Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.145
Filtrar
1.
J Agric Food Chem ; 67(35): 9958-9966, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31419123

RESUMO

Chilling injury (CI) is a physiological disorder induced by cold, which heavily limit crop production and postharvest preservation worldwide. Methyl jasmonate (MeJA) can alleviate CI in various fruit species, including peach; however, the underlying molecular mechanism is poorly understood. Here, changes in contents of phenolics, lipids, and jasmonic acid (JA) and gene expressions are compared between MeJA and control fruit. Exogenous MeJA inhibited expressions of PpPAL1, PpPPO1, and PpPOD1/2 but did not affect the phenolic content. Furthermore, MeJA fruit showed lower relative electrolyte leakage, indicating less membrane damage. Meanwhile, the enrichment of linoleic acid in the potential lipid biomarkers, especially phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol, coincided with lower expressions of PpFAD8.1 but higher PpLOX3.1 and JA content. In the JA signaling pathway, MeJA significantly upregulated expressions of PpMYC2.2 and PpCBF3 but downregulated PpMYC2.1. In conclusion, adjustments of fatty acids in phospholipids contribute to MeJA-induced alleviation of CI in peach fruit via induction of the JA-mediated C-repeat-binding factor pathway.


Assuntos
Acetatos/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Frutas/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Fosfolipídeos/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Prunus persica/metabolismo , Temperatura Baixa , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento
2.
Gene ; 717: 144045, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31425741

RESUMO

The MADS-box gene family encodes transcription factors and plays an important role in plant growth and the development of flower and fruit. A perennial dioecious plant, the red bayberry genome has been published recently, providing the opportunity to analyze the MADS-box gene family and its role in fruit development and ripening. Here, we identified 54 MADS-box genes in the red bayberry genome, and classified them into two types based on phylogenetic analysis. Thirteen Type I MADS-box genes were subdivided into three subfamilies and 41 Type II MADS-box genes into 13 subfamilies. A total of 46 MADS-box genes were distributed across eight red bayberry chromosomes, and the other eight genes were located on the unmapped scaffolds. Transcriptome analysis suggested that the expression of most Type II genes was higher than Type I in five female tissues. Moreover, 26 MADS-box genes were expressed during red bayberry fruit development and ten of them showed high expression. qRT-PCR showed that the expression of MrMADS01 (SEP, MIKCC), with differences between the pale pink and red varieties, increased significantly at the final ripening stage, suggesting it may participate in ripening as positive regulator and related to anthocyanin biosynthesis. These results provide some clues for future study of MADS-box genes in red bayberry, especially in ripening process.


Assuntos
Frutas/fisiologia , Proteínas de Domínio MADS/genética , Myricaceae/genética , Proteínas de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia
3.
J Agric Food Chem ; 67(33): 9432-9440, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31368703

RESUMO

Potassium fertilization is commonly practiced in oil palm (Elaeis guineensis) plantations to increase yield. However, its effects on fruit oil content and composition are not well documented. Here, we conducted bunch, metabolomics, and oil composition analyses in two contrasting crosses (Deli × La Mé and Deli × Yangambi) grown under different K fertilization conditions. K availability impacted bunch oil content, resulting in lower water content and higher oil proportion in fruit mesocarp, in Deli × La Mé only, thus showing differential responses of crosses to K. Oil composition at maturity did not significantly change under low K conditions despite clear alterations in fruit metabolism associated with lipid production during maturation, demonstrating the resilience of oil biosynthetic metabolism. However, the analysis of variance in oil content (across K treatments and crosses) demonstrates that sugar availability, lipid synthesis rates, and metabolic recycling are all important in determining the oil content.


Assuntos
Arecaceae/metabolismo , Fertilizantes/análise , Frutas/química , Lipídeos/química , Óleo de Palmeira/química , Potássio/metabolismo , Arecaceae/química , Arecaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metabolismo dos Lipídeos
4.
Biol Res ; 52(1): 43, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405373

RESUMO

BACKGROUND: Drought is one of the main serious problems for agriculture production which its intensity is increasing in many parts of the world, hence, improving water use efficiency is a main goal for sustainable agriculture. RESULTS: Growth indices including relative shoot length growth (SL), relative stem diameter increase (SD) and relative trunk cross sectional area growth (TCSA) measured at the start and end of the season decreased by reducing the irrigation level. Chlorophyll index (CI) was decreased at 70% crop evapotranspiration, however water use efficiency (WUE), leaf and fruit total phenolic content (TPC), and fruit anthocyanin content (AC) were among the traits that showed increment by water deficit stress in both cultivars. Shafi-Abadi cultivar showed to be more sensitive to the water stress than 'Golab'. Kaolin treatment improved SL, SD and CI traits, but this increase was statistically significant only for SD at 5% level. Kaolin had no significant effect on yield and water use efficiency (WUE), however, it had negative effect on yield efficiency (YE). Kaolin treatments also significantly increased fruit and leaf TPC (P < 0.01) but had no effect on leaf and fruit total antioxidant activity (AA), as well as fruit anthocyanin content (AC) and soluble proteins (SP). CONCLUSIONS: Irrigation at 85% ETc showed better results than 100% and 70% ETc levels for yield attributes. It seems that the more pronounced effect of kaolin on vegetative traits but not on the fruits, might be attributed to the early ripening and harvest time of the examined cultivars.


Assuntos
Irrigação Agrícola/métodos , Secas , Frutas/crescimento & desenvolvimento , Caulim/administração & dosagem , Malus/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Malus/efeitos dos fármacos , Estações do Ano
5.
BMC Plant Biol ; 19(1): 369, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438855

RESUMO

BACKGROUND: Cucumis melo is a suitable study material for investigation of fruit ripening owing to its climacteric nature. Long non-coding RNAs have been linked to many important biological processes, such as fruit ripening, flowering time regulation, and abiotic stress responses in plants. However, knowledge of the regulatory roles of lncRNAs underlying the ripening process in C. melo are largely unknown. In this study the complete transcriptome of Cucumis melo L. cv. Hetao fruit at four developmental stages was sequenced and analyzed. The potential role of lncRNAs was predicted based on the function of differentially expressed target genes and correlated genes. RESULTS: In total, 3857 lncRNAs were assembled and annotated, of which 1601 were differentially expressed between developmental stages. The target genes of these lncRNAs and the regulatory relationship (cis- or trans-acting) were predicted. The target genes were enriched with GO terms for biological process, such as response to auxin stimulus and hormone biosynthetic process. Enriched KEGG pathways included plant hormone signal transduction and carotenoid biosynthesis. Co-expression network construction showed that LNC_002345 and LNC_000154, which were highly expressed, might co-regulate with mutiple genes associated with auxin signal transduction and acted in the same pathways. We identified lncRNAs (LNC_000987, LNC_000693, LNC_001323, LNC_003610, LNC_001263 and LNC_003380) that were correlated with fruit ripening and the climacteric, and may participate in the regulation of ethylene biosynthesis and metabolism and the ABA signaling pathway. A number of crucial transcription factors, such as ERFs, WRKY70, NAC56, and NAC72, may also play important roles in the regulation of fruit ripening in C. melo. CONCLUSIONS: Our results predict the regulatory functions of the lncRNAs during melon fruit development and ripening, and 142 highly expressed lncRNAs (average FPKM > 100) were identified. These lncRNAs participate in the regulation of auxin signal transduction, ethylene, sucrose biosynthesis and metabolism, the ABA signaling pathway, and transcription factors, thus regulating fruit development and ripening.


Assuntos
Cucumis melo/genética , Frutas/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia , Mapeamento Cromossômico , Climatério , Cucumis melo/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma de Planta , Fenótipo , Reguladores de Crescimento de Planta/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Transcriptoma
6.
BMC Plant Biol ; 19(1): 309, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299898

RESUMO

BACKGROUND: Ethylene promotes fruit ripening whereas 1-methylcyclopropene (1-MCP), a non-toxic antagonist of ethylene, delays fruit ripening via the inhibition of ethylene receptor. However, unsuitable 1-MCP treatment can cause fruit ripening disorders. RESULTS: In this study, we show that short-term 1-MCP treatment (400 nL•L- 1, 2 h) significantly delays papaya fruit ripening with normal ripening characteristics. However, long-term 1-MCP treatment (400 nL•L- 1, 16 h) causes a "rubbery" texture of fruit. The comparative transcriptome analysis showed that a total of 5529 genes were differently expressed during fruit ripening compared to freshly harvested fruits. Comprehensive functional enrichment analysis showed that the metabolic pathways of carbon metabolism, plant hormone signal transduction, biosynthesis of amino acids, and starch and sucrose metabolism are involved in fruit ripening. 1-MCP treatment significantly affected fruit transcript levels. A total of 3595 and 5998 differently expressed genes (DEGs) were identified between short-term 1-MCP, long-term 1-MCP treatment and the control, respectively. DEGs are mostly enriched in the similar pathway involved in fruit ripening. A large number of DEGs were also identified between long-term and short-term 1-MCP treatment, with most of the DEGs being enriched in carbon metabolism, starch and sucrose metabolism, plant hormone signal transduction, and biosynthesis of amino acids. The 1-MCP treatments accelerated the lignin accumulation and delayed cellulose degradation during fruit ripening. Considering the rubbery phenotype, we inferred that the cell wall metabolism and hormone signal pathways are closely related to papaya fruit ripening disorder. The RNA-Seq output was confirmed using RT-qPCR by 28 selected genes that were involved in cell wall metabolism and hormone signal pathways. CONCLUSIONS: These results showed that long-term 1-MCP treatment severely inhibited ethylene signaling and the cell wall metabolism pathways, which may result in the failure of cell wall degradation and fruit softening. Our results reveal multiple ripening-associated events during papaya fruit ripening and provide a foundation for understanding the molecular mechanisms underlying 1-MCP treatment on fruit ripening and the regulatory networks.


Assuntos
Carica/genética , Ciclopropanos/farmacologia , Etilenos/antagonistas & inibidores , Reguladores de Crescimento de Planta/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Transcriptoma , Carica/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
7.
J Agric Food Chem ; 67(32): 8919-8925, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334658

RESUMO

Histone deacetylase (HDAC) performs important functions in plant growth and development, including fruit ripening. As a complex biological process, fruit ripening involves the histone acetylation modification of ripening-associated genes. Histone deacetylase genes (HDACs) have been well studied in Arabidopsis and rice, but the biological functions of HDACs in papaya are poorly understood. In the present work, three CpHDACs, belonging to the RPD3/HDA1 subfamily, were identified from papaya and named as CpHDA1, CpHDA2, and CpHDA3. CpHDA1 and CpHDA2 were induced by propylene, while CpHDA3 was propylene-repressed. Moreover, CpHDA3 protein could physically interact with CpERF9 and enhance the transcriptional repression activities of CpERF9 to downstream genes CpPME1, CpPME2 and CpPG5. Histone acetylation levels of CpPME1 and CpPG5 were increased during fruit ripening. Taken together, these results suggested that CpERF9 recruits CpHDA3 to form a histone deacetylase repressor complex to mediate pectin methylesterase and polygalacturonase genes expression during papaya fruit ripening and softening.


Assuntos
Hidrolases de Éster Carboxílico/genética , Carica/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Proteínas de Plantas/metabolismo , Poligalacturonase/genética , Fatores de Transcrição/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Carica/genética , Carica/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Proteínas de Plantas/genética , Poligalacturonase/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
8.
BMC Plant Biol ; 19(1): 299, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286919

RESUMO

BACKGROUND: SPL (SQUAMOSA promoter binding protein-like) is a class of plant-specific transcription factors that play important roles in many growth and developmental processes, including shoot and inflorescence branching, embryonic development, signal transduction, leaf initiation, phase transition, and flower and fruit development. The SPL gene family has been identified and characterized in many species but has not been well studied in tartary buckwheat, which is an important edible and medicinal crop. RESULTS: In this study, 24 Fagopyrum tataricum SPL (FtSPL) genes were identified and renamed according to the chromosomal distribution of the FtSPL genes. According to the amino acid sequence of the SBP domain and gene structure, the SPL genes were divided into eight groups (group I to group VII) by phylogenetic tree analysis. A total of 10 motifs were detected in the tartary buckwheat SPL genes. The expression patterns of 23 SPL genes in different tissues and fruits at different developmental stages (green fruit stage, discoloration stage and initial maturity stage) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: The tartary buckwheat genome contained 24 SPL genes, and most of the genes were expressed in different tissues. qRT-PCR showed that FtSPLs played important roles in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This work provides a comprehensive understanding of the SBP-box gene family in tartary buckwheat and lays a significant foundation for further studies on the functional characteristics of FtSPL genes and improvement of tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Estudo de Associação Genômica Ampla , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 19(1): 317, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307384

RESUMO

BACKGROUND: Anthocyanins, which are colored pigments, have long been used as food and pharmaceutical ingredients due to their potential health benefits, but the intermediate signals through which environmental or developmental cues regulate anthocyanin biosynthesis remains poorly understood. Fleshy fruits have become a good system for studying the regulation of anthocyanin biosynthesis, and exploring the mechanism underlying pigment metabolism is valuable for controlling fruit ripening. RESULTS: The present study revealed that ABA accumulated during Lycium fruit ripening, and this accumulation was positively correlated with the anthocyanin contents and the LbNCED1 transcript levels. The application of exogenous ABA and of the ABA biosynthesis inhibitor fluridon increased and decreased the content of anthocyanins in Lycium fruit, respectively. This is the first report to show that ABA promotes the accumulation of anthocyanins in Lycium fruits. The variations in the anthocyanin content were consistent with the variations in the expression of the genes encoding the MYB-bHLH-WD40 transcription factor complex or anthocyanin biosynthesis-related enzymes. Virus-induced LbNCED1 gene silencing significantly slowed fruit coloration and decreased both anthocyanin and ABA accumulation during Lycium fruit ripening. An qRT-PCR analysis showed that LbNCED1 gene silencing clearly reduced the transcript levels of both structural and regulatory genes in the flavonoid biosynthetic pathway. CONCLUSIONS: Based on the results, a model of ABA-mediated development-dependent anthocyanin biosynthesis and fruit coloration during Lycium fruit maturation was proposed. In this model, the developmental cues transcriptionally activates LbNCED1 and thus enhances accumulation of the phytohormone ABA, and the accumulated ABA stimulates transcription of the MYB-bHLH-WD40 transcription factor complex to upregulate the expression of structural genes in the flavonoid biosynthetic pathway and thereby promoting anthocyanin production and fruit coloration. Our results provide a valuable strategy that could be used in practice to regulate the ripening and quality of fresh fruit in medicinal and edible plants by modifying the phytohormone ABA.


Assuntos
Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Frutas/metabolismo , Lycium/metabolismo , Pigmentação , Reguladores de Crescimento de Planta/metabolismo , Dioxigenases/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Lycium/genética , Lycium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transdução de Sinais
10.
J Agric Food Chem ; 67(30): 8319-8331, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31287308

RESUMO

The layer of cuticular wax covering fruits plays important roles in protecting against disease, preventing non-stomatal water loss, and extending shelf life. However, the molecular basis of cuticular wax biosynthesis in pear (Pyrus) fruits remains elusive. Our study thoroughly investigates cuticular wax biosynthesis during pear fruit development from morphologic, transcriptomic, and gas chromatography-mass spectrometry metabolomic perspectives. Our results showed that cuticular wax concentrations increased during the early stage [20-80 days after full bloom (DAFB)] from 0.64 mg/cm2 (50 DAFB) to 1.75 mg/cm2 (80 DAFB) and then slightly decreased to 1.22 mg/cm2 during the fruit ripening period (80-140 DAFB). Scanning electron microscopy imaging indicated that wax plate crystals increased and wax structures varied during the pear fruit development. The combined transcriptomic and metabolomic profiling analysis revealed 27 genes, including 12 genes encoding transcription factors and a new structural gene (Pbr028523) encoding ß-amyrin synthase, participating in the biosynthesis, transport, and regulation of cuticular wax according to their expression patterns in pear fruit. The quantitative real-time polymerase chain reaction experiments of 18 differentially expressed genes were performed and confirmed the accuracy of the RNA-Seq-derived transcript expression. A model of VLCFAs and cuticular wax synthesis and transport in pear fruit is proposed, providing a mechanistic framework for understanding cuticular wax biosynthesis in pear fruit. These results and data sets provide a foundation for the molecular events related to cuticular wax in 'Yuluxiang' pear fruit and may also help guide the functional analyses of candidate genes important for improving the cuticular wax of pear fruit in the future.


Assuntos
Epiderme/metabolismo , Frutas/crescimento & desenvolvimento , Pyrus/genética , Ceras/metabolismo , Epiderme/química , Frutas/química , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Metabolômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/química , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo , Transcriptoma
11.
J Agric Food Chem ; 67(32): 8783-8793, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31310107

RESUMO

Red-fleshed apples are popular as a result of their high anthocyanin content. MdMYB10 and its homologues are known to be important regulators of anthocyanin synthesis in apple, but the roles of other transcription factors are not well-understood. Here, we explored the role of MdWRKY11 in regulating anthocyanin synthesis in apple flesh. Overexpression of MdWRKY11 in apple callus could significantly promote anthocyanin accumulation, and the expression of some MYB transcription factors and structural genes increased significantly. In binding analyses, MdWRKY11 bound to W-box cis-elements in the promoters of MdMYB10, MdMYB11, and MdUFGT. However, MdWRKY11 did not interact with MdMYB10, MdbHLH3, or MdWD40 proteins, the members of the MBW complex. Sequence analyses revealed that another W-box cis-element was present in the promoter of MdHY5 (encoding a photoresponse factor), and MdWRKY11 was able to bind to the promoter of MdHY5 and promote its activity. Our findings clarify the role of MdWRKY11 in anthocyanin synthesis in red-fleshed apple and imply that other novel genes may be involved in anthocyanin synthesis.


Assuntos
Antocianinas/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Malus/genética , Malus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética
12.
BMC Plant Biol ; 19(1): 256, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196007

RESUMO

BACKGROUND: Appropriate brassinosteroid (BR) signal strength caused by exogenous application or endogenous regulation of BR-related genes can increase crop yield. However, precise control of BR signals is difficult and can cause unstable effects and failure to reach full potential. Phosphorylated BRASSINOSTEROID INSENSITIVE1 (BRI1), the rate-limiting receptor in BR signalling, transduces BR signals, and we recently demonstrated that modifying BRI1 phosphorylation sites alters BR signal strength and botanical characteristics in Arabidopsis. However, the functions of such phosphorylation sites in agronomic characteristics of crops remain unclear. RESULTS: In this work, we investigated the roles of tomato SlBRI1 threonine-1050 (Thr-1050). SlBRI1 mutant cu3-abs1 plants expressing SlBRI1 with a non-phosphorylatable Thr-1050 (T1050A), with a wild-type SlBRI1 transformant used as a control, were examined. The results showed enhanced autophosphorylation of SlBRI1 and BR signal strength for cu3-abs1 harbouring T1050A, which promoted yield through increased plant expansion, leaf area, fruit weight and fruit number per cluster but reduced nutrient contents, including ascorbic acid and soluble sugar levels. Moreover, plant height, stem diameter, and internodal distance were similar between the transgenic plants. CONCLUSION: Our results reveal the biological role of Thr-1050 in tomato and provide a molecular basis for establishing high-yield crops by precisely controlling BR signal strength via phosphorylation site modification.


Assuntos
Brassinosteroides/metabolismo , Frutas/crescimento & desenvolvimento , Lycopersicon esculentum/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Transdução de Sinais , Lycopersicon esculentum/genética , Mutação , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
13.
J Agric Food Chem ; 67(26): 7223-7231, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180671

RESUMO

The aim of this study was to investigate the effect of 3-chloro-5-trifluoromethylpyridine-2-carboxylic acid (PCA), a metabolite of the fungicide fluopyram, on grapevine. During spring and summer 2015, grapevine growth disorders were observed in several countries in Europe. An unprecedented herbicide-like damage was diagnosed on leaves and flowers, causing significant loss of harvest. This study proposes PCA as the causing agent of the observed growth disorders. PCA was shown to cause leaf epinasty, impaired berry development that leads to crop loss, and root growth anomalies in Vitis vinifera similar to auxin herbicides in a dose-dependent manner. Using both field trials and greenhouse experiments, the present study provides first evidence for a link between the application of fluopyram in vineyards 2014, the formation of PCA, and the emergence of growth anomalies in 2015. Our data could be useful to optimize dosage, application time point, and other conditions for an application of fluopyram without phytotoxic effects.


Assuntos
Benzamidas/metabolismo , Ácidos Carboxílicos/efeitos adversos , Fungicidas Industriais/efeitos adversos , Piridinas/efeitos adversos , Piridinas/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Benzamidas/efeitos adversos , Ácidos Carboxílicos/metabolismo , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fungicidas Industriais/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/metabolismo
14.
Food Chem ; 293: 499-510, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151641

RESUMO

This study aims to link morphological and physico-chemical parameters with maturity stages of Natal plum (Carissa macrocarpa), an edible southern African fruit. Harvesting via an integrative holistic approach is recommended for optimal quality and functional compounds. Fruits at dark green (M1), light green (M2), colour break or pink (M3), red (M4), dark red (M5) stages were harvested in 2016 and 2017 seasons. The principal component analysis illustrated the colour value a* (redness), fruit weight, size (length and width), sugars (glucose and fructose), ascorbic acid content, cyanidin derivatives (cyanidin-3-O-pyranoside, cyanidin 3-O-ß-sambubioside, cyanidin-3-O-glucoside), naringenin 4'-O-glucoside, and antioxidant property (FRAP) were higher in the following order of maturity stages M5 > M4 > M3 > M2 > M1. Quercetin 3-O-rhamnosyl galactoside and glucoside were higher in green (h° higher) firm M1 to M3 stages. A strong correlation exists between fruit weight, size, a* value and cyanidin derivatives or naringenin 4'-O-glucoside or ascorbic acid content or antioxidant activity. Thus, the M4 and M5 stages of Natal plum can serve as functional food.


Assuntos
Apocynaceae/química , Antocianinas/análise , Antioxidantes/química , Apocynaceae/metabolismo , Cromatografia Líquida de Alta Pressão , Dissacarídeos/análise , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Alimento Funcional/análise , Glucosídeos/análise , Espectrometria de Massas , Análise de Componente Principal , Açúcares/análise
15.
J Plant Physiol ; 239: 52-60, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31185317

RESUMO

The contents of eight phytohormones and the expression levels of genes encoding enzymes related to abscisic acid (ABA) biosynthesis and deactivation/degradation and transcription factors (TFs) related to fruit ripening were studied in the non-climacteric strawberry fruit (Fragaria × ananassa Duch., cv. 'Seolhyang') at six developmental stages. The hormones tested were ABA, indole-3-acetic acid (IAA), gibberellic acid 4 (GA4), jasmonic acid (JA), methyljasmonate (MJ), jasmonoyl isoleucine (JA-Ile), salicylic acid (SA), and ethylene (ET). The developmental and ripening stages studied were small green (S1, 11 days post-anthesis, DPA), green (S2, 20 DPA), breaker (S3, 24 DPA), pink (S4, 27 DPA), red (S5, 31 DPA), and fully red (S6, 40 DPA). IAA and GA4 contents were highest at S1 and gradually decreased after this stage. ABA content was low at S1-S3 and then increased rapidly until peaking at S6. By contrast, MJ content showed no significant changes over time, while SA content gradually increased. JA, JA-Ile, and ET contents were either insufficient for quantification or undetectable. Expression of the ABA biosynthesis genes FaNCED1 and FaABA2 increased during fruit ripening, whereas expression of the ABA deactivation/degradation genes FaUGT75C1 and FaCYP707A1 was high early in development, when ABA content was low, and then decreased. Among four ripening-related TF genes, FaMYB1, FaMYB5, FaMYB10, and FaASR, only the expression of FaMYB10 seemed to be closely related to strawberry fruit ripening. Our study supports the idea that ABA and FaMYB10 appear to be the key hormone and TF regulating strawberry ripening.


Assuntos
Ácido Abscísico/genética , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Fragaria/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
BMC Genomics ; 20(1): 458, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170907

RESUMO

BACKGROUND: Chinese bayberry (Myrica rubra Sieb. & Zucc.) is an economically important fruit tree characterized by its juicy fruits rich in antioxidant compounds. Elucidating the genetic basis of the biosynthesis of active antioxidant compounds in bayberry is fundamental for genetic improvement of bayberry and industrial applications of the fruit's antioxidant components. Here, we report the genome sequence of a multiple disease-resistant bayberry variety, 'Zaojia', in China, and the transcriptome dynamics in the course of fruit development. RESULTS: A 289.92 Mb draft genome was assembled, and 26,325 protein-encoding genes were predicted. Most of the M. rubra genes in the antioxidant signaling pathways had multiple copies, likely originating from tandem duplication events. Further, many of the genes found here present structural variations or amino acid changes in the conserved functional residues across species. The expression levels of antioxidant genes were generally higher in the early stages of fruit development, and were correlated with the higher levels of total flavonoids and antioxidant capacity, in comparison with the mature fruit stages. Based on both gene expression and biochemical analyses, five genes, namely, caffeoyl-CoA O-methyltransferase, anthocyanidin 3-O-glucosyltransferase, (+)-neomenthol dehydrogenase, gibberellin 2-oxidase, and squalene monooxygenase, were suggested to regulate the flavonoid, anthocyanin, monoterpenoid, diterpenoid, and sesquiterpenoid/triterpenoid levels, respectively, during fruit development. CONCLUSIONS: This study describes both the complete genome and transcriptome of M. rubra. The results provide an important basis for future research on the genetic improvement of M. rubra and contribute to the understanding of its genetic evolution. The genome sequences corresponding to representative antioxidant signaling pathways can help revealing useful traits and functional genes.


Assuntos
Genoma de Planta , Myrica/genética , Antioxidantes/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genômica , Myrica/crescimento & desenvolvimento , Myrica/metabolismo , Transcriptoma
17.
BMC Plant Biol ; 19(1): 236, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164091

RESUMO

BACKGROUND: Development and ripening of tomato (Solanum lycopersicum) fruit are important processes for the study of crop biology related to industrial horticulture. Versatile uses of tomato fruit lead to its harvest at various points of development from early maturity through to red ripe, traditionally indicated by parameters such as size, weight, colour, and internal composition, according to defined visual 'grading' schemes. Visual grading schemes however are subjective and thus objective classification of tomato fruit development and ripening are needed for 'high-tech' horticulture. To characterize the development and ripening processes in whole tomato fruit (cv. Moneymaker), a biospectroscopy approach is employed using compact portable ATR-FTIR spectroscopy coupled with chemometrics. RESULTS: The developmental and ripening processes showed unique spectral profiles, which were acquired from the cuticle-cell wall complex of tomato fruit epidermis in vivo. Various components of the cuticle including Cutin, waxes, and phenolic compounds, among others, as well as from the underlying cell wall such as celluloses, pectin and lignin like compounds among others. Epidermal surface structures including cuticle and cell wall were significantly altered during the developmental process from immature green to mature green, as well as during the ripening process. Changes in the spectral fingerprint region (1800-900 cm- 1) were sufficient to identify nine developmental and six ripening stages with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS: The non-destructive spectroscopic approach may therefore be especially useful for investigating in vivo biochemical changes occurring in fruit epidermis related to grades of tomato during development and ripening, for autonomous food production/supply chain applications.


Assuntos
Frutas/crescimento & desenvolvimento , Lycopersicon esculentum/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
BMC Plant Biol ; 19(1): 238, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170911

RESUMO

BACKGROUND: Papaya (Carica papaya L.) is a popular climacteric fruit, undergoing various physico-chemical changes during ripening. Although papaya is widely cultivated and consumed, few studies on the changes in metabolism during its ripening process at the proteasome level have been performed. Using a newly developed TMT-LCMS analysis, proteomes of papaya fruit at different ripening stages were investigated. RESULTS: In total, 3220 proteins were identified, of which 2818 proteins were quantified. The differential accumulated proteins (DAPs) exhibited various biological functions and diverse subcellular localizations. The KEGG enrichment analysis showed that various metabolic pathways were significantly altered, particularly in flavonoid and fatty acid metabolisms. The up-regulation of several flavonoid biosynthesis-related proteins may provide more raw materials for pigment biosynthesis, accelerating the color variation of papaya fruit. Variations in the fatty acid metabolism- and cell wall degradation-related proteins were investigated during the ripening process. Furthermore, the contents of several important fatty acids were determined, and increased unsaturated fatty acids may be associated with papaya fruit volatile formation. CONCLUSIONS: Our data may give an intrinsic explanation of the variations in metabolism during the ripening process of papaya fruit.


Assuntos
Carica/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteoma , Carica/crescimento & desenvolvimento , Frutas/genética , Proteínas de Plantas/metabolismo , Proteômica
19.
J Sci Food Agric ; 99(13): 5918-5925, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31206684

RESUMO

BACKGROUND: Artificial intelligence systems have been employed for the development of predictive models that estimate many agricultural processes. RESULTS: In present study, the predictive capabilities of artificial neural networks (ANNs) were evaluated with respect to assessing fruit firmness as a postharvest life index, with determinations made at four stages of storage: 1, 60, 120 and 180 days after harvesting. Single concentrations of nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg) on fruit (D1 ), all of these nutrient concentrations (D2 ), the ratios of the nutrient concentrations alone (D3 ), and a combination of nutrient concentrations and their ratios (D4 ), were considered. CONCLUSION: The results obtained showed that fruit firmness at 1 and 60 days after harvesting was not influenced by nutrients. However, the ANN model estimated fruit firmness of 120 and 180 days, respectively, for D1 and D3 more accurately than for the D2 and D4 datasets. Application of D3 (nitrogen/calcium ratio) as the input dataset improved predictions of fruit firmness, with a correlation coefficient of 0.85 between the measured and estimated data. © 2019 Society of Chemical Industry.


Assuntos
Actinidia/química , Frutas/crescimento & desenvolvimento , Magnésio/análise , Redes Neurais (Computação) , Actinidia/crescimento & desenvolvimento , Cálcio/análise , Frutas/química , Nitrogênio/análise , Potássio/análise
20.
J Sci Food Agric ; 99(13): 5910-5917, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228265

RESUMO

BACKGROUND: Colombia is known for its production of fine and aromatic cocoa; however, the lack of homogeneity in the ripeness stage of cocoa fruit affects the final quality of cocoa beans. Therefore, the aim of this work was to identify parameters that can be use as indicators of ripeness in cocoa fruit in order to homogenize the characteristics of raw cocoa used in the production of cocoa-products industry. The parameters evaluated were fruit, seed and pod weight, firmness, color, polar and equatorial diameters of the fruit, seed moisture content, total titratable acidity, pH, and total soluble solids of pulp. RESULTS: Factors such as seed weight, firmness, diameters, total soluble solids, pH, and acidity were affected by the clone factor, whereas seed weight, pH, and total titratable acidity were affected by ripeness stage. CONCLUSION: Identification of indicators of ripeness for cocoa fruit is a complex task due to the influence of the clone on the evolution of the physicochemical characteristics of cocoa fruit during its maturation process. Thus, indicators must be developed for each clone, and at least two parameters among color, pH, and total titratable acidity should be used to determine the ripeness stage of cocoa fruit. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cacau/química , Sementes/crescimento & desenvolvimento , Ácidos/análise , Cacau/classificação , Cacau/crescimento & desenvolvimento , Chocolate , Colômbia , Cor , Frutas/química , Frutas/classificação , Frutas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Sementes/química , Sementes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA