Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.122
Filtrar
1.
Nat Commun ; 12(1): 679, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514722

RESUMO

Diverse algae of the red lineage possess chlorophyll a-binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a Nannochloropsis oceanica LHCR mutant, named hlr1, which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Ligação à Clorofila/metabolismo , Luz/efeitos adversos , Complexo de Proteína do Fotossistema I/metabolismo , Estramenópilas/fisiologia , Adaptação Fisiológica/efeitos da radiação , Clorofila A/metabolismo , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/isolamento & purificação , Mutação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Estramenópilas/efeitos da radiação
2.
Gene ; 766: 145142, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911027

RESUMO

Rootstocks are among the primary factors that influence fruit yield and quality as well as melon development. To understand the differences in the molecular mechanisms and gene expression networks of fruit development between grafted and nongrafted plants in oriental melon, we performed a comprehensive analysis of the transcriptome and proteome dynamic gene/protein expression profiles during fruit development in oriental melon (Cucumis melo L. var. makuwa). Using pairwise comparisons between grafted and nongrafted samples by transcriptome analysis, we identified a large number of candidate genes involved in hormonal signaling pathways, transcription factors, resistance-related biosynthetic pathways and photosynthesis-related metabolic pathways. Many transcription factor-encoded genes were significantly more strongly expressed in the grafted samples, for example, AP2/ERF, C2H2, MYB, bHLH, and AUX/IAA, which are well-known participants in the regulation of developmental processes and hormonal signaling metabolism. Some differentially expressed genes (DEGs) were enriched in flavonoid biosynthesis and phenylpropanoid biosynthesis and determined plant resistance. In addition, some differentially expressed proteins (DEPs) were enriched in photosynthesis-related pathways, which could improve fruit quality and yield. Moreover, through weighted gene coexpression network analyses, we identified modules of coexpressed genes and hub genes specifically related to grafting for different fruit developmental stages. The results suggested that graft-related modules and hub genes were primarily associated with photosynthate metabolism and hormonal signaling pathways. The results obtained in this study provide a valuable resource for dissecting the role of candidate genes governing graft-related metabolism in oriental melon fruit, suggesting an interesting correlation with the effects of rootstock on fruit development.


Assuntos
Cucumis melo/genética , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Fotossíntese/genética , Raízes de Plantas/genética , RNA-Seq/métodos , Transdução de Sinais/genética , Transcriptoma/genética
3.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
4.
Ecotoxicol Environ Saf ; 203: 111019, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888606

RESUMO

Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.


Assuntos
Poluentes Atmosféricos/toxicidade , Arabidopsis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Dióxido de Enxofre/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação para Baixo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação para Cima
5.
Nat Commun ; 11(1): 4519, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908150

RESUMO

The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general show a shift within trait space along the same common slope as observed in non-wetland plants, with lower leaf mass per area, higher leaf nitrogen and phosphorus, faster photosynthetic rates, and shorter leaf life span compared to non-wetland plants. We conclude that wetland plants tend to cluster at the acquisitive end of the LES. The presented global quantifications of the LES in wetland plants enhance our understanding of wetland plant strategies in terms of resources acquisition and allocation, and provide a stepping-stone to developing trait-based approaches for wetland ecology.


Assuntos
Fotossíntese/genética , Folhas de Planta/genética , Plantas/genética , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Plantas/anatomia & histologia , Plantas/metabolismo
6.
Physiol Plant ; 170(1): 7-9, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32830334

RESUMO

Cyanobacteria require light to perform photosynthesis, but not all colors of light are equally useable for them. In particular, blue light-grown cyanobacterial strains, including the well-studied model organism Synechocystis sp. PCC 6803 (Synechocystis), have been observed to exhibit slower growth rates than white or red light-grown cells. In this issue of Physiologia Plantarum, Luimstra et al. (2020) have attempted to understand why cyanobacterial cells suffer under blue light. They measured the molecular and genetic responses of Synechocystis cells to being shifted from white light to blue light. They found that blue light-grown cells make changes that lead to a redistribution of energy flow between the two photosystems that power photosynthesis. These findings could help researchers identify avenues for optimizing photosynthesis in cyanobacterial species, a group of organisms which show great promise as potential solar-powered factories for the production of biofuels and other high-value products.


Assuntos
Synechocystis , Biocombustíveis , Cor , Fotossíntese/genética
7.
Aquat Toxicol ; 227: 105588, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861020

RESUMO

The pollution of polybrominated diphenyl ethers (PBDEs) is becoming a pressing environmental problem in aquatic environments, and its threat to aquatic organism has received much attention. In this study, Phaeodactylum tricornutum was treated with 0.8 and 4 mg L-1 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47), the most toxic PBDEs, for 96 h. BDE-47 inhibited cell growth in a time- and concentration-dependent manner. Observation of cell ultrastructure suggested the damage of the chloroplasts morphology. BDE-47 also decreased the chlorophyll content and the oxygen evolution rate, and altered the performance of photosystems. Transcriptomic analysis revealed differential expression of 62 genes related to photosynthesis in BDE-47 treatments (4 mg L-1) and transcription suppression of 58 genes involved in chlorophyll synthesis, antenna proteins, oxygen evolution, electron transport and downstream carbon fixation, implying potential toxicity targets in cells. Additionally, the levels of reactive oxygen species (ROS) and lipid peroxidation increased under BDE-47 stress and were positively correlated with photosynthesis inhibition. Pretreatment with the ROS scavenger N-acetyl-l-cysteine reduced the extent of inhibition, suggesting that ROS was responsible for these effects. Another experiment with the electron transport chain inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea showed that the generation of ROS was partially blocked, primarily indicating that photosynthetic inhibition induced by BDE-47 contributed to ROS overproduction. Thus, BDE-47 inhibited the photosynthesis by down-regulating the gene expression. This change stimulated ROS production, further leading to chloroplast membrane damage to aggravate this inhibition via a feedback loop. These effects of BDE-47 had adverse outcomes on the entire physiological state and the population growth of the microalgae.


Assuntos
Diatomáceas/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Acetilcisteína/farmacologia , Clorofila/metabolismo , Diatomáceas/metabolismo , Diatomáceas/ultraestrutura , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Microalgas/metabolismo , Microalgas/ultraestrutura , Modelos Teóricos , Fotossíntese/genética
8.
Int J Syst Evol Microbiol ; 70(9): 5063-5074, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32804606

RESUMO

The taxonomic status of two previously characterized Bradyrhizobium strains (58S1T and S23321) isolated from contrasting habitats in Canada and Japan was verified by genomic and phenotypic analyses. Phylogenetic analyses of five and 27 concatenated protein-encoding core gene sequences placed both strains in a highly supported lineage distinct from named species in the genus Bradyrhizobium with Bradyrhizobium betae as the closest relative. Average nucleotide identity values of genome sequences between the test and reference strains were between 84.5 and 94.2 %, which is below the threshold value for bacterial species circumscription. The complete genomes of strains 58S1T and S23321 consist of single chromosomes of 7.30 and 7.23 Mbp, respectively, and do not have symbiosis islands. The genomes of both strains have a G+C content of 64.3 mol%. Present in the genome of these strains is a photosynthesis gene cluster (PGC) containing key photosynthesis genes. A tRNA gene and its partial tandem duplication were found at the boundaries of the PGC region in both strains, which is likely the hallmark of genomic island insertion. Key nitrogen-fixation genes were detected in the genomes of both strains, but nodulation and type III secretion system genes were not found. Sequence analysis of the nitrogen fixation gene, nifH, placed 58S1T and S23321 in a novel lineage distinct from described Bradyrhizobium species. Data for phenotypic tests, including growth characteristics and carbon source utilization, supported the sequence-based analyses. Based on the data presented here, a novel species with the name Bradyrhizobium cosmicum sp. nov. is proposed with 58S1T (=LMG 31545T=HAMBI 3725T) as the type strain.


Assuntos
Bradyrhizobium/classificação , Ilhas Genômicas , Fotossíntese/genética , Filogenia , Soja/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , Canadá , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Japão , Família Multigênica , Fixação de Nitrogênio/genética , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose/genética
9.
PLoS One ; 15(8): e0236129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760076

RESUMO

Salix matsudana, a member of Salicaceae, is an important ornamental tree in China. Because of its capability to tolerate high salt conditions, S. matsudana also plays an important ecological role when grown along Chinese coastal beaches, where the salinity content is high. Here, we aimed to elucidate the mechanism of higher salt tolerance in S. matsudana variety '9901' by identifying the associated genes through RNA sequencing and comparing differential gene expression between the S. matsudana salt-tolerant and salt-sensitive samples treated with 150 mM NaCl. Transcriptomic comparison of the roots of the two samples revealed 2174 and 3159 genes responsive to salt stress in salt-sensitive and salt-tolerant sample, respectively. Real-time polymerase chain reaction analysis of 9 of the responsive genes revealed a strong, positive correlation with RNA sequencing data. The genes were enriched in several pathways, including carbon metabolism pathway, plant-pathogen interaction pathway, and plant hormone signal transduction pathway. Differentially expressed genes (DEGs) encoding transcription factors associated with abiotic stress responses and salt stress response network were identified; their expression levels differed between the two samples in response to salt stress. Hub genes were also revealed by weighted gene co-expression network (WGCNA) analysis. For functional analysis of the DEG encoding sedoheptulose-1,7-bisphosphatase (SBPase), the gene was overexpressed in transgenic Arabidopsis, resulting in increased photosynthetic rates, sucrose and starch accumulation, and enhanced salt tolerance. Further functional characterization of other hub DEGs will reveal the molecular mechanism of salt tolerance in S. matsudana and allow the application of S. matsudana in coastal afforestation.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/fisiologia , Salix/fisiologia , Tolerância ao Sal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fotossíntese/genética , Raízes de Plantas , Plantas Geneticamente Modificadas , RNA-Seq , Salinidade , Amido/metabolismo , Sacarose/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817425

RESUMO

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Translocador 1 do Nucleotídeo Adenina/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cloroplastos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Milhetes/genética , Milhetes/metabolismo , Organogênese Vegetal/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 117(30): 17599-17606, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647063

RESUMO

Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic-Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.


Assuntos
Cianobactérias/fisiologia , Fotossíntese , Enxofre/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Fotossíntese/genética , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
12.
Plant Mol Biol ; 104(4-5): 339-357, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638297

RESUMO

Key Message A resistant E. grandis genotype showed a constitutive overexpression of genes related to resistance to myrtle rust caused by A. psidii. Abstract Myrtle rust caused by Austropuccinia psidii is considered one of the most important fungal diseases affecting Eucalyptus spp. plantations in Brazil. Although the selection and planting of resistant eucalypt genotypes have been the major strategies to manage the disease in Brazil, the molecular mechanisms involved in resistance are still unclear. In this study, we evaluated the gene expression profile of two contrasting Eucalyptus grandis genotypes in resistance level to rust by RNA-Seq. The two genotypes showed a very different background gene expression level even without A. psidii infection. The resistant genotype had a constitutive overexpression of a large number of protein-coding genes compared to the susceptible genotype. These genes were mainly associated with signal transduction, photosynthesis, regulation and response to salicylic acid (SA), and protein kinase leucine-rich receptors (PK-LRR). PK-LRR and SA mediated disease resistance are well known to be effective against obligate biotroph pathogens, such as A. psidii. In addition, at 24 h after infection, the susceptible genotype was able to activate some response, however, several resistance-related proteins had their expression level reduced with A. psidii infection. Here, we present the first analysis of E. grandis genotypes transcriptomes infected by A. psidii and it reveals a constitutive overexpression of several resistance-related genes in the resistant genotype compared to the susceptible one. Our findings have the potential to be used as candidate molecular markers for resistance to myrtle rust.


Assuntos
Basidiomycota/patogenicidade , Eucalyptus/genética , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brasil , Resistência à Doença/genética , Eucalyptus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Família Multigênica , Fotossíntese/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Ácido Salicílico/metabolismo
13.
PLoS One ; 15(6): e0235482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603342

RESUMO

Fusarium head blight (FHB) is one of the most devastating fungal diseases affecting grain crops and Fusarium graminearum is the most aggressive causal species. Several evidences shown that stomatal closure is involved in the first line of defence against plant pathogens. However, there is very little evidence to show that photosynthetic parameters change in inoculated plants. The aim of the present study was to study the role of stomatal regulation in wheat after F. graminearum inoculation and explore its possible involvement in FHB resistance. RT-qPCR revealed that genes involved in stomatal regulation are induced in the resistant Sumai3 cultivar but not in the susceptible Rebelde cultivar. Seven genes involved in the positive regulation of stomatal closure were up-regulated in Sumai3, but it is most likely, that two genes, TaBG and TaCYP450, involved in the negative regulation of stomatal closure, were strongly induced, suggesting that FHB response is linked to cross-talk between the genes promoting and inhibiting stomatal closure. Increasing temperature of spikes in the wheat genotypes and a decrease in photosynthetic efficiency in Rebelde but not in Sumai3, were observed, confirming the hypothesis that photosynthetic parameters are related to FHB resistance.


Assuntos
Resistência à Doença/genética , Fusariose/imunologia , Fotossíntese , Estômatos de Plantas , Triticum/imunologia , Fusarium/imunologia , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotossíntese/genética , Fotossíntese/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Triticum/genética , Triticum/microbiologia
14.
PLoS One ; 15(6): e0234512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511280

RESUMO

Nutritional deficiencies limit the growth of snap bean plants, therefore knowing the biological mechanisms involved in it is fundamental. This study is aimed to evaluate the damage caused by a deficiency of macronutrients in physiological variables that cause decreased growth and the appearance of visual symptoms in snap bean. Thus, we design a hydroponic system of snap bean cultivation in order to test the effect of macronutrient deficiencies in a controlled environment. The treatments consisted in evaluate the effects of lack of one macronutrient in time. To perform this, we used Hoagland and Arnon solution in its complete formulation (control) or without N, P; K; Mg, Ca or S in each treatment. Physiological, nutritional, and growth analyses were performed when visual deficiency symptoms of each omitted nutrient appeared. Thus, the omissions of N and P in the nutrient solution led to lower accumulations of all macronutrients in the shoot. And the K, Ca, Mg, and S omissions decreased the amounts of K, Ca, Mg, P, and S in the shoot of the snap bean plants when compared with the plants grown in the complete nutrient solution. With the lowest accumulation of macronutrients, the content of photosynthetic pigments and the photosynthetic rate were reduced, with harmful effects on plant growth. Thus, from the losses in dry matter production of the shoot, the order of limiting of macronutrients in bean plants was N < P < Ca < S < Mg < K, with a decrease of up to 86.2%, 80.1%, 51.2%, 46.5%, 25.6%, and 19.3%, respectively. The nitrogen deficiency is more evident, proven by symptoms such as chlorosis in the lower and upper third leaves and necrosis of the lower third leaves.


Assuntos
Nitrogênio/metabolismo , Nutrientes/metabolismo , Phaseolus/crescimento & desenvolvimento , Fotossíntese/genética , Ambiente Controlado , Hidroponia , Nutrientes/fisiologia , Phaseolus/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Potássio/metabolismo
15.
Plant Mol Biol ; 104(1-2): 55-65, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32572798

RESUMO

Increase in atmospheric carbon dioxide (CO2) has a significant effect on plant growth and development. To explore the elevated-CO2 response, we generated transcriptional profiles over a time course (2 h-14 days) of exposure to elevated CO2 in Arabidopsis thaliana. Genes related to photosynthesis were down-regulated and circadian rhythm-related genes were abnormally regulated in the early to middle phase of elevated CO2 exposure. To understand the novel mechanism of elevated CO2 signaling, we focused on 42 unknown small coding genes that showed differential expression patterns under elevated CO2 conditions. Four transgenic plants overexpressing the small coding gene exhibited a growth-defective phenotype under elevated CO2 but not under current CO2. Transcriptome analysis showed that circadian rhythm-related genes were commonly regulated in four transgenic plants. These circadian rhythm-related genes were transcribed in the dark when CO2 concentrations in the leaf was high. Taken together, our identified four small coding genes are likely to participate in elevated CO2 signaling to the circadian rhythm.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Fotossíntese/genética , Desenvolvimento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Transcriptoma
16.
PLoS One ; 15(5): e0233120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421736

RESUMO

Day length is a determinant of flowering time in rice. Phytochromes participate in flowering regulation by measuring the number of daylight hours to which the plant is exposed. Here we describe G123, a rice mutant generated by irradiation, which displays insensitivity to the photoperiod and early flowering under both long day and short day conditions. To detect the mutation responsible for the early flowering phenotype exhibited by G123, we generated an F2 population, derived from crossing with the wild-type, and used a pipeline to detect genomic structural variation, initially developed for human genomes. We detected a deletion in the G123 genome that affects the PHOTOPERIOD SENSITIVITY13 (SE13) gene, which encodes a phytochromobilin synthase, an enzyme implicated in phytochrome chromophore biosynthesis. The transcriptomic analysis, performed by RNA-seq, in the G123 plants indicated an alteration in photosynthesis and other processes related to response to light. The expression patterns of the main flowering regulatory genes, such as Ghd7, Ghd8 and PRR37, were altered in the plants grown under both long day and short day conditions. These findings indicate that phytochromes are also involved in the regulation of these genes under short day conditions, and extend the role of phytochromes in flowering regulation in rice.


Assuntos
Flores/metabolismo , Flores/fisiologia , Oryza/genética , Oryza/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Fotossíntese/genética , Proteínas de Plantas/genética
17.
J Environ Sci Health B ; 55(7): 620-629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364417

RESUMO

Alachlor is one of the most widely used herbicides and can remain in agricultural soils and wastewater. The toxicity of alachlor to marine life has been rarely studied; therefore, we evaluated the physiological and transcriptional responses in the marine dinoflagellate Prorocentrum minimum. The herbicide led to considerable decreases in P. minimum cell numbers and pigment contents. The EC50 was determined to be 0.373 mg/L. Photosynthesis efficiency and chlorophyll autofluorescence dramatically decreased with increasing alachlor dose and exposure time. Real-time PCR analysis showed that the photosynthesis-related genes PmpsbA, PmatpB, and PmrbcL were induced the most by alachlor; the transcriptional level of each gene varied with time. PmrbcL expression increased after 30 min of alachlor treatment, whereas PmatpB and PmpsbA increased after 24 h. The PmpsbA expression level was highest (5.0 times compared to control) after 6 h of alachlor treatment. There was no significant change in PmpsaA expression with varying treatment time or concentration. Additionally, there was no notable change in the expression of antioxidant genes PmGST and PmKatG, or in ROS accumulation. These suggest that alachlor may affect microalgal photosystem function, with little oxidative stress, causing severe physiological damage to the cells, and even cell death.


Assuntos
Acetamidas/toxicidade , Dinoflagelados/efeitos dos fármacos , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Dinoflagelados/fisiologia , Ecotoxicologia , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
PLoS One ; 15(5): e0232011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374731

RESUMO

Nitrogen (N) is critical to the growth and productivity of crops. To understand the molecular mechanisms influenced by N stress, we used RNA-Sequencing (RNA-Seq) to analyze differentially expressed genes (DEGs) in root and leaf tissues of spinach. N stress negatively influenced photosynthesis, biomass accumulation, amino acid profiles, and partitioning of N across tissues. RNA-seq analysis revealed that N stress caused most transcriptomic changes in roots, identifying 1,346 DEGs. High-affinity nitrate transporters (NRT2.1, NRT2.5) and glutamine amidotransferase (GAT1) genes were strongly induced in roots in response to N deplete and replete conditions, respectively. GO and KEGG analyses revealed that the functions associated with metabolic pathways and nutrient reservoir activity were enriched due to N stress. Whereas KEGG pathway enrichment analysis indicated the upregulation of DEGs associated with DNA replication, pyrimidine, and purine metabolism in the presence of high N in leaf tissue. A subset of transcription factors comprising bHLH, MYB, WRKY, and AP2/ERF family members was over-represented in both tissues in response to N perturbation. Interesting DEGs associated with N uptake, amino acid metabolism, hormonal pathway, carbon metabolism, along with transcription factors, were highlighted. The results provide valuable information about the underlying molecular processes in response to N stress in spinach and; could serve as a resource for functional analysis of candidate genes/pathways and enhancement of nitrogen use efficiency.


Assuntos
Nitrogênio/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Nitrogênio/deficiência , Nitrogênio/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Spinacia oleracea/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
19.
Plant Mol Biol ; 103(6): 653-667, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468353

RESUMO

ABSTARCT: KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.


Assuntos
Mesembryanthemum/genética , Perfilação da Expressão Gênica , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Mesembryanthemum/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Biotechnol ; 318: 57-67, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433921

RESUMO

The study reports the identification and expression profiling of five major classes of C4 pathway-specific genes, namely, carbonic anhydrase (CaH), phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), NADP-dependent malate dehydrogenase (MDH) and NADP-dependent malic enzyme (NADP-ME), in the model species, Setaria italica and Setaria viridis. A total of 42 and 41 genes were identified in S. italica and S. viridis, respectively. Further analysis revealed that segmental and tandem duplications have contributed to the expansion of these gene families. RNA-Seq derived expression profiles of the gene family members showed their differential expression pattern in tissues and dehydration stress. Comparative genome mapping and Ks dating provided insights into their duplication and divergence in the course of evolution. Expression profiling of candidate genes in contrasting S. italica cultivars subjected to abiotic stresses and hormone treatments showed distinct stress-specific upregulation of SiαCaH1, SißCaH5, SiPEPC2, SiPPDK2, SiMDH8, and SiNADP-ME5 in the tolerant cultivar. Overexpression of SiNADP-ME5 in heterologous yeast system enabled the transgenic cells to survive and grow in dehydration stress conditions, which highlights the putative role of SiNADP-ME5 in conferring tolerance to dehydration stress. Altogether, the study highlights key genes that could be potential candidates for elucidating their functional roles in abiotic stress response.


Assuntos
Genoma de Planta/genética , Setaria (Planta)/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Fotossíntese/genética , Filogenia , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Setaria (Planta)/classificação , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA