Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.309
Filtrar
1.
Compr Rev Food Sci Food Saf ; 21(5): 4251-4273, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35876655

RESUMO

Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.


Assuntos
Frutas , Verduras , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Frutas/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
2.
Physiol Plant ; 174(4): e13741, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35765704

RESUMO

The implications of grape berry transpiration for the ripening process and final grape composition were studied. An experiment was conducted, under controlled conditions, with fruit-bearing cuttings of Vitis vinifera L. cv. Tempranillo. Three doses of the antitranspirant di-1-p-menthene were applied directly to the bunch at the onset of veraison: 1%, 5%, and 10% (v/v) (D1, D5, and D10, respectively). A treatment with bunches sprayed with water (D0) was also included as a control. Grape and bunch transpiration, and total soluble solids (TSS) accumulation rate decreased as the dose of antitranspirant increased, thus resulting in the lengthening of the ripening period. Bunch transpiration rates were linearly correlated with the elapsed time between veraison and maturity, and with the TSS accumulation rate. The evolution of pH, malic acid and total skin anthocyanins during ripening did not show remarkable changes as a consequence of the artificially reduced bunch transpiration. However, a decoupling between TSS and anthocyanins was observed. At maturity, the bunches treated with D10 had significantly lower must acidity and higher pH and extractable anthocyanin levels, these differences being likely associated with the lengthening of the ripening period. The results show a clear implication of grape transpiration for the ripening process and final grape composition, and give new hints on the direct application of antitranspirants to the bunch as a way to regulate sugar accumulation while avoiding the concurrent delay of color development.


Assuntos
Vitis , Antocianinas/metabolismo , Transporte Biológico , Frutas/fisiologia , Açúcares/análise , Vitis/fisiologia
3.
Plant Physiol ; 190(1): 592-604, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642904

RESUMO

In ripening grape (Vitis sp.) berries, the combination of rapid sugar import, apoplastic phloem unloading, and water discharge via the xylem creates a potential risk for apoplastic sugar to be lost from the berries. We investigated the likelihood of such sugar loss and a possible sugar retrieval mechanism in the pedicels of different Vitis genotypes. Infusion of D-glucose-1-13C or L-glucose-1-13C to the stylar end of attached berries demonstrated that both sugars can be leached from the berries, but only the nontransport sugar L-glucose moved beyond the pedicels. No 13C enrichment was found in peduncles and leaves. Genes encoding 10 sugar transporters were expressed in the pedicels throughout grape ripening. Using an immunofluorescence technique, we localized the sucrose transporter SUC27 to pedicel xylem parenchyma cells. These results indicate that pedicels possess the molecular machinery for sugar retrieval from the apoplast. Plasmodesmata were observed between vascular parenchyma cells in pedicels, and movement of the symplastically mobile dye carboxyfluorescein demonstrated that the symplastic connection is physiologically functional. Taken together, the chemical, molecular, and anatomical evidence gathered here supports the idea that some apoplastic sugar can be leached from grape berries and is effectively retrieved in a two-step process in the pedicels. First, sugar transporters may actively retrieve leached sugar from the xylem. Second, retrieved sugar may move symplastically to the pedicel parenchyma for local use or storage, or to the phloem for recycling back to the berry.


Assuntos
Vitis , Carboidratos/farmacologia , Frutas/fisiologia , Glucose/farmacologia , Açúcares/farmacologia , Vitis/fisiologia
4.
Sci Rep ; 12(1): 8749, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610243

RESUMO

Pineapples are an important agricultural economic crop in Taiwan. Considerable human resources are required to protect pineapples from excessive solar radiation, which could otherwise lead to overheating and subsequent deterioration. Note that simple covering all of the fruit with a paper bag is not a viable solution, due to the fact that it makes it impossible to determine whether the fruit is ripe. This paper proposes a system by which to automate the detection of ripe pineapples. The proposed deep learning architecture enables detection regardless of lighting conditions, achieving accuracy of more than 99.27% with error of less than 2% at distances of 300 ~ 800 mm. This proposed system using an Nvidia TX2 is capable of 15 frames per second, thereby making it possible to mount the device on machines that move at walking speed.


Assuntos
Ananas , Aprendizado Profundo , Ananas/crescimento & desenvolvimento , Ananas/fisiologia , Ananas/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Frutas/efeitos da radiação , Humanos , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Luz Solar/efeitos adversos , Taiwan
5.
J Anim Ecol ; 91(5): 1024-1035, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322415

RESUMO

Apex predators play key roles in food webs and their recovery can trigger trophic cascades in some ecosystems. Intra-guild competition can reduce the abundances of smaller predators and perceived predation risk can alter their foraging behaviour thereby limiting seed dispersal by frugivorous carnivores. However, little is known about how plant-frugivore mutualisms could be disturbed in the presence of larger predators. We evaluated the top-down effect of the regional superpredator, the Iberian lynx Lynx pardinus, on the number of visits and fruits consumed by medium-sized frugivorous carnivores, as well as the foraging behaviour of identified individuals, by examining the consumption likelihood and the foraging time. We carried out a field experiment in which we placed Iberian pear Pyrus bourgaeana fruits beneath fruiting trees and monitored pear removal by frugivorous carnivores, both inside and outside lynx ranges. Using camera traps, we recorded the presence of the red fox Vulpes vulpes, the Eurasian badger Meles meles and the stone marten Martes foina, as well as the number of fruits they consumed and their time spent foraging. Red fox was the most frequent fruit consumer carnivore. We found there were fewer visits and less fruit consumed by foxes inside lynx ranges, but lynx presence did not seem to affect badgers. We did not observe any stone marten visits inside lynx territories. The foraging behaviour of red foxes was also altered inside lynx ranges whereby foxes were less efficient, consuming less fruit per unit of time and having shorter visits. Local availability of fruit resources, forest coverage and individual personality also were important variables to understand visitation and foraging in a landscape of fear. Our results show a potential trophic cascade from apex predators to primary producers. The presence of lynx can reduce frugivorous carnivore numbers and induce shifts in their feeding behaviour that may modify the seed dispersal patterns with likely consequences for the demography of many fleshy-fruited plant species. We conclude that knowledge of the ecological interactions making up trophic webs is an asset to design effective conservation strategies, particularly in rewilding programs.


Los depredadores ápice juegan papeles clave en las cadenas tróficas y su recuperación puede dar lugar a cascadas tróficas en algunos ecosistemas. La competición intra-gremial puede reducir las abundancias de los depredadores más pequeños y el riesgo de depredación percibido puede alterar su comportamiento de forrajeo, llegando a limitar la dispersión de semillas de los carnívoros frugívoros. Sin embargo, se sabe poco sobre cómo un mutualismo planta-animal podría ser alterado en presencia de grandes depredadores. Aquí evaluamos los efectos en cascada del superdepredador regional, el lince ibérico Lynx pardinus, sobre el número de visitas y frutos consumidos por los carnívoros frugívoros de mediano tamaño, a la vez que el comportamiento de alimentación de individuos identificados, examinando la probabilidad de consumo y el tiempo de forrajeo. Llevamos a cabo un experimento en el que colocamos frutos de piruétano Iberian pear bajo árboles productores y monitoreamos la remoción de peras por los carnívoros frugívoros, tanto dentro como fuera de territorios de lince. Mediante el uso de cámaras trampa, registramos la presencia de zorro rojo Vulpes vulpes, tejón europeo Meles meles y garduña Martes foina, además del número de frutos que consumieron y el tiempo que emplearon forrajeando. El zorro rojo fue el carnívoro consumidor de frutos más frecuente. Encontramos que había menos visitas y un menor consumo de frutos por zorros dentro de los territorios del lince, pero la presencia de lince no pareció afectar a los tejones. No registramos ninguna visita de garduña dentro de los territorios de los linces. El comportamiento de forrajeo de los zorros rojos fue también alterado dentro del rango de distribución del lince, donde los zorros fueron menos eficientes, consumieron menos frutos por unidad de tiempo y realizaron visitas más cortas. La disponibilidad local de frutos, la cobertura forestal y la personalidad individual también fueron variables importantes para entender los patrones de visita y forrajeo en un paisaje del miedo. Nuestros resultados muestran una cascada trófica potencial desde un superdepredador hasta los productores primarios. La presencia de lince puede reducir la abundancia de carnívoros frugívoros e inducir cambios en sus patrones de alimentación que pueden modificar los patrones de dispersión de semillas con probables consecuencias para la demografía de muchas especies de plantas de fruto carnoso. Concluimos que el conocimiento de las interacciones ecológicas que componen las redes tróficas es esencial para diseñar estrategias de conservación eficaces, especialmente en programas de reintroducción.


Assuntos
Carnívoros/fisiologia , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Frutas/fisiologia , Comportamento Predatório/fisiologia , Animais , Ecossistema , Raposas/fisiologia , Lynx/fisiologia , Mustelidae/fisiologia , Simbiose
6.
Sci Rep ; 12(1): 2272, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145206

RESUMO

Jujube is a crop highly resistant to drought and salinity, making it one of the main fruit trees in Xinjiang. The present study evaluated the changes in the physicochemical and antioxidant activities of jujube fruit of eight different cultivars from Xinjiang, China. The developmental stages were selected according to the days after full bloom and fruit peel colour during ripening; these stages included young (S1), fruit core-hardening (S2), green ripening (S3), half-red maturity (S4) and complete red. In present study, different cultivars of jujube fruit showed similar chemical profiles, but their amounts showed great variation. HZ had the highest content of sugars, and JY had the highest content of cAMP and cGMP, while relatively higher levels of ascorbic acid, catechin, epicatechin, rutin, proanthocyanidin and antioxidant activity were found in 'FS' than in other cultivars, indicating that 'FS' could be used as a potential natural antioxidant. Regarding the development stages of jujube fruit, the moisture, ascorbic acid, total polyphenol, catechin, epicatechin, proanthocyanidin and rutin contents decreased during the development of all jujube cultivars, while the fructose, glucose, sucrose, cAMP, and cGMP contents greatly increased. The antioxidant activity determined by DPPH and ABTS radical scavenging decreased as the fruits matured. Therefore, the results suggest that green jujube (S1) could be used for natural antioxidants (catechin, epicatechin, proanthocyanidin) and that the advanced ripening stage(S5) is the proper picking period for fresh fruit and commercial processing.


Assuntos
Antioxidantes/metabolismo , Frutas/fisiologia , Fenóis/metabolismo , Ziziphus/fisiologia , Ácido Ascórbico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Especificidade da Espécie , Açúcares/metabolismo
7.
BMC Plant Biol ; 22(1): 79, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193520

RESUMO

BACKGROUND: Anthocyanins have distinct biological functions in plant coloring, plant defense against strong light, UV irradiation, and pathogen infection. Aromatic hydroxyl groups and ortho-dihydroxyl groups in anthocyanins are able to inhibit free-radical chain reactions and hydroxyl radicals. Thus, anthocyanins play an antioxidative role by removing various types of ROS. Pepper is one of the solanaceous vegetables with the largest cultivation area in China. The purple-fruited pepper is rich in anthocyanins, which not only increases the ornamental nature of the pepper fruit but also benefits the human body. In this experiment, light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis were examined through integrative transcriptomic and metabolomic analysis. RESULTS: Results revealed that delphinium 3-O-glucoside significantly accumulated in light exposed surface of pepper fruit after 48 h as compared to shaded surface. Furthermore, through strand-specific sequencing technology, 1341 differentially expressed genes, 172 differentially expressed lncRNAs, 8 differentially expressed circRNAs, and 28 differentially expressed miRNAs were identified significantly different among both surfaces. The flavonoid synthesis pathway was significantly enriched by KEGG analysis including SHT (XM_016684802.1), AT-like (XM_016704776.1), CCoAOMT (XM_016698340.1, XM_016698341.1), CHI (XM_016697794.1, XM_016697793.1), CHS2 (XM_016718139.1), CHS1B (XM_016710598.1), CYP98A2-like (XM_016688489.1), DFR (XM_016705224.1), F3'5'H (XM_016693437.1), F3H (XM_016705025.1), F3'M (XM_016707872.1), LDOX (XM_016712446.1), TCM (XM_016722116.1) and TCM-like (XM_016722117.1). Most of these significantly enriched flavonoid synthesis pathway genes may be also regulated by lncRNA. Some differentially expressed genes encoding transcription factors were also identified including MYB4-like (XM_016725242.1), MYB113-like (XM_016689220.1), MYB308-like (XM_016696983.1, XM_016702244.1), and EGL1 (XM_016711673.1). Three 'lncRNA-miRNA-mRNA' regulatory networks with sly-miR5303, stu-miR5303g, stu-miR7997a, and stu-miR7997c were constructed, including 28 differentially expressed mRNAs and 6 differentially expressed lncRNAs. CONCLUSION: Possible light regulated anthocyanin biosynthesis and transport genes were identified by transcriptome analysis, and confirmed by qRT-PCR. These results provide important data for further understanding of the anthocyanin metabolism in response to light in pepper.


Assuntos
Antocianinas/biossíntese , Capsicum/genética , Capsicum/metabolismo , MicroRNAs/genética , Antocianinas/análise , Antocianinas/genética , Capsicum/fisiologia , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Pigmentação , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética
8.
PLoS Comput Biol ; 18(1): e1009610, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020716

RESUMO

Dynamic models based on non-linear differential equations are increasingly being used in many biological applications. Highly informative dynamic experiments are valuable for the identification of these dynamic models. The storage of fresh fruit and vegetables is one such application where dynamic experimentation is gaining momentum. In this paper, we construct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the respiration and fermentation parameters. Locally optimal design of input profiles, which uses a single initial guess for the parameters, is the traditional method to deal with this issue. This method, however, is very sensitive to the initial values selected for the model parameters. Therefore, we present a robust experimental design approach that can handle uncertainty on the model parameters.


Assuntos
Respiração Celular/fisiologia , Fermentação/fisiologia , Frutas , Modelos Biológicos , Verduras , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Biologia Computacional , Frutas/química , Frutas/metabolismo , Frutas/fisiologia , Cinética , Oxigênio/análise , Oxigênio/metabolismo , Verduras/química , Verduras/metabolismo , Verduras/fisiologia
9.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056801

RESUMO

Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1-5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology.


Assuntos
Filmes Comestíveis , Conservação de Alimentos/métodos , Frutas/química , Química Verde/métodos , Compostos Fitoquímicos/química , Azadirachta/química , Enzimas/metabolismo , Frutas/fisiologia , Malus/química , Malus/fisiologia , Melia azedarach/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Respiração , Paladar , Água/química
10.
Sci Rep ; 12(1): 1407, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082381

RESUMO

Female plants not only flower but also produce resource-rich seeds, fruits, and cones. Thus, it is generally considered that female plants allocate more resources to sexual reproduction than male plants and that this allocation difference can explain vegetative dimorphism, such as greater leaf size in females. We found significant sexual vegetative differences in the dioecious and serotinous species, Aulax umbellata and A. cancellata. Plant height, annual branch length and canopy spread were greater in males whereas leaf size, branch thickness and branch number were greater in females. Sex ratios and basal stem area were, however, equal in the sexes. Equal sex ratios imply equal allocation to sexual reproduction and equal stem areas imply equal resource use and biomass, and thus allocation to vegetative growth. Given equal allocation to reproduction and resource use, we suggest that the vegetative dimorphism is driven by intra-male-competition to be more visually conspicuous to pollinators. This implies that plant architecture is both a vegetative and a reproductive trait.


Assuntos
Flores/anatomia & histologia , Frutas/anatomia & histologia , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Proteaceae/anatomia & histologia , Biomassa , Flores/fisiologia , Frutas/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Polinização/fisiologia , Proteaceae/fisiologia , Caracteres Sexuais , África do Sul
11.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055010

RESUMO

Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.


Assuntos
Camellia/fisiologia , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/genética , Açúcares/metabolismo , Transcriptoma , Metabolismo dos Carboidratos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/metabolismo , Especificidade de Órgãos , Desenvolvimento Vegetal/genética
12.
Physiol Plant ; 174(1): e13627, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35040145

RESUMO

Fleshy fruit, the most economical and nutritional value unique to flowering plants, is an important part of our daily diet. Previous studies have shown that fruit ripening is regulated by transcription factors and the plant hormone ethylene, but recent research has also shown that epigenetics also plays an essential role, especially DNA methylation. DNA methylation is the process of transferring -CH3 to the fifth carbon of cytosine residues under the action of methyltransferase to form 5-methylcytosine (5-mC). So far, most works have been focused on tomato. Tomato ripening is dynamically regulated by DNA methylation and demethylation, but the understanding of this mechanism is still in its infancy. The dysfunction of a DNA demethylase, DEMETER-like DNA demethylases 2 (DML2), prevents the ripening of tomato fruits, but immature fruits ripen prematurely under the action of DNA methylation inhibitors. Additionally, studies have shown that the relationship between fruit quality and DNA methylation is not linear, but the specific molecular mechanism is still unclear. Here, we review the recent advances in the role of DNA methylation in tomato fruit ripening, the interaction of ripening transcription factors and DNA methylation, and its effects on quality. Then, a number of questions for future research of DNA methylation regulation in tomato fruit ripening is proposed.


Assuntos
Lycopersicon esculentum , Metilação de DNA/genética , Etilenos , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
Plant Biol (Stuttg) ; 24(4): 594-601, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34866296

RESUMO

Hydrogen sulphide (H2 S) is a gaseous molecule and originates endogenously in plants. It is considered a potential signalling agent in various physiological processes of plants. Numerous reports have examined the role of H2 S in fruit ripening and in enhancing fruit quality traits. H2 S coordinates the fruit antioxidant system, fruit ripening phytohormones, such as ethylene and abscisic acid, together with other ripening-related signalling molecules, including nitric oxide and hydrogen peroxide. Although many studies have increased understanding of various aspects of this complex network, there is a gap in understanding crosstalk of H2 S with key players of fruit ripening, postharvest senescence and fruit metabolism. This review focused on deciphering fruit H2 S metabolism, signalling and its interaction with other ripening-related signalling molecules during fruit ripening and postharvest storage. Moreover, we also discuss how H2 S can be used as a tool for improving fruit quality and productivity and reducing postharvest loss of perishable fruits.


Assuntos
Frutas , Sulfeto de Hidrogênio , Ácido Abscísico/metabolismo , Frutas/fisiologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
14.
Theor Appl Genet ; 135(2): 591-604, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34762177

RESUMO

KEY MESSAGE: Genome-wide association study, bulked segregant analysis, and genetic analysis delimited the LG locus controlling light-green immature pepper fruits into a 35.07 kbp region on chromosome 10. A strong candidate gene, CaPP2C35, was identified in this region. In pepper (Capsicum annuum L.), the common colors of immature fruits are yellowish white, milky yellow, green, purple, and purplish black. Genes related to dark green, white, and purple immature fruits have been cloned; however, only a few studies have investigated light-green immature fruits. Here, we performed a genetic study using light-green (17C827) and green (17C658) immature fruits. The light-green color of immature fruits was controlled by a single locus-dominant genetic trait compared with the green color of immature fruits. We also performed a genome-wide association study and bulked segregant analysis of immature-fruit color and mapped the LG locus to a 35.07 kbp region on chromosome 10. Only one gene, Capana10g001710, was found in this region. A G-A substitution occurred at the 313th base of the Capana10g001710 coding sequence in 17C827, resulting in the conversion of the α-helix of its encoded PP2C35 protein into a ß-fold. The expression of Capana10g001710 (termed CaPP2C35) in 17C827 was significantly higher than in 17C658. Silencing CaPP2C35 in 17C827 resulted in an increase in chlorophyll content in the exocarp and the appearance of green stripes on the surface of the fruit. These results indicate that CaPP2C35 may be involved in the formation of light-green immature fruits by regulating the accumulation of chlorophyll content in the exocarp. Thus, these findings lay the foundation for further studies and genetic improvement of immature-fruit color in pepper.


Assuntos
Capsicum , Capsicum/fisiologia , Clorofila/metabolismo , Frutas/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
New Phytol ; 233(3): 1202-1219, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729792

RESUMO

The ripening of fleshy fruits is a unique developmental process that Arabidopsis and rice lack. This process is driven by hormones and transcription factors. However, the critical and early regulators of fruit ripening are still poorly understood. Here, we revealed that SlJMJ7, an H3K4 demethylase, is a critical negative regulator of fruit ripening in tomato. Combined genome-wide transcription, binding sites, histone H3K4me3 and DNA methylation analyses demonstrated that SlJMJ7 regulates a key group of ripening-related genes, including ethylene biosynthesis (ACS2, ACS4 and ACO6), transcriptional regulation (RIN and NOR) and DNA demethylation (DML2) genes, by H3K4me3 demethylation. Moreover, loss of SlJMJ7 function leads to increased H3K4me3 levels, which directly activates ripening-related genes, and to global DML2-mediated DNA hypomethylation in fruit, which indirectly prompts expression of ripening-related genes. Together, these effects lead to accelerated fruit ripening in sljmj7 mutant. Our findings demonstrate that SlJMJ7 acts as a master negative regulator of fruit ripening not only through direct removal of H3K4me3 from multiple key ripening-related factors, but also through crosstalk between histone and DNA demethylation. These findings reveal a novel crosstalk between histone methylation and DNA methylation to regulate gene expression in plant developmental processes.


Assuntos
Lycopersicon esculentum , DNA , Desmetilação do DNA , Metilação de DNA/genética , Etilenos/metabolismo , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lycopersicon esculentum/metabolismo , Proteínas de Plantas/metabolismo
16.
Plant Cell Environ ; 45(1): 69-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705293

RESUMO

Reproductive success largely defines the fitness of plant species. Understanding how heat and drought affect plant reproduction is thus key to predicting future plant fitness under rising global temperatures. Recent work suggests reproductive tissues are highly vulnerable to water stress in perennial plants where reproductive sacrifice could preserve plant survival. However, most crop species are annuals where such a strategy would theoretically reduce fitness. We examined the reproductive strategy of tomato (Solanum lycopersicum var. Rheinlands Ruhm) to determine whether water supply to fruits is prioritized above vegetative tissues during drought. Using optical methods, we mapped xylem cavitation and tissue shrinkage in vegetative and reproductive organs during dehydration to determine the priority of water flow under acute water stress. Stems and peduncles of tomato showed significantly greater xylem cavitation resistance than leaves. This maintenance of intact water supply enabled tomato fruit to continue to expand during acute water stress, utilizing xylem water made available by tissue collapse and early cavitation of leaves. Here, tomato plants prioritize water supply to reproductive tissues, maintaining fruit development under drought conditions. These results emphasize the critical role of water transport in shaping life history and suggest a broad relevance of hydraulic prioritization in plant ecology.


Assuntos
Frutas/crescimento & desenvolvimento , Lycopersicon esculentum/fisiologia , Desidratação , Secas , Frutas/fisiologia , Lycopersicon esculentum/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia
17.
Plant Physiol ; 187(3): 1189-1201, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734274

RESUMO

Dominance inhibition of shoot growth by fruit load is a major factor that regulates shoot architecture and limits yield in agriculture and horticulture crops. In annual plants, the inhibition of inflorescence growth by fruit load occurs at a late stage of inflorescence development termed the end of flowering transition. Physiological studies show this transition is mediated by production and export of auxin from developing fruits in close proximity to the inflorescence apex. In the meristem, cessation of inflorescence growth is controlled in part by the age-dependent pathway, which regulates the timing of arrest. Here, we show the end of flowering transition is a two-step process in Arabidopsis (Arabidopsis thaliana). The first stage is characterized by a cessation of inflorescence growth, while immature fruit continues to develop. At this stage, dominance inhibition of inflorescence growth by fruit load is associated with a selective dampening of auxin transport in the apical region of the stem. Subsequently, an increase in auxin response in the vascular tissues of the apical stem where developing fruits are attached marks the second stage for the end of flowering transition. Similar to the vegetative and floral transition, the end of flowering transition is associated with a change in sugar signaling and metabolism in the inflorescence apex. Taken together, our results suggest that during the end of flowering transition, dominance inhibition of inflorescence shoot growth by fruit load is mediated by auxin and sugar signaling.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Arabidopsis/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/fisiologia
18.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833910

RESUMO

The greatest challenge for the avocado (Persea americana Miller) industry is to maintain the quality of the fruit to meet consumer requirements. Anthracnose is considered the most important disease in this industry, and it is caused by different species of the genus Colletotrichum, although other pathogens can be equally important. The defense mechanisms that fruit naturally uses can be triggered in response to the attack of pathogenic microorganisms and also by the application of exogenous elicitors in the form of GRAS compounds. The elicitors are recognized by receptors called PRRs, which are proteins located on the avocado fruit cell surface that have high affinity and specificity for PAMPs, MAMPs, and DAMPs. The activation of defense-signaling pathways depends on ethylene, salicylic, and jasmonic acids, and it occurs hours or days after PTI activation. These defense mechanisms aim to drive the pathogen to death. The application of essential oils, antagonists, volatile compounds, chitosan and silicon has been documented in vitro and on avocado fruit, showing some of them to have elicitor and fungicidal effects that are reflected in the postharvest quality of the fruit and a lower incidence of diseases. The main focus of these studies has been on anthracnose diseases. This review presents the most relevant advances in the use of natural compounds with antifungal and elicitor effects in plant tissues.


Assuntos
Colletotrichum/patogenicidade , Persea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Resistência à Doença/fisiologia , Frutas/efeitos dos fármacos , Frutas/microbiologia , Frutas/fisiologia , Óleos Voláteis/farmacologia , Persea/efeitos dos fármacos , Persea/fisiologia , Compostos Orgânicos Voláteis/farmacologia
19.
Genes (Basel) ; 12(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828330

RESUMO

The developmentally programmed loss of a plant organ is called abscission. This process is characterized by the ultimate separation of adjacent cells in the abscission zone (AZ). The discovery of an American oil palm (Elaeis oleifera) variant that does not shed its has allowed for the study of the mechanisms of ripe fruit abscission in this species. A comparative transcriptome analysis was performed to compare the fruit AZs of the non-shedding E. oleifera variant to an individual of the same progeny that sheds its ripe fruit normally. The study provides evidence for widespread perturbation to gene expression in the AZ of the non-shedding variant, compared to the normal fruit-shedding control, and offers insight into abscission-related functions. Beyond the genes with known or suspected roles during organ abscission or indehiscence that were identified, a list of genes with hormone-related functions, including ethylene, jasmonic acid, abscisic acid, cytokinin and salicylic acid, in addition to reactive oxygen species (ROS) metabolism, transcriptional responses and signaling pathways, was compiled. The results also allowed a comparison between the ripe fruit abscission processes of the African and American oil palm species at the molecular level and revealed commonalities with environmental stress pathways.


Assuntos
Arecaceae/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
20.
BMC Plant Biol ; 21(1): 539, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784881

RESUMO

BACKGROUND: Litchi is a well-known subtropical fruit crop. However, irregular bearing attributed to unstable flowering is a major ongoing problem for the development of the litchi industry. In a previous study, our laboratory proved that litchi flowering was induced by low temperature and that a FLOWERING LOCUS T (FT) homologue gene named LcFT1 played a pivotal role in this process. The present study aimed to understand the natural variation in FT among litchi germplasm resources and designed markers to verify easy- and difficult-flowering litchi germplasms. A grafting experiment was also carried out to explore whether it could shorten the seedling stage of litchi seedlings. RESULTS: Two types of LcFT1 promoter existed in different litchi germplasm resources, and we named them the 'easy-flowering type of LcFT1 promoter' and 'difficult-flowering type of LcFT1 promoter', which resulted in three different LcFT1 genotypes of litchi germplasm resources, including the homozygous easy-flowering type of the LcFT1 genotype, homozygous difficult-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of litchi germplasm resources. The homozygous easy-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of the litchi germplasm resources completed their floral induction more easily than the homozygous difficult-flowering type of the LcFT1 genotype of litchi germplasm resources. Herein, we designed two kinds of efficient molecular markers based on the difference in LcFT1 promoter sequences and applied them to identify of the easy- and difficult-flowering litchi germplasm resources. These two kinds of molecular markers were capable of clearly distinguishing the easy- from difficult-flowering litchi germplasm resources at the seedling stage and provided the same results. Meanwhile, grafting the scion of seedlings to the annual branches of adult litchi trees could significantly shorten the seedling stage. CONCLUSIONS: Understanding the flowering characteristics of litchi germplasm resources is essential for easy-flowering litchi breeding. In the present study, molecular markers provide a rapid and accurate approach for identifying the flowering characteristics. The application of these molecular markers not only significantly shortened the artificial crossbreeding cycle of easy-flowering litchi cultivars but also greatly saved manpower, material resources and land.


Assuntos
Frutas/metabolismo , Litchi/metabolismo , Flores/metabolismo , Flores/fisiologia , Frutas/fisiologia , Litchi/fisiologia , Melhoramento Vegetal , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...