Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
PLoS One ; 16(10): e0258521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644345

RESUMO

Russeting compromises appearance and downgrades the market value of many fruitcrops, including of the mango cv. 'Apple'. The objective was to identify the mechanistic basis of 'Apple' mango's high susceptibility to russeting. We focused on fruit growth, cuticle deposition, stress/strain relaxation analysis and the mechanical properties of the cuticle. The non-susceptible mango cv. 'Tommy Atkins' served for comparison. Compared with 'Tommy Atkins', fruit of 'Apple' had a lower mass, a smaller surface area and a lower growth rate. There were little differences between the epidermal and hypodermal cells of 'Apple' and 'Tommy Atkins' including cell size, cell orientation and cell number. Lenticel density decreased during development, being lower in 'Apple' than in 'Tommy Atkins'. The mean lenticel area increased during development but was consistently greater in 'Apple' than in 'Tommy Atkins'. The deposition rate of the cuticular membrane was initially rapid but later slowed till it matched the area expansion rate, thereafter mass per unit area was effectively constant. The cuticle of 'Apple' is thinner than that of 'Tommy Atkins'. Cumulative strain increased sigmoidally with fruit growth. Strains released stepwise on excision and isolation (εexc+iso), and on wax extraction (εextr) were higher in 'Apple' than in 'Tommy Atkins'. Membrane stiffness increased during development being consistently lower in 'Apple' than in 'Tommy Atkins'. Membrane fracture force (Fmax) was low and constant in developing 'Apple' but increased in 'Tommy Atkin'. Membrane strain at fracture (εmax) decreased linearly during development but was lower in 'Apple' than in 'Tommy Atkins'. Frequency of membrane failure associated with lenticels increased during development and was consistently higher in 'Apple' than in 'Tommy Atkins'. The lower rate of cuticular deposition, the higher strain releases on excision, isolation and wax extraction and the weaker cuticle account for the high russet susceptibility of 'Apple' mango.


Assuntos
Mangifera/crescimento & desenvolvimento , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Indóis/metabolismo , Mangifera/anatomia & histologia , Mangifera/fisiologia , Resistência à Tração
2.
Plant Sci ; 311: 110996, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482908

RESUMO

Rubus chingii, is widely distributed in many Asian countries and well known for its medicinal and dietary properties. Diversity of fruit color in raspberry has been attributed to the presence of either anthocyanins or carotenoids. In this study, we investigated anthocyanins and carotenoids, and their biosynthesis by LC-MS/MS. Six anthocyanins mainly consisted of flavanol-anthocyanins while five carotenoids mainly consisted of ß-citraurin esters. Flavanol-anthocyanins were produced from an offshoot of the anthocyanin biosynthesis, which started with biosynthesis of flavanols and anthocyanidin by leucoanthocyanidin reductase (LAR)/anthocyanidin reductase (ANR) and anthocyanidin synthase (ANS/LDOX) respectively. ß-citraurin esters were produced from cleavage of zeaxanthin and esterification by organic acid, which was an offshoot of the carotenoid biosynthesis. The offshoot started with biosynthesis of zeaxanthin and ß-citraurin by carotene ß-hydroxylase (CHYB/LUT5) and carotenoid cleavage dioxygenase (CCD) respectively. During fruit ripening, biosynthesis of flavanols and anthocyanins was down-regulated by genes/proteins involved in phenylpropanoid and flavonoid biosynthesis, while biosynthesis of ß-citraurin esters was up-regulated by imbalanced expression of genes/proteins involved in ß,ß-ring and ß, ε-ring hydroxylation. Thus, ß-citraurin esters, instead of anthocyanins imparted reddish color to the ripe fruit. These pigments and their biosynthesis in R. chingii are totally different from what occurs in other raspberry species.


Assuntos
Antocianinas/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Pigmentação/fisiologia , Rubus/crescimento & desenvolvimento , Rubus/metabolismo , Antocianinas/genética , China , Frutas/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pigmentação/genética , Rubus/anatomia & histologia
3.
Plant Sci ; 311: 111010, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482914

RESUMO

The cultivated strawberry (Fragaria x ananassa) is an octoploid species (2n = 8x = 56), appreciated widely for its fruit. There have been very few studies on fruit quality traits, which are known to be mostly polygenic and environmentally dependent. To identify higher genetic variability, two non-related populations were genotyped: an F1 population cross between 'FC50' and 'FD54' and an F2 population cross between 'Camarosa' and 'Dover', hybridizing both with IStraw35k and IStraw90k SNP arrays, respectively. The F1 genetic map was constructed with 14595 SNPs and the F2 map with 7977 SNPs. High collinearity was observed when comparing one genetic map with the other and on comparing both with the octoploid genome. To assess fruit variability, both populations were phenotyped for shape, firmness, taste and other fruit traits over the 2016-2019 period. With QTL analyses, 33 stable QTLs were mapped in the 'FC50xFD54' population, and three hotspot regions were found for shape traits in LG3A, LG4D and LG6D. In the '21AF' population, only eight stable QTLs were detected. Despite that, two major and stable QTLs were mapped in the same interval of confidence for both populations. A shared fruit shape ratio QTL which explained around 25 % of trait variance was mapped in LG3A, and a shared firmness QTL explaining 26.9 % of trait variance in LG7C. For the first time, two QTLs were discovered in LG3A and LG4A for a phenotype neck without achenes. When analysing two different mapping populations, in addition to finding specific QTL regions for the studied traits, a narrowing down of the interval of confidence for the shared QTLs is achieved. As a result of this study, a new set of SNPs for fruit firmness and shape is now available for use in MAS in strawberry breeding programs.


Assuntos
Fragaria/anatomia & histologia , Fragaria/genética , Frutas/anatomia & histologia , Frutas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Variação Genética , Genótipo , Fenótipo
4.
Plant Mol Biol ; 107(1-2): 101-116, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34424500

RESUMO

KEY MESSAGE: This work reveals potentially multiple and integrated roles in flower and fruit development of floral C-class MADS-box genes in Physalis. The Physalis fruit features a morphological novelty, the Chinese lantern. Floral C-class MADS-domain AGAMOUS-like (AG-like) proteins can interact with the identified regulators of this novel structure. However, the developmental role of the floral C-class genes is unknown in Physalis. Here, we characterized two AG-like genes from Physalis floridana, designated PFAG1 and PFAG2. The two paralogous genes shared around 61.0% of sequence identity and had similar expression domains, with different expression levels in the floral and berry development. However, the genes had distinct expression patterns in leaf and calyx development. Protein-protein interaction analyses revealed that PFAG1 and PFAG2 could commonly or specifically dimerize with certain floral MADS-domain proteins as well as non-MADS-domain proteins involved in various floral developmental processes. Gene downregulation analyses demonstrated that PFAG1 may repress PFAG2, but PFAG2 did not affect PFAG1. Downregulating PFAG1 led to incomplete floral homeotic variation in the stamens and carpels, and alteration of petal coloration pattern, while downregulating PFAG2 did not result in any floral homeotic variation. PFAG1 affected pollen maturation, while PFAG2 affected female fertility. However, simultaneously downregulating PFAG1 and PFAG2 caused loss of the complete C-function, indicating that the two PFAG genes interact to determine the identity and functionality of androecia and gynoecia organs. Their potential roles in regulating fruit size and the Chinese lantern are also discussed. Our results reveal functional divergence of floral C-class MADS-box genes in Physalis, demonstrating that they may play multiple and integrated roles in flower and fruit development.


Assuntos
Flores/genética , Frutas/genética , Genes de Plantas , Proteínas de Domínio MADS/genética , Physalis/genética , Flores/anatomia & histologia , Frutas/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas de Domínio MADS/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Reprodução/genética , Análise de Sequência de DNA , Frações Subcelulares/metabolismo
5.
Plant Cell Rep ; 40(10): 1859-1874, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283265

RESUMO

KEY MESSAGE: CAP biosynthesis in the pericarp of chili pepper fruits occurs with an ambiguous boundary in the placental septum and pericarp. Capsaicinoid (CAP) is a pungent ingredient of chili pepper fruits. Generally, CAP biosynthesis is limited to the placental septum of fruits, but it has been reported that its biosynthesis occurs even in the pericarp of some extremely pungent varieties, resulting in a substantial increase in total content. To examine the mechanism of CAP biosynthesis in the pericarp, comparative transcriptome analysis of a variety that produces CAP in the pericarp (MY) and a variety that does not (HB) was carried out. RNA-seq revealed that 2264 genes were differentially expressed in the MY pericarp compared with the HB pericarp. PCA analysis and GO enrichment analysis indicated that the MY pericarp has a gene expression profile more like placental septum than the HB pericarp. The gene expression of CAP biosynthesis-related genes in the MY pericarp changed coordinately with the placental septum during fruit development. In most Capsicum accessions including HB, the distribution of slender epidermal cells producing CAP was limited to the placental septum, and the morphological boundary between the placental septum and pericarp was clear. In some extremely pungent varieties such as MY, slender epidermal cells ranged from the placental septum to the pericarp region, and the pericarp was morphologically similar to the placental septum, such as the absence of large sub-epidermal cells and abundant spaces in the parenchymal tissue. Our data suggest that CAP biosynthesis in the pericarp occurred with an ambiguous boundary in the placental septum and pericarp. These findings contribute to further enhancement of CAP production in chili pepper fruits.


Assuntos
Capsaicina/metabolismo , Capsicum/anatomia & histologia , Capsicum/genética , Capsicum/metabolismo , Frutas/metabolismo , Capsicum/crescimento & desenvolvimento , Frutas/anatomia & histologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Proteínas de Plantas/genética , Análise de Componente Principal
6.
Biomolecules ; 11(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204908

RESUMO

Sweet pepper (Capsicum annuum L.) is one of the most important vegetable crops in the world because of the nutritional value of its fruits and its economic importance. Calcium (Ca) improves the quality of sweet pepper fruits, and the application of calcite nanoparticles in agricultural practice has a positive effect on the morphological, physiological, and physicochemical properties of the whole plant. The objectives of this study were to investigate the effect of commercial calcite nanoparticles on yield, chemical, physical, morphological, and multispectral properties of sweet pepper fruits using a combination of conventional and novel image-based nondestructive methods of fruit quality analysis. In the field trial, two sweet pepper cultivars, i.e., Soroksari and Kurtovska kapija, were treated with commercial calcite nanoparticles (at a concentration of 3% and 5%, calcite-based foliar fertilizer (positive control), and water (negative control) three times during vegetation). Sweet pepper fruits were harvested at the time of technological and physiological maturity. Significant differences were observed between pepper cultivars as well as between harvests times. In general, application of calcite nanoparticles reduced yield and increased fruit firmness. However, different effects of calcite nanoparticles were observed on almost all properties depending on the cultivar. In Soroksari, calcite nanoparticles and calcite-based foliar fertilizers significantly increased N, P, K, Mg, Fe, Zn, Mn, and Cu at technological maturity, as well as P, Ca, Mg, Fe, Zn, Mn, Cu, and N at physiological maturity. However, in Kurtovska kapija, the treatments increased only Ca at technological maturity and only P at physiological maturity. The effect of treatments on fruit morphological properties was observed only at the second harvest. In Soroksari, calcite nanoparticles (3% and 5%) increased the fruit length, minimal circle area, and minimal circle radius, and it decreased the fruit width and convex hull compared to the positive and negative controls, respectively. In Kurtovska kapija, calcite nanoparticles increased the fruit width and convex hull compared to the controls. At physiological maturity, lower anthocyanin and chlorophyll indices were found in Kurtovska kapija in both treatments with calcite nanoparticles, while in Soroksari, the opposite effects were observed.


Assuntos
Carbonato de Cálcio/administração & dosagem , Capsicum/química , Capsicum/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Capsicum/anatomia & histologia , Croácia , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Fertilizantes , Frutas/anatomia & histologia
7.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34148875

RESUMO

Our study on genetic diversity was conducted with six chilli genotypes with inter- and intra-specific cross varieties of the three most popular chilli species (Capsicum annuum L., Capsicum chinense Jacq., and Capsicum frutescens L.). Twelve quantitative characters, viz. plant height (cm), primary branches, secondary branches, number of flowers, number of fruits/plant; dry fruit weight (g), fruit length (cm), fruit diameter (cm), pedicel length (cm), pericarp thickness (mm), seeds/fruit, and seed weight (g), were taken into consideration. The analysis of variance revealed considerable variability among the genotypes for the character studied. Cluster analysis was used for grouping of parental and hybrid chilli genotypes under the study grouped into five clusters. Cluster I had the maximum (12) and clusters IVand V had the minimum number (1) of genotypes. The inter-cluster D2 values ranged between 40.404 and 127.530. The minimum inter-cluster distance was between clusters III and IV (40.404). The maximum inter-cluster distance was observed between clusters II and V (127.53). Diversity pattern and other horticultural performance among the genotypes of new varieties were generated due to the cross between Local Line Mahadev Pramanick and Sukhia bullet and also the cross between Local Line Mahadev Pramanick and Habanero orange (cluster II) as well as single parental variety i.e. Habanero orange. These genotypes were identified as promising varieties with respect to various characters may be taken into consideration as better parents for an efficient hybridization programme of chilli.


Assuntos
Capsicum/genética , Flores/genética , Frutas/genética , Melhoramento Vegetal/métodos , Sementes/genética , Capsicum/anatomia & histologia , Capsicum/classificação , Análise por Conglomerados , Cruzamentos Genéticos , Flores/anatomia & histologia , Frutas/anatomia & histologia , Variação Genética , Genótipo , Humanos , Sementes/anatomia & histologia
8.
DNA Res ; 28(3)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142133

RESUMO

Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.


Assuntos
Frutas/genética , Genoma de Planta , Locos de Características Quantitativas , Spinacia oleracea/genética , Sequenciamento Completo do Genoma , Frutas/anatomia & histologia , Genes de Plantas , Ligação Genética , Sementes/anatomia & histologia , Sementes/genética
9.
BMC Plant Biol ; 21(1): 289, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167466

RESUMO

BACKGROUND: Blueberry (Vaccinium spp.) is characterized by the production of berries that are smaller than most common fruits, and the underlying mechanisms of fruit size in blueberry remain elusive. V. corymbosum 'O'Neal' and 'Bluerain' are commercial southern highbush blueberry cultivars with large- and small-size fruits, respectively, which mature 'O'Neal' fruits are 1 ~ 2-fold heavier than those of 'Bluerain'. In this study, the ontogenetical patterns of 'O'Neal' and 'Bluerain' hypanthia and fruits were compared, and comparative transcriptomic analysis was performed during early fruit development. RESULTS: V. corymbosum 'O'Neal' and 'Bluerain' hypanthia and fruits exhibited intricate temporal and spatial cell proliferation and expansion patterns. Cell division before anthesis and cell expansion after fertilization were the major restricting factors, and outer mesocarp was the key tissue affecting fruit size variation among blueberry genotypes. Comparative transcriptomic and annotation analysis of differentially expressed genes revealed that the plant hormone signal transduction pathway was enriched, and that jasmonate-related TIFYs genes might be the key components orchestrating other phytohormones and influencing fruit size during early blueberry fruit development. CONCLUSIONS: These results provided detailed ontogenetic evidence for determining blueberry fruit size, and revealed the important roles of phytohormone signal transductions involving in early fruit development. The TIFY genes could be useful as markers for large-size fruit selection in the current breeding programs of blueberry.


Assuntos
Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Mirtilos Azuis (Planta)/anatomia & histologia , Mirtilos Azuis (Planta)/metabolismo , Proliferação de Células , Flores/anatomia & histologia , Flores/metabolismo , Frutas/anatomia & histologia , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , RNA de Plantas/metabolismo , Transdução de Sinais/genética
10.
Food Chem ; 361: 130080, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029894

RESUMO

Evaluation of 100 Indian Musa accessions (IMA) for nine elements in their fresh fruit pulp (FFP) revealed genetic variability of 4.7-fold for K & Mg to 111.1-fold for Ca but, only with either highly or moderately positively skewed distribution. The descending order of mineral concentrations (MC) was K > Ca > Na > Mg > Fe > Mn > B > P > Zn. 100 g FFP contributes fairly about 5 (Fe) to 10% (Mn, Ca & Mg) of daily mineral requirement of Indians. Calcium (97%) and Fe (96%) showed the highest heritability while Zn exhibited lowest (85%). Significantly positive correlation was observed for all minerals. Magnesium had maximum direct effect on Fe content followed by Mn, Zn and Na in path analysis. Both principal component analysis and cluster analysis failed to group the IMA according to their ploidy/genome/subgroups. Twenty commercial cultivars were placed in top 10 positions based on their MC. Besides Ca and Mg, IMA were richer for all micronutrients than the world's Musa gene-pool.


Assuntos
Musa/química , Frutas/anatomia & histologia , Frutas/química , Frutas/genética , Variação Genética , Micronutrientes/análise , Minerais/análise , Musa/anatomia & histologia , Musa/genética
11.
Sci Rep ; 11(1): 6205, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737610

RESUMO

Siraitia grosvenorii, an herbaceous perennial plant, native to the southern parts of China, is commonly used as a low-calorie natural sweetener. It contains cucurbitane-type triterpene glycosides known as mogrosides. The extract from monk fruit is about 300 times sweeter than sucrose. In spite of its immense importance and International demand, Siraitia grosvenorii (Swingle) is not commercially cultivated outside China since scientific information for cultivation of this species is lacking. Planting material of monk fruit plant was not available in India. Thus, the seeds of monk fruit were introduced in India from China after following International norms. Then the experiments were conducted on different aspects such as seed germination, morphological and anatomical characterization, phenology, flowering and pollination behaviors, and dynamic of mogroside-V accumulation in fruit. The hydropriming at 40 °C for 24 h was found effective to reduce the germination time and to increase the germination rate (77.33%). The multicellular uniseriate trichomes were observed in both the leaf surfaces, however, higher trichomes density was observed in the ventral surface of males compared to females. The microscopic view revealed that the ovary was trilocular (ovary consists three chambers) having two ovules in each chamber or locule. Most of the fruits were globose or oblong type with 5-7 cm in length and 4-7 cm diameter. Mogroside-V content in fruit at 80 days after pollination was 0.69% on dry weight basis. The rate of increase of mogroside-V accumulation from 50 to 70 days was very slow, whereas a sharp increase was observed from 70 to 80 days. The higher receptivity of stigma was observed with fully open flowers. The floral diagram and formula have also been developed for both male and female flowers. Our results highlighted that monk fruit can be grown in Indian conditions.


Assuntos
Cucurbitaceae/fisiologia , Flores/fisiologia , Frutas/fisiologia , Folhas de Planta/fisiologia , Sementes/fisiologia , Edulcorantes/química , Triterpenos/química , Aclimatação/fisiologia , China , Cucurbitaceae/anatomia & histologia , Flores/anatomia & histologia , Frutas/anatomia & histologia , Frutas/química , Germinação/fisiologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Índia , Folhas de Planta/anatomia & histologia , Polinização/fisiologia , Sementes/anatomia & histologia , Edulcorantes/isolamento & purificação , Paladar/fisiologia , Tricomas/anatomia & histologia , Tricomas/fisiologia , Triterpenos/isolamento & purificação
12.
Genome Biol ; 22(1): 13, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402202

RESUMO

BACKGROUND: Structural variations (SVs), a major resource of genomic variation, can have profound consequences on phenotypic variation, yet the impacts of SVs remain largely unexplored in crops. RESULTS: Here, we generate a high-quality de novo genome assembly for a flat-fruit peach cultivar and produce a comprehensive SV map for peach, as a high proportion of genomic sequence is occupied by heterozygous SVs in the peach genome. We conduct population-level analyses that indicate SVs have undergone strong purifying selection during peach domestication, and find evidence of positive selection, with a significant preference for upstream and intronic regions during later peach improvement. We perform a SV-based GWAS that identifies a large 1.67-Mb heterozygous inversion that segregates perfectly with flat-fruit shape. Mechanistically, this derived allele alters the expression of the PpOFP2 gene positioned near the proximal breakpoint of the inversion, and we confirm in transgenic tomatoes that PpOFP2 is causal for flat-fruit shape. CONCLUSIONS: Thus, beyond introducing new genomics resources for peach research, our study illustrates how focusing on SV data can drive basic functional discoveries in plant science.


Assuntos
Inversão Cromossômica , Frutas/anatomia & histologia , Frutas/genética , Genoma de Planta , Variação Estrutural do Genoma , Prunus persica/genética , Produtos Agrícolas/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional
13.
Mol Phylogenet Evol ; 157: 107041, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476719

RESUMO

The clusioid clade comprises five monophyletic families: Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae. Even though the circumscription of these families is well established, phylogenetic relationships within some families remain unresolved. This study aims to infer phylogenetic relationships within the Neotropical Calophylleae based on a broad sampling of taxa and a multilocus approach. We then use our phylogenetic framework as basis to investigate the evolution and biogeography of Calophylleae and diversification shifts in Calophyllaceae. To reconstruct the phylogeny of the Neotropical Calophylleae, we used five plastid (matK, ndhF, rbcL, psbA-trnH, and trnK), two mitochondrial (matR and rps3), and two nuclear (EMB2765 and ITS) markers, including previously published and newly generated sequences. We sampled 74 species, increasing sampling of Neotropical taxa by 500%. Our phylogenetic hypothesis for Calophyllaceae provides additional support for the monophyly of all genera and allowed us to identify four main clades: Calophyllum, Kayea, Mammea, and the Neotropical clade. The Neotropical clade includes three main lineages, a small clade composed of Clusiella and Marila, and a large HaCaKi clade (i.e., Haplocarpa, Caraipa, and Kilmeyera) that is sister to Mahurea exstipulata. The evolution of three morphological traits (i.e., fleshy fruits, anther glands, and winged seeds) were shown to be associated with changes in evolutionary dynamics in Calophyllaceae, while a biome shift was detected in Kielmeyera, affecting net diversification within this genus. Major geological and climatic events such as the Andean uplift and a gradual decrease in temperatures seem to have influenced diversification rates within the Neotropical Calophylleae.


Assuntos
Ecossistema , Magnoliopsida/classificação , Filogenia , Clima Tropical , Teorema de Bayes , Frutas/anatomia & histologia , Geografia , Sementes/anatomia & histologia , Fatores de Tempo
14.
J Evol Biol ; 34(4): 653-660, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484612

RESUMO

Animals have encountered novel foods at points throughout history, due to factors such as range expansions and niche shifts driven by competition. One of the first challenges presented by novel foods is how to eat them. Mouthpart morphology is thus critical during the process of host shifts. Developmental plasticity in mouthparts is one potential mechanism that may allow animals to tolerate new foods and eventually to thrive upon them. Here, we investigated the extent to which insect mouthparts from two geographically distant populations can converge in morphology when feeding on common resources. We conducted a common garden/reciprocal transplant experiment using two populations of the cactus bug, Narnia femorata, that differ in mouthpart length. This insect uses straw-like mouthparts (hereafter 'beak') to get through the cactus fruit wall to reach the pulp inside. Our experimental results revealed clear developmental plasticity in beak length. Insects from both populations grew longer beaks when they fed on the cactus fruit with the thicker walls, and they grew shorter beaks when they fed on the cactus fruit with the thinner walls. Thus, insects from distant populations exhibited immediate developmental responses to a new food, and in the predicted directions. These results suggest that some fauna may be able to respond more rapidly than predicted when they encounter novel plants.


Assuntos
Evolução Biológica , Comportamento Alimentar/fisiologia , Hemípteros/fisiologia , Animais , Feminino , Frutas/anatomia & histologia , Masculino , Opuntia
15.
J Integr Plant Biol ; 63(3): 553-569, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421307

RESUMO

Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Common fig (Ficus carica) shows a dual-ripening mechanism, which is not fully understood. Here, we detected separate peaks of ethylene and ABA in fig fruits at the onset- and on-ripening stages, in conjunction with a sharp rise in glucose and fructose contents. In a newly-designed split-fruit system, exogenous ethylene failed to rescue fluridone-inhibited fruit ripening, whereas exogenous ABA rescued 2-amino-ethoxy-vinyl glycine (AVG)-inhibited fruit ripening. Transcriptome analysis revealed changes in the expression of genes key to both ABA and ethylene biosynthesis and perception during fig fruit ripening. At the de-greening stage, downregulation of FcACO2 or FcPYL8 retarded ripening, but downregulation of FcETR1/2 did not; unexpectedly, downregulation of FcAAO3 promoted ripening, but it inhibited ripening only before the de-greening stage. Furthermore, we detected an increase in ethylene emissions in the FcAAO3-RNAi ripening fruit and a decrease in ABA levels in the FcACO2-RNAi unripening fruit. Importantly, FcPYL8 can bind to ABA, suggesting that it functions as an ABA receptor. Our findings support the hypothesis that ethylene regulates the fig fruit ripening in an ABA-dependent manner. We propose a model for the role of the ABA-ethylene interaction in climacteric/non-climacteric processes.


Assuntos
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ficus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Agrobacterium/metabolismo , Análise por Conglomerados , Ficus/anatomia & histologia , Ficus/genética , Ficus/fisiologia , Frutas/anatomia & histologia , Frutas/genética , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq
16.
Commun Biol ; 4(1): 41, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446929

RESUMO

Fabaceae is one of the most diverse angiosperm families and is distributed across the globe in a variety of environments. The earliest evidence of the family, previous to this work, was from Paleogene sediments where it was found to be diverse in many fossil assemblages around the world. Here, we describe a fossil legume fruit from the Olmos Formation (upper Campanian) in northern Mexico. We designated the fossil fruit as Leguminocarpum olmensis Centeno-González, Martínez-Cabrera, Porras-Múzquiz et Estrada-Ruiz sp. nov., and related it with the Fabaceae family based on the presence of a dehiscent pod with two valves, an apex bearing stylar base, short stipe, and reticulated veins in the pericarp. We propose a new fossil species of Leguminocarpum for this fossil fruit. This fossil provides critical information on the long geologic history of Leguminosae around the world, significantly extending the record into the Cretaceous of Mexico.


Assuntos
Fabaceae , Fósseis , Frutas , Frutas/anatomia & histologia , Frutas/classificação , México
17.
Plant J ; 105(1): 62-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095963

RESUMO

Fruits are complex organs that are spatially regulated during development. Limited phenotyping capacity at cell and tissue levels is one of the main obstacles to our understanding of the coordinated regulation of the processes involved in fruit growth and quality. In this study, the spatial evolution of biophysical and metabolic traits of peach and apple fruit was investigated during fruit development. In parallel, the multi-exponential relaxation times and apparent microporosity were assessed by quantitative magnetic resonance imaging (MRI). The aim was to identify the possible relationships between MRI parameters and variations in the structure and composition of fruit tissues during development so that transverse relaxation could be proposed as a biomarker for the assessment of the structural and functional evolution of fruit tissues during growth. The study provides species-specific data on developmental and spatial variations in density, cell number and size distribution, insoluble and soluble compound accumulation and osmotic and water potential in the fruit mesocarp. Magnetic resonance imaging was able to capture tissue evolution and the development of pericarp heterogeneity by accessing information on cell expansion, water status and distribution at cell level, and microporosity. Changes in vacuole-related transverse relaxation rates were mostly explained by cell/vacuole size. The impact of cell solute composition, microporosity and membrane permeability on relaxation times is also discussed. The results demonstrate the usefulness of MRI as a tool to phenotype fruits and to access important physiological data during development, including information on spatial variability.


Assuntos
Frutas/anatomia & histologia , Malus/anatomia & histologia , Prunus persica/anatomia & histologia , Frutas/metabolismo , Frutas/fisiologia , Imageamento por Ressonância Magnética , Malus/metabolismo , Malus/fisiologia , Prunus persica/metabolismo , Prunus persica/fisiologia
18.
Food Chem ; 338: 127684, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916584

RESUMO

Oleocellosis is a physiological disorder causing blemishes on fruit surface. This study investigated the influence of oleocellosis on the membrane fatty acids and wax in lemon fruit rinds at the morphological, physiological, metabolic and molecular levels by using a variety with a high incidence rate of oleocellosis (green lemon). Oleocellosis-damaged rinds showed loose and flaky wax layers with more fissures on the surface, as well as higher contents of C16 and C18 fatty acids and very long chain (VLC) fatty alkanes while lower contents of VLC fatty aldehydes. The main differentially expressed genes, including FabZ, FAD2 and SAD6 involved in the accumulation of C16 and C18 fatty acids and CER1 involved in the transformation of VLC fatty aldehydes to VLC fatty alkanes, were up-regulated by oleocellosis. These results indicate that oleocellosis accelerates the accumulation of membrane free fatty acids and transformation of VLC fatty aldehydes to VLC fatty alkanes.


Assuntos
Citrus/metabolismo , Ácidos Graxos/metabolismo , Ceras/metabolismo , Alcanos/metabolismo , Citrus/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/análise , Frutas/anatomia & histologia , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Ceras/análise , Ceras/química
19.
Biomolecules ; 10(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322680

RESUMO

Plant biostimulants are under investigation as innovative products to improve plant production and fruit quality, without resulting in environmental and food contaminations. Here, the effects of the application of Expando, a biostimulant based on seaweed and yeast extracts, on plant productivity, fruit ripening times, and fruit quality of Solanum lycopersicum var. Micro-Tom were evaluated. After biostimulant treatment, a two-week reduction of ripening times and a concomitant enhancement of the production percentage during the earliest ripening times, in terms of both fruit yield (+110%) and size (+85%), were observed. Concerning fruit quality, proximate analysis showed that tomatoes treated with the biostimulant had better nutritional composition compared to untreated samples, since both the quality of unsatured fatty acids (C16:3ω3: +328%; C18:2ω6: -23%) and micronutrients essential for human health (Fe: +14%; Cu: +21%; Zn: +24%) were increased. From a nutraceutical point of view, despite strong changes in bioactive compound profile not being observed, an increase of the antioxidant properties was recorded in fruits harvested by plants treated with the biostimulant (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS): +38%; 2,2-diphenyl-1-picrylhydrazyl (DPPH): +11%). In conclusion, the biostimulant application was able to reduce the ripening times and fruit size, while slightly increasing nutritional and nutraceutical values, leading to more marketable tomato fruits.


Assuntos
Frutas/crescimento & desenvolvimento , Lycopersicon esculentum/crescimento & desenvolvimento , Alga Marinha/química , Leveduras/química , Antioxidantes/análise , Benzotiazóis/química , Compostos de Bifenilo/química , Frutas/anatomia & histologia , Minerais/análise , Compostos Fitoquímicos/análise , Picratos/química , Polifenóis/análise , Ácidos Sulfônicos/química
20.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138306

RESUMO

In grapes, the number of flowers per inflorescence determines the compactness of grape bunches. Grape cultivars with tight bunches and thin-skinned berries easily undergo berry splitting, especially in growing areas with heavy rainfall during the grapevine growing season, such as Japan. We report herein that grape cytokinin oxidase/dehydrogenase 5 (VvCKX5) determines the number of berries per inflorescence in grapes. The number of berries per bunch was inversely proportional to the VvCKX5 expression level in juvenile inflorescences among the cultivars tested. VvCKX5 overexpression drastically decreased the number of flower buds per inflorescence in Arabidopsis plants, suggesting that VvCKX5 might be one of the negative regulators of the number of flowers per inflorescence in grapes. Similarly, the overexpression of grape sister of ramose 3 (VvSRA), which encodes trehalose 6-phosphate phosphatase that catalyzes the conversion of trehalose-6-phosphate into trehalose, upregulated AtCKX7 expression in Arabidopsis plants, leading to a decrease in the number of flower buds per Arabidopsis inflorescence. VvCKX5 gene expression was upregulated in grapevine cultured cells and juvenile grape inflorescences treated with trehalose. Finally, injecting trehalose into swelling buds nearing bud break using a microsyringe decreased the number of berries per bunch by half. VvCKX5 overexpression in Arabidopsis plants had no effect on the number of secondary inflorescences from the main inflorescence, and similarly trehalose did not affect pedicel branching on grapevine inflorescences, suggesting that VvCKX5, as well as VvSRA-mediated trehalose metabolism, regulates flower formation but not inflorescence branching. These findings may provide new information on the crosstalk between VvSRA-mediated trehalose metabolism and VvCKX-mediated cytokinin degradation for determining the number of berries per bunch. Furthermore, this study is expected to contribute to the development of innovative cultivation techniques for loosening tight bunches.


Assuntos
Citocininas/metabolismo , Frutas/anatomia & histologia , Trealose/metabolismo , Vitis/anatomia & histologia , Vitis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inflorescência/genética , Modelos Lineares , Ácidos Naftalenoacéticos/farmacologia , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estações do Ano , Trealose/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vitis/efeitos dos fármacos , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...