca2+]in and NCC dephosphorylation. We focused on Na+/Ca2+ exchanger (NCX) 1, a bidirectional regulator of cytosolic Ca2+ expressed in DCT. We identified that NCX1 suppression with a specific inhibitor (SEA0400) or siRNA knockdown inhibited K+-induced increase in [Ca2+]in and NCC dephosphorylation. In a mouse study, SEA0400 treatment inhibited K+-induced NCC dephosphorylation. SEA0400 reduced urinary K+ excretion and induced hyperkalemia. Here, we identified NCX1 as a key molecule in urinary K+ excretion promoted by CaN activation and NCC dephosphorylation in response to K+ load.


Assuntos
Hiperpotassemia/metabolismo , Potássio , Trocador de Sódio e Cálcio , Compostos de Anilina/farmacologia , Animais , Células HEK293 , Humanos , Túbulos Renais Distais/metabolismo , Camundongos , Éteres Fenílicos/farmacologia , Fosforilação/efeitos dos fármacos , Potássio/metabolismo , Potássio/urina , Sódio/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA