Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
Bioresour Technol ; 352: 127069, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367603

RESUMO

Microalgae biomass is a potential feedstock for biodiesel, animal feed, biofertilizer, and other products such as bioactive compounds. Most of the reported studies describe microalgae as a green process, however, the impacts associated with its growth media and cultivation have seldom been studied. With an aim to analyze the environmental impacts, the present study compares the life-cycle assessment of microalgal cultivation in two growth media. The data used was obtained from the experimental sets where microalgaeC. pyrenoidosawas cultivated in BG11 (control or SC-1) and silicone oil nanoemulsion (previously developed medium or SC-2) on a lab scale. The environmental impacts were evaluated using the ReCiPe midpoint and endpoint method using Sima Pro 9.0 software based on a "cradle-to-gate" approach. The total environmental score for 1 kg microalgal biomass production was 99.25Pt in SC-1, and 53.39Ptin SC-2, concluding greater environmental burden by SC-1. The photobioreactor construction material along with the operation led to maximum emissions, human toxicity, and resource depletion. In summary, the newly developed nanoemulsion medium was found to be eco-friendly that has the potential to minimize the usage of conventional nutrients and resources.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Meios de Cultura , Fotobiorreatores
2.
Bioresour Technol ; 354: 127173, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35452822

RESUMO

The biomass of microalgae and cyanobacteria yields a variety of products. Outdoor pilot plant trials typically grow a single species at circumneutral pH and provide CO2 by gas sparging. Here a cyanobacterial consortium was grown at high pH (beyond 11) and high dissolved carbonate concentrations (0.5 M) in an outdoor 1,150 L tubular photobioreactor for 130 days in Calgary, Canada. The aim was to assess the productivity and robustness of the consortium. Importantly, the system was designed to enable future integration of air capture of CO2. Productivity was between 3.1 and 5.8 g ash-free dry weight per square metre per day, depending on biomass density and month. 16S rRNA amplicon sequencing showed that cyanobacterium Candidatus "Phormidium alkaliphilum" made up 80% of the consortium. The consortium displayed robust growth and adapted to environmental conditions. Bicarbonate uptake pushed medium pH past 11, demonstrating the ability to achieve CO2 delivery by air capture.


Assuntos
Cianobactérias , Microalgas , Biomassa , Dióxido de Carbono , Cianobactérias/genética , Concentração de Íons de Hidrogênio , Fotobiorreatores , RNA Ribossômico 16S/genética
3.
Bioresour Technol ; 354: 127175, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35452826

RESUMO

Sodium acetate (NaAc) supplementation, often used to increase the growth of H. pluvialis under low light, but promotes cell death under high light; its underlying reasons and solutions are rarely reported. Here, NaAc supplementation was found to rapidly increase pondus hydrogenii (pH) of culture solution, elevate reactive oxygen species (ROS), and cause cell death immediately under higher light. Adjusting pH of NaAc supplemented culture solution with 10 mM Tris-HCl once before high light significantly reduced cell mortality and increased astaxanthin yield. When verified in a 5-litre photobioreactor, this novel method produced over 4.0% of dry weight (DW) astaxanthin within only 8-10 days. In summary, this study explained reasons underlying NaAc supplementation-induced cell death and provided an rapid, easy and effective method to produce high amount of astaxanthin in H. pluvialis.


Assuntos
Clorofíceas , Clorófitas , Clorofíceas/metabolismo , Clorófitas/metabolismo , Fotobiorreatores , Xantofilas/metabolismo
4.
Viruses ; 14(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35336873

RESUMO

Investigation of virus-induced microalgal host lysis and the associated infection dynamics typically requires sampling of infected cultures at multiple timepoints, visually monitoring the state of infected cells, or determining virus titration within the culture media. Such approaches require intensive effort and are prone to low sensitivity and high error rates. Furthermore, natural physiological variations can become magnified by poor environmental control, which is often compounded by variability in virus stock efficacy and relatively long infection cycles. We introduce a new method that closely monitors host health and integrity to learn about the infection strategy of Chloroviruses. Our approach combines aspects of spectrometry, plaque assays, and infection dose assessment to monitor algal cells under conditions more representative of the natural environment. Our automated method exploits the continuous monitoring of infected microalgae cultures in highly controlled lab-scale photobioreactors that provide the opportunity for environmental control, technical replication, and intensive culture monitoring without external intervention or culture disruption. This approach has enabled the development of a protocol to investigate molecular signalling impacting the virus life cycle and particle release, accurate determination of virus lysis time under multiple environmental conditions, and assessment of the functional diversity of multiple virus isolates.


Assuntos
Microalgas , Viroses , Meios de Cultura , Humanos , Fotobiorreatores
5.
Sci Total Environ ; 827: 154262, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35271930

RESUMO

This work evaluated, for the first time, the performance of an integral microalgae-based domestic wastewater treatment system composed of an anoxic reactor and an aerobic photobioreactor, coupled with an anaerobic digester for converting the produced algal-bacterial biomass into biogas, with regards to the removal of 16 contaminants of emerging concern (CECs): penicillin G, tetracycline, enrofloxacin, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen, diclofenac, progesterone, carbamazepine, triclosan and propylparaben. The influence of the hydraulic retention time (HRT) in the anoxic-aerobic bioreactors (4 and 2.5 days) and in the anaerobic digester (30 and 10 days) on the fate of these CECs was investigated. The most biodegradable contaminants (removal efficiency >80% regardless of HRT) were tetracycline, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen and propylparaben (degraded predominantly in the anoxic-aerobic bioreactors), and tetracycline, sulfamethoxazole, tylosin, trimethoprim and naproxen (degraded predominantly in the anaerobic reactor). The anoxic-aerobic bioreactors provided removal of at least 48% for all CECs tested. The most recalcitrant contaminants in the anaerobic reactor, which were not removed at any of the HRT tested, were enrofloxacin, ciprofloxacin, progesterone and propylparaben.


Assuntos
Fotobiorreatores , Eliminação de Resíduos Líquidos , Acetaminofen , Anaerobiose , Bactérias Aeróbias , Reatores Biológicos , Ciprofloxacina , Dexametasona , Enrofloxacina , Ibuprofeno , Naproxeno , Progesterona , Esgotos , Sulfametoxazol , Tetraciclinas , Trimetoprima , Tilosina
6.
Bioprocess Biosyst Eng ; 45(5): 931-941, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235034

RESUMO

Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion. The total production of biomass, and thus production of e.g. bioactive substances, within the bioreactor volume highly depends on the available cultivation surface. To achieve an enlargement of surface area for biofilm photobioreactors, biocarriers can be implemented in the cultivation. Thereby, material properties and design of the biocarriers are important for initial biofilm formation and growth of cyanobacteria. In this study, special biocarriers were designed and additively manufactured to investigate different polymeric materials and surface designs regarding biofilm adhesion of the terrestrial cyanobacterium Nostoc flagelliforme (CCAP 1453/33). Properties of 3D-printed materials were characterized by determination of wettability, surface roughness, and density. To evaluate the influence of wettability on biofilm formation, material properties were specifically modified by gas-phase fluorination and biofilm formation was analyzed on biocarriers with basic and optimized geometry in shaking flask cultivation. We found that different polymeric materials revealed no significant differences in wettability and with identical surface design no significant effect on biomass adhesion was observed. However, materials treated with fluorination as well as optimized biocarrier design showed improved wettability and an increase in biomass adhesion per biocarrier surface.


Assuntos
Cianobactérias , Fotobiorreatores , Biofilmes , Biomassa , Fotobiorreatores/microbiologia , Propriedades de Superfície , Molhabilidade
7.
Bioprocess Biosyst Eng ; 45(5): 791-813, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303143

RESUMO

Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.


Assuntos
Cianobactérias , Microalgas , Biomassa , Dióxido de Carbono , Humanos , Fotobiorreatores/microbiologia
8.
Water Res ; 216: 118327, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339970

RESUMO

To make purple phototrophic bacteria (PPB)-based technologies a reality for resource recovery, research must be demonstrated outdoors, using scaled reactors. In this study, a 10 m long PPB-enriched flat plate photobioreactor (FPPBR) with a volume of 0.95 m3 was operated for 253 days, fed with poultry processing wastewater. Different operational strategies were tested, including varying influent types, retention times, feeding strategies, and anaerobic/aerobic conditions in a novel mixed metabolic mode concept. The overall results show that regardless of the fermented wastewater fed (raw or after solid removal via dissolved air flotation) and the varying environmental conditions (e.g., light exposure and temperatures), the FPPBR provided effective volatile fatty acids (VFAs), N, and P removals (average efficiencies of >90%, 34-77%, and 28-45%, respectively). The removal of N and P was limited by the availability of biodegradable COD. Biomass (C, N and P) could be harvested at ∼90% VS/TS ratio, 58% crude protein content and a suitable amino acid profile for potential feed applications. During fully anaerobic operation with semicontinuous/day-only feeding, the FPPBR showed biomass productivities between 25 and 84 g VS m-2 d-1 (high due to solid influx; the productivities estimated from COD removal rates were 6.0-24 g VS•m-2•d-1 (conservative values)), and soluble COD removal rates of up to 1.0 g•L-1•d-1 (overall average of 0.34 ± 0.16 g•L-1•d-1). Under these conditions, the relative abundance of PPB in the harvested biomass was up to 56%. A minimum overall HRT of 2-2.4 d (1.0-1.2 d when only fed during the day) is recommended to avoid PPB washout, assuming no biomass retention. A combined daily-illuminated-anaerobic/night-aerobic operation (supplying air during night-time) exploiting photoheterotrophy during the day and aerobic chemoheterotrophy of the same bacteria at night improved the overall removal performance, avoiding VFA accumulation during the night. However, while enabling enhanced treatment, this resulted in a lower relative abundance of PPB and reduced biomass productivities, highlighting the need to balance resource recovery and treatment goals.


Assuntos
Fotobiorreatores , Proteobactérias , Bactérias , Biomassa , Reatores Biológicos , Águas Residuárias
9.
Mar Drugs ; 20(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323473

RESUMO

A novel strain of Coelastrella terrestris (Chlorophyta) was collected from red mucilage in a glacier foreland in Iceland. Its morphology showed characteristic single, ellipsoidal cells with apical wart-like wall thickenings. Physiological characterization revealed the presence of the rare keto-carotenoid adonixanthin, as well as high levels of unsaturated fatty acids of up to 85%. Initial screening experiments with different carbon sources for accelerated mixotrophic biomass growth were done. Consequently, a scale up to 1.25 L stirred photobioreactor cultivations yielded a maximum of 1.96 mg·L-1 adonixanthin in free and esterified forms. It could be shown that supplementing acetate to the medium increased the volumetric productivity after entering the nitrogen limitation phase compared to autotrophic control cultures. This study describes a promising way of biotechnological adonixanthin production using Coelastrella terrestris.


Assuntos
Carotenoides/metabolismo , Clorofíceas/metabolismo , Microalgas/metabolismo , Acetatos/metabolismo , Clorofíceas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Microalgas/crescimento & desenvolvimento , Nitratos/análise , Fotobiorreatores
10.
Bioresour Technol ; 350: 126920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240273

RESUMO

The development of photobioreactor is important for sustainable production of renewable fuels, wastewater treatment and CO2 fixation. For the design and scale-up of a photobioreactor, CFD can be used as an indispensable tool. The present study reviews the recent status of computational flow modelling of various types of photobioreactors, involving fluid dynamics, light transport, and algal growth kinetics. An integrated modelling approach of hydrodynamics, light intensity, mass transfer, and biokinetics in photobioreactor is discussed further. Also, this reviews intensified system to improve the mixing, and light intensity of photobioreactors. Finally, the prospects and challenges of CFD modelling in photobioreactors are discussed. Multi-scale modelling approach and development of low-cost efficient computational framework are the areas to be considered for modelling of photobioreactor in near future. In addition, it is necessary to use process intensification techniques for photobioreactors for improving their hydrodynamics, mixing and mass transfer performances, and algal growth productivity.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Hidrodinâmica , Cinética
11.
Bioresour Technol ; 350: 126922, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240277

RESUMO

Haslea ostrearia is a marine diatom known to produce and excrete the marenine blue pigment. Its controlled, continuous and intensified cultivation remains a challenge. Thus, a submerged membrane photobioreactor (MPBR) was implemented in order to simultaneously and continuously cultivate H. ostrearia and extract marennine. The MPBR was compared with a similar air-lift photobioreactor (without membrane), both working at a dilution rate equal to 0.1, 0.3 and 0.5 d-1. Contrary to the air-lift photobioreactor, the MPBR successfully operated at high dilution rate without biomass washout. The MPBR allowed continuously recovering marennine and reaching high cell density (555 ± 25 × 106 cells L-1 at D = 0.1 d-1), marennine concentration (36.00 ± 0.02 mg L-1 at D = 0.1 d-1) and marenine productivity (7.20 ± 0.01 mg L-1 d-1 at D = 0.5 d-1).


Assuntos
Diatomáceas , Biomassa , Fenóis , Fotobiorreatores , Pigmentação
12.
J Biotechnol ; 348: 47-54, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35331727

RESUMO

Fucoxanthin is one of the most vital pigments during photosynthesis and is extracted from golden-brown micro-algae such as Tisochrysis lutea. The present study investigates the constant volumetric mass transfer coefficient (kLa), for the first time as the scale-up strategy to change the scale from 500 mL to 2-L cultivation flasks, and 5-L bubble column photobioreactor for fucoxanthin production in T. lutea. The cell density and fucoxanthin content were improved because of through fine aeration, nutrients, and light availability by successful laboratory scale up. Fucoxanthin productivity obtained 21.20, 22.99, and 24.96 mg L-1day-1 for 500 mL, 2-L bottle, and 5-L bubble column photobioreactor, respectively. In addition, the biomass productivity enhanced from 267.5 to 275 and 284 mg L-1day-1 in three mentioned scales, respectively. Eventually, the scale up process for the production of fucoxanthin was succeeded from 500 mL bottle to 5-L photobioreactor using constant (kLa) under laboratory conditions.


Assuntos
Haptófitas , Microalgas , Biomassa , Fotobiorreatores , Xantofilas
13.
Appl Microbiol Biotechnol ; 106(5-6): 2235-2248, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166894

RESUMO

As large-scale outdoor production cannot be done in complete containment, cultures are (more) open for bacteria, which may affect the productivity and stability of the algae production process. We investigated the bacterial diversity in two indoor reactors and four pilot-scale outdoor reactors for the production of Nannochloropsis sp. CCAP211/78 spanning four months of operation from July to October. Illumina sequencing of 16S rRNA gene amplicons demonstrated that a wide variety of bacteria were present in all reactor types, with predominance of Bacteroidetes and Alphaproteobacteria. Bacterial communities were significantly different between all reactor types (except between the horizontal tubular reactor and the vertical tubular reactor) and also between runs in each reactor. Bacteria common to the majority of samples included one member of the Saprospiraceae family and one of the NS11-12_marine group (both Bacteroidetes). Hierarchical clustering analysis revealed two phases during the cultivation period separated by a major shift in bacterial community composition in the horizontal tubular reactor, the vertical tubular reactor and the raceway pond with a strong decrease of the Saprospiraceae and NS11-12_marine group that initially dominated the bacterial communities. Furthermore, we observed a less consistent pattern of bacterial taxa appearing in different reactors and runs, most of which belonging to the classes Deltaproteobacteria and Flavobacteriia. In addition, canonical correspondence analysis showed that the bacterial community composition was significantly correlated with the nitrate concentration. This study contributes to our understanding of bacterial diversity and composition in different types of outdoor reactors exposed to a range of dynamic biotic and abiotic factors. Key points • Reactor types had significantly different bacterial communities except HT and VT • The inoculum source and physiochemical factors together affect bacterial community • The bacterial family Saprospiraceae is positively correlated to microalgal growth.


Assuntos
Microalgas , Estramenópilas , Bactérias/genética , Reatores Biológicos/microbiologia , Fotobiorreatores , RNA Ribossômico 16S/genética , Estramenópilas/genética
14.
Bioengineered ; 13(2): 4537-4556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132911

RESUMO

This work is a systematic review that reports state-of-the-art in removal of pharmaceuticals from water and wastewater by photosynthetic organisms in photobioreactors. The PRISMA protocol-based review of the most recent literature data from the last 10 years (2011-2021) was reported. Articles were searched by the combination of the following keywords: photobioreactor, pharmaceuticals, drugs, hormones, antibiotics, biodegradation, removal, wastewater treatment. The review focuses on original research papers (not reviews), collected in 3 scientific databases: Scopus, Web of Knowledge, PubMed. The review considered the following factors: type of microorganisms, type of micropollutants removed, degradation efficiency and associated products, types of photosynthetic organisms and photobioreactor types. The conclusion from the systematic review is that the main factors that limit widespread pharmaceuticals removal in photobioreactors are high costs and the problem of low efficiency related with low concentrations of pharmaceuticals. The review indicated a need for further research in this area due to increasing amounts of metabolites in the food chain, such as p-aminophenol and estrone, which can cause harm to people and ichthyofauna. Pharmaceuticals removal can be improved by adapting the type of microorganism used to the type of contamination and implementing photoperiods, which increase the removal efficiency of e.g. sulfamethazine by up to 28%. In the future, it is necessary to search for new solutions in terms of the construction of photobioreactors, as well as for more effective species in terms of pharmaceuticals biodegradation that can survive the competition with other strains during water and wastewater treatment.


Assuntos
Biodegradação Ambiental , Preparações Farmacêuticas , Fotobiorreatores , Poluentes Químicos da Água , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
15.
Bioresour Technol ; 349: 126858, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183729

RESUMO

There has been increasing attention in recent years on the use of photobioreactors for various biotechnological applications, especially for the cultivation of microalgae. Photobioreactors-based production of photosynthetic microorganisms furnish several advantages as minimising toxicity and providing improved conditions. However, the designing and scaling-up of photobioreactors (PBRs) remain a challenge. Due to huge capital investment and operating cost, there is a deficiency of suitable PBRs for development of photosynthetic microorganisms on large-scale. It is, therefore, highly desirable to understand the current state-of-the-art PBRs, their advantages and limitations so as to classify different PBRs as per their most suited applications. This review provides a holistic overview of the discreet features of diverse PBR designs and their purpose in microalgae growth and biohydrogen production and also summarizes the recent development in use of hybrid PBRs to increase their working efficiency and overall economics of their operation for the production of value-added products.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Biotecnologia , Fotossíntese
16.
BMC Res Notes ; 15(1): 54, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168633

RESUMO

OBJECTIVE: Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. RESULTS: A unique reactor type, called "mesh ultra-thin layer photobioreactor" was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L-1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management.


Assuntos
Fotobiorreatores , Scenedesmus , Biomassa , Contagem de Células , Análise Espectral
17.
Bioresour Technol ; 348: 126806, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35131464

RESUMO

Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6-35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.


Assuntos
Fotobiorreatores , Proteobactérias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Fotobiorreatores/microbiologia , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água
18.
Sci Total Environ ; 823: 153667, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131253

RESUMO

Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 µgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.


Assuntos
Diatomáceas , Microalgas , Biocombustíveis , Biomassa , Fotobiorreatores , Plásticos
19.
Biotechnol J ; 17(5): e2100659, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35068046

RESUMO

Closed photobioreactors reach temperatures that reduce microalgal production or even cause culture collapses. Cooling can maintain the temperature within tolerable boundaries, but cooling is energy-intensive and expensive. Thermotolerant microalgal strains can reduce dependence on such cooling. In this study, adaptive laboratory evolution was performed for 390 days to further increase the maximal tolerable temperature for the already thermotolerant microalgae Picochlorum sp. (BPE23). The parental wild-type strain of Picochlorum sp. (BPE23) exhibited a maximum mid-day growth temperature of 47.5°C, whereas the isolated clones grew up to 49°C. At a lower temperature of 40°C, the growth rate and absorption cross-sectional area were similar for the wild-type strain and the evolved clones. Interestingly, the clones showed a 46% increase in cell volume compared to the wild-type strain. The evolved clones with an expanded upper-temperature boundary can be applied for broader temperature control of 1.5°C, without trade-off effects at lower temperatures.


Assuntos
Clorófitas , Microalgas , Termotolerância , Biomassa , Microalgas/genética , Fotobiorreatores , Temperatura
20.
Nat Commun ; 13(1): 541, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087023

RESUMO

Algal biofuel is regarded as one of the ultimate solutions for renewable energy, but its commercialization is hindered by growth limitations caused by mutual shading and high harvest costs. We overcome these challenges by advancing machine learning to inform the design of a semi-continuous algal cultivation (SAC) to sustain optimal cell growth and minimize mutual shading. An aggregation-based sedimentation (ABS) strategy is then designed to achieve low-cost biomass harvesting and economical SAC. The ABS is achieved by engineering a fast-growing strain, Synechococcus elongatus UTEX 2973, to produce limonene, which increases cyanobacterial cell surface hydrophobicity and enables efficient cell aggregation and sedimentation. SAC unleashes cyanobacterial growth potential with 0.1 g/L/hour biomass productivity and 0.2 mg/L/hour limonene productivity over a sustained period in photobioreactors. Scaling-up the SAC with an outdoor pond system achieves a biomass yield of 43.3 g/m2/day, bringing the minimum biomass selling price down to approximately $281 per ton.


Assuntos
Biocombustíveis , Aprendizado de Máquina , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biologia Sintética , Biomassa , Biotecnologia , Microbiologia Industrial , Engenharia Metabólica , Microalgas/genética , Fotobiorreatores , Lagoas , Energia Renovável , Synechococcus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...