Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.015
Filtrar
1.
Nat Commun ; 11(1): 4904, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994391

RESUMO

Mammalian frugivores are critical seed dispersers, but many are under threat of extinction. Futhermore, the impact of past and future defaunation on plant assemblages has yet to be quantified at the global scale. Here, we integrate palm and mammalian frugivore trait and occurrence data and reveal a global positive relationship between fruit size and frugivore body size. Global variation in fruit size is better explained by present-day frugivore assemblages than by Late Pleistocene assemblages, suggesting ecological and evolutionary reorganization after end-Pleistocene extinctions, except in the Neotropics, where some large-fruited palm species may have outlived their main seed dispersers by thousands of years. Our simulations of frugivore extinction over the next 100 years suggest that the impact of defaunation will be highest in the Old World tropics, and an up to 4% assemblage-level decrease in fruit size would be required to maintain the global body size-fruit size relationship. Overall, our results suggest that while some palm species may be able to keep pace with future defaunation through evolutionary changes in fruit size, large-fruited species may be especially vulnerable to continued defaunation.


Assuntos
Arecaceae/fisiologia , Coevolução Biológica , Conservação dos Recursos Naturais , Frutas/anatomia & histologia , Mamíferos/fisiologia , Animais , Arecaceae/anatomia & histologia , Tamanho Corporal/genética , Conjuntos de Dados como Assunto , Extinção Biológica , Frutas/genética , Herbivoria/fisiologia , Mamíferos/anatomia & histologia , Tamanho do Órgão/genética , Locos de Características Quantitativas , Dispersão de Sementes/fisiologia
2.
PLoS One ; 15(8): e0236509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785243

RESUMO

Knowledge about population genetic structure and dispersal capabilities is important for the development of targeted management strategies for agricultural pest species. The apple fruit moth, Argyresthia conjugella (Lepidoptera, Yponomeutidae), is a pre-dispersal seed predator. Larvae feed on rowanberries (Sorbus aucuparia), and when rowanberry seed production is low (i.e., inter-masting), the moth switches from laying eggs in rowanberries to apples (Malus domestica), resulting in devastating losses in apple crops. Using genetic methods, we investigated if this small moth expresses any local genetic structure, or alternatively if gene flow may be high within the Scandinavian Peninsula (~850.000 km2, 55o - 69o N). Genetic diversity was found to be high (n = 669, mean He = 0.71). For three out of ten tetranucleotide STRs, we detected heterozygote deficiency caused by null alleles, but tests showed little impact on the overall results. Genetic differentiation between the 28 sampling locations was very low (average FST = 0.016, P < 0.000). Surprisingly, we found that all individuals could be assigned to one of two non-geographic genetic clusters, and that a third, geographic cluster was found to be associated with 30% of the sampling locations, with weak but significant signals of isolation-by-distance. Conclusively, our findings suggest wind-aided dispersal and spatial synchrony of both sexes of the apple fruit moth over large areas and across very different climatic zones. We speculate that the species may recently have had two separate genetic origins caused by a genetic bottleneck after inter-masting, followed by rapid dispersal and homogenization of the gene pool across the landscape. We suggest further investigations of spatial genetic similarities and differences of the apple fruit moth at larger geographical scales, through life-stages, across inter-masting, and during attacks by the parasitoid wasp (Microgaster politus).


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Mariposas/genética , Oviposição/fisiologia , Animais , Frutas/genética , Fluxo Gênico , Variação Genética , Larva/genética , Larva/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Malus/parasitologia , Mariposas/patogenicidade , Mariposas/fisiologia , Oviposição/genética , Dispersão de Sementes/genética , Sorbus/genética , Sorbus/parasitologia
3.
PLoS One ; 15(8): e0237741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804977

RESUMO

Region-specific local landraces represent a germplasm diversity adapted and acclimatized to local conditions, and are ideal to breed for targeted market niches while maintaining the variability of heirloom traits. A collection of 180 pepper accessions, collected from 62 diverse locations across six Balkan countries, were characterized and evaluated for phenotypic and biochemical variation during a multi-year environment. An assortment of 32 agro-morphological, fruit quality, and virus resistance traits were evaluated, and the top 10% accessions were identified. A wide range of trait variation concerning plant architecture, inflorescence and fruit traits, yield and fruit quality was observed, and appreciable variation was noticed. According to hierarchical clustering, six distinct clusters were established based on pre-defined varietal groups. Divergence among accessions for phenotypic and fruit compositional variability was analyzed, and eight principal components were identified that contributed ~71% of the variation, with fruit shape, width, wall thickness, weight, and fruit quality traits being the most discriminant. Evaluation of the response to tobacco mosaic virus (TMV) and pepper mild mottle mosaic virus (PMMoV) showed that 24 and 1 accession were resistant, respectively while no tomato spotted wilt virus (TSWV) resistance was found. Considerable diversity for agro-bio-morphological traits indicates the Balkan pepper collection as good gene sources for pre-breeding and cultivar development that are locally adapted.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Península Balcânica , Capsicum/química , Capsicum/virologia , Frutas/química , Frutas/genética , Frutas/virologia , Variação Genética , Fenótipo , Tobamovirus/patogenicidade , Tospovirus/patogenicidade
4.
Mol Genet Genomics ; 295(6): 1415-1429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656702

RESUMO

Penicillium expansum is a destructive phytopathogen causing postharvest decay on many stored fruits. To develop effective and safe management strategies, it is important to investigate its pathogenicity-related mechanisms. In this study, a bioinformatic pipeline was constructed and 50 core effector genes were identified in P. expansum using multiple RNA-seq data sets and their putative functions were implicated by comparatively homologous analyses using pathogen-host interaction database. To functionally characterize P. expansum LysM domain proteins during infection, null mutants for the 15 uncharacterized putative LysM effectors were constructed and the fungal growth rate on either PDA or Cazpek medium or lesion expansion rate on the infected apple fruits was evaluated. The results showed the growth rate of knockout mutants from PeLysM5, PeLysM12 and PeLysM15 was retarded on PDA medium. No significant difference in growth rate was observed between wild type and all mutants on solid Cazpek medium. Nevertheless, the hypha of wild type displayed deeper yellow on the back of Cazpek medium than those of knockout mutants. On the infecting apples fruits, the knockout mutants from PeLysM5, PeLysM7, PeLysM8, PeLysM9, PeLysM10, PeLysM11, PeLysM14, PeLysM15, PeLysM16, PeLysM18 and PeLysM19 showed enhanced fungal virulence, with faster decaying on infected fruits than those from wild type. By contrast, the knockout mutation at PeLysM12 locus led to reduced lesion expansion rate on the infected apple fruits. In addition, P. expansum-apple interaction RNA-seq experiment was performed using apple fruit tissues infected by the wild type and knockout mutant ΔPeLysM15, respectively. Transcriptome analyses indicated that deletion of PeLysM15 could activate expression of several core effector genes, such as PEX2_055830, PEX2_036960 and PEX2_108150, and a chitin-binding protein, PEX2_064520. These results suggest PeLysM15 may play pivotal roles in fungal growth and development and involve pathogen-host interaction by modulating other effector genes' expression. Our results could provide solid data reference and good candidates for further pathogen-related studies in P. expansum.


Assuntos
Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Penicillium/crescimento & desenvolvimento , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Transcriptoma , Frutas/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Malus/genética , Penicillium/genética , Doenças das Plantas/genética , Virulência
5.
Arch Biochem Biophys ; 690: 108471, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622788

RESUMO

Stilbenes, an active substances closely related to resistance and quality of grapes, are rarely found in natural resources. However its cumulative amount is affected by ultraviolet radiation (UV). The purpose of this study is to screen key genes in biosynthesis of stilbenes Trans-scripusin A and explore its synthetic pathway. We tested content of stilbenes with UHPLC-QQQ-MS2, results revealed that stilbenes accumulation is positively correlated with UV-B exposure time. Then, we performed transcriptome high-throughput sequencing of grapes under treatments. Results shown that 13,906 differentially expressed genes were obtained, which were mainly enriched in three major regions (ribosome, plant-pathogen interaction and biosynthesis of flavonoid). Three genes of trans-scripusin A synthesis pathway key got by combining KEGG annotation and reference gene HsCYP1B1. Phylogenetic analysis showed that SAH genes had high homology with other hydroxylase genes, and distributed in two subgroups. Gene structure analysis showed that SAH genes contained four exons, indicating that gene has low genetic diversity. Chromosome localization revealed that SAH genes were distributed on different chromosomes, in addition, the number of gene pairs between Vitis vinifera and other species was not related to genome size of other species. The expression profiles of SAH genes in different parts of Vitis vinifera L. were analyzed using qRT-PCR analysis, results indicated that expression of SAH genes be specific to fruit part. These paper provide theoretical basis for further study of polyphenols biosynthesis pathway in grape fruits. The study provides novel insights for further understanding quality of grapes response to UV radiation.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , RNA Mensageiro/efeitos da radiação , Vitis/genética , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/efeitos da radiação , Ensaios de Triagem em Larga Escala , Conformação de Ácido Nucleico , Filogenia , Polifenóis/metabolismo , RNA-Seq , Ribossomos/metabolismo , Estilbenos/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Espectrometria de Massas em Tandem , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação
6.
Gene ; 752: 144784, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32439372

RESUMO

The plant-specific YABBY transcription factors have important biological roles in plant morphogenesis, growth and development. In this study, we identified six YABBY genes in pomegranate (Punica granatum) and characterized their expression pattern during flower development. Six PgYABBY genes were divided into five subfamilies (YAB1/3, YAB2, INO, CRC, and YAB5), based on protein sequence, motifs and similarity of exon-intron structure. Next, analysis of putative cis-acting element showed that PgYABBYs contained lots of hormone response and stress response elements. Subsequently, gene function prediction and protein-protein network analysis showed that PgYABBYs were associated with the development of apical meristem, flower, carpel, and ovule. Analysis of PgYABBY genes expression in various structures and organs suggested that PgYABBYs were highly activated in flower, leaf and seed coat. Analysis of expression during flower development in pomegranate showed that PgINO might play critical role in regulating the differentiation of flowers. This study provided a theoretical basis for function research and utilization of YABBY genes in pomegranate.


Assuntos
Flores/genética , Romã (Fruta)/genética , Sequência de Aminoácidos , Evolução Molecular , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Meristema/metabolismo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Romã (Fruta)/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética
7.
PLoS One ; 15(5): e0232818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407352

RESUMO

Breeding for yield and fruit quality traits in passion fruits is complex due to the polygenic nature of these traits and the existence of genetic correlations among them. Therefore, studies focused on crop management practices and breeding using modern quantitative genetic approaches are still needed, especially for Passiflora alata, an understudied crop, popularly known as the sweet passion fruit. It is highly appreciated for its typical aroma and flavor characteristics. In this study, we aimed to reevaluate 30 genotypes previously selected for fruit quality from a 100 full-sib sweet passion fruit progeny in three environments, with a view to estimating the heritability and genetic correlations, and investigating the GEI and response to selection for nine fruit traits (weight, diameter and length of the fruit; thickness and weight of skin; weight and yield of fruit pulp; soluble solids, and yield). Pairwise genetic correlations among the fruit traits showed mostly intermediate to high values, especially those associated with fruit size and shape. Different genotype rankings were obtained regarding the predicted genetic values of weight of skin, thickness of skin and weight of pulp in each environment. Finally, we used a multiplicative selection index to select simultaneously for weight of pulp and against fruit skin thickness and weight. The response to selection was positive for all traits except soluble solids, and the 20% superior (six) genotypes were ranked. Based on the assumption that incompatibility mechanisms exist in P. alata, the selected genotypes were intercrossed in a complete diallel mating scheme. It is worth noting that all genotypes produced fruits, which is essential to guarantee yields in commercial orchards.


Assuntos
Frutas/genética , Interação Gene-Ambiente , Passiflora/genética , Cruzamento , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Variação Genética/genética , Genótipo , Passiflora/crescimento & desenvolvimento , Seleção Genética/genética
8.
PLoS One ; 15(5): e0232626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374762

RESUMO

The aim of this study is to determine the involvement of the flavonol-anthocyanin pathway on plant adaptation to biotic stress using the B.amyloliquefaciens QV15 to trigger blackberry metabolism and identify target genes to improve plant fitness and fruit quality. To achieve this goal, field-grown blackberries were root-inoculated with QV15 along its growth cycle. At fruiting, a transcriptomic analysis by RNA-Seq was performed on leaves and fruits of treated and non-treated field-grown blackberries after a sustained mildew outbreak; expression of the regulating and core genes of the Flavonol-Anthocyanin pathway were analysed by qPCR and metabolomic profiles by UHPLC/ESI-qTOF-MS; plant protection was found to be up to 88%. Overexpression of step-controlling genes in leaves and fruits, associated to lower concentration of flavonols and anthocyanins in QV15-treated plants, together with a higher protection suggest a phytoanticipin role for flavonols in blackberry; kempferol-3-O-rutinoside concentration was strikingly high. Overexpression of RuF3H (Flavonol-3-hidroxylase) suggests a pivotal role in the coordination of committing steps in this pathway, controlling carbon flux towards the different sinks. Furthermore, this C demand is supported by an activation of the photosynthetic machinery, and boosted by a coordinated control of ROS into a sub-lethal range, and associated to enhanced protection to biotic stress.


Assuntos
Adaptação Fisiológica , Antocianinas/metabolismo , Bacillus amyloliquefaciens/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Rubus/enzimologia , Rubus/microbiologia , Estresse Fisiológico , Sistema Enzimático do Citocromo P-450/genética , Frutas/enzimologia , Frutas/genética , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Folhas de Planta/enzimologia , Folhas de Planta/microbiologia , Rubus/genética
9.
Physiol Plant ; 170(1): 120-131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32356387

RESUMO

To examine the physiological role of hexose transporters in determining the sink strength of individual fruits, the regulation of hexose transporters gene expression was studied when the sink/source ratio was artificially altered under the greenhouse condition; this was done in two cultivars of tomato, i.e. Grandella and Isabella. The sink/source ratio treatments included: saving one fruit per truss (1F), two fruits per truss (2F), three fruits per truss (3F) and no fruit pruning (control). The results showed that fruit thinning could increase starch, sucrose, and hexose contents in the fruits; it could also modulate the activity of the key enzymes and the expression of tomato hexose transporter genes (LeHTs). Based on the relative transcript levels, all examined LeHTs were unregulated at the end of cell division and the cell expansion stage of fruit development, but the strongest expression level observed at the onset of ripening was related to LeHT1 and LeHT2. Given the concomitancy of cell wall invertase (EC 3.2.1.26) activity and the LeHTs relative expression cell wall, invertase activity seemed to be involved in the expression level of LeHTs. The increased trends of the LeHTs expression with the decrease of the sink/source ratio confirmed the role of hexose transporters in determining the sink strength of the tomato fruits.


Assuntos
Lycopersicon esculentum/genética , Frutas/genética , Hexoses , Proteínas de Transporte de Monossacarídeos/genética , beta-Frutofuranosidase
10.
PLoS One ; 15(4): e0219884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275655

RESUMO

Among the genus Actinidia, Actinidia arguta possesses the strongest cold resistance and produces fresh fruit with an intense flavor. To investigate genomic variation that may contribute to variation in phenotypic traits, we performed whole-genome re-sequencing of four A. arguta genotypes originating from different regions in China and identified the polymorphisms using InDel markers. In total, 4,710,650, 4,787,750, 4,646,026, and 4,590,616 SNPs and 1,481,002, 1,534,198, 1,471,304, and 1,425,393 InDels were detected in the 'Ruby-3', 'Yongfeng male', 'Kuilv male', and 'Hongbei male' genomes, respectively, compared with the reference genome sequence of cv 'Hongyang'. A subset of 120 InDels were selected for re-sequencing validation. Additionally, genes related to non-synonymous SNPs and InDels in coding domain sequences were screened for functional analysis. The analysis of GO and KEGG showed that genes involved in cellular responses to water deprivation, sucrose transport, decreased oxygen levels and plant hormone signal transduction were significantly enriched in A. arguta. The results of this study provide insight into the genomic variation of kiwifruit and can inform future research on molecular breeding to improve cold resistance in kiwifruit.


Assuntos
Actinidia/genética , Genoma de Planta , DNA de Plantas/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Mutação INDEL , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
11.
Tree Physiol ; 40(9): 1247-1259, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32348527

RESUMO

The APETALA1/SQUAMOSA (AP1/SQUA)-like genes of flowering plants play crucial roles in the development processes of floral meristems, sepals, petals and fruits. Although many of the AP1/SQUA-like genes have been characterized in angiosperms, few have been identified in basal angiosperm taxa. Therefore, the functional evolution of the AP1/SQUA subfamily is still unclear. We characterized an AP1 homolog, MawuAP1, from Magnolia wufengensis that is an ornamental woody plant belonging to the basal angiosperms. Gene sequence and phylogenetic analyses suggested that MawuAP1 was clustered with the FUL-like homologous genes of basal angiosperms and had FUL motif and paleoAP1 motif domain, but it did not have the euAP1 motif domain of core eudicots. Expression pattern analysis showed that MawuAP1 was highly expressed in vegetative and floral organs, particularly in the early stage of flower bud development and pre-anthesis. Protein-protein interaction pattern analysis revealed that MawuAP1 has interaction with an A-class gene (MawuAP1), C-class gene (MawuAG-1) and E-class gene (MawuAGL9) of the MADS-box family genes. Ectopic expression in Arabidopsis thaliana indicated that MawuAP1 could significantly promote flowering and fruit development, but it could not restore the sepal and petal formation of ap1 mutants. These results demonstrated that there are functional differences in the specification of sepal and petal floral organs and development of fruits among the AP1/SQUA-like genes, and functional conservation in the regulation of floral meristem. These findings provide strong evidence for the important functions of MawuAP1 in floral meristem determination, promoting flowering and fruit development, and further highlight the importance of AP1/SQUA subfamily in biological evolution and diversity.


Assuntos
Magnolia/genética , Magnoliaceae , Magnoliopsida , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Filogenia , Proteínas de Plantas/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-32259674

RESUMO

Phenolic compounds, such as phytoalexin resveratrol, can be induced in grapes in response to biotic and abiotic stresses and have been related in many healthy effects. Stilbene synthases (STSs) are the key enzyme responsible for resveratrol biosynthesis. They have been already isolated and characterized from several plant species, however, VviSTS is a multigene family and little is known about their modulation in response to the application of gaseous treatments that maintain table grapes quality during postharvest. In this work, we have analyzed the effect of a 3-day CO2 treatment on the modulation of 4 STSs (VviSTS6, VviSTS7, VviSTS16 and VviSTS46) and on the accumulation of different stilbene compounds (resveratrol, resveratrol-glucoside, trans-piceatannol, z-miyabenol and pallidol) during the postharvest storage at 0 °C of white (Superior Seedless, Dominga), red (Red Globe) and black (Autumn Royal) table grapes. Results indicated that the accumulation of the stilbene compounds by the application of CO2 and low temperature storage were cultivar dependent. In white Dominga fruit, accumulation of stilbene compounds increased in CO2-treated samples what seems to be modulated by VviSTS6, VviSTS7 and VviSTS46. However, in Red Globe the accumulation of compounds was mainly due to the cold storage in air and seems to be also mediated by the induction of the same VviSTSs. By contrast, in Superior Seedless and Autumn Royal table grapes the modulation of VviSTSs genes and the stilbene accumulation was independent of the atmosphere storage. Further studies would be needed to elucidate the possible role of transcription factors involved on VviSTSs modulation.


Assuntos
Dióxido de Carbono , Temperatura Baixa , Regulação da Expressão Gênica , Estilbenos , Vitis , Dióxido de Carbono/farmacologia , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Estilbenos/metabolismo , Vitis/efeitos dos fármacos , Vitis/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-32335385

RESUMO

3-Isobutyl-2-methoxypyrazine (IBMP) is an important odor compound that revives unripe grapes or poor-quality wine. The biosynthesis of IBMP in grape berries is under the catalysis of Vitis vinifera O-methyltranferase 3 (VvOMT3). The homologous verification in this paper was carried out with the transient overexpression technique. The results showed that both the expression levels of the VvOMT3 gene and the IBMP concentration in 'Red globe' grapes increased significantly, which suggested that VvOMT3 could function in the biosynthesis of IBMP. Based on ß-glucuronidase (GUS) staining results, blue color was only observed in grape pulp, not in grape skin, which indicated that VvOMT3 was expressed in grape pulp. The outcomes of the subcellular location examination performed on the protoplasts of Arabidopsis thaliana showed that the VvOMT3 protein was located on the inner surface of the cytoplasmic membrane. In summary, the VvOMT3 enzyme may function at the inner surface of the cytoplasmic membrane of pulp cells during grape development. These results will provide a background for future research on the catalytic mechanisms of VvOMT3.


Assuntos
Frutas , Metiltransferases , Vitis , Biologia Computacional , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Metiltransferases/genética , Metiltransferases/metabolismo , Vitis/enzimologia , Vitis/genética , Vinho
14.
J Food Sci ; 85(5): 1548-1564, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32249935

RESUMO

Mandarins (or tangerines) are mainly consumed as fresh fruits due to the ease of peeling and desirable flavor. Sweetness, acidity, and flavor of mandarin are the most important criteria for consumer preference. The objective of this study was to evaluate the effects of harvest date on sensory and chemical components of four mandarin cultivars (Murcott, 411, Temple, and 'LB8-9' Sugar Belle®). Volatiles were extracted from the headspace of juice samples with solid phase microextraction (SPME) and analyzed using gas chromatography-mass spectrometry (GC-MS). The optimum harvest window for eating quality of 411 was late January to mid-February (soluble solids content [SSC]/titratable acidity [TA]: 11.3 to 14.0), Sugar Belle® fruits were best tasted when harvested from mid- to end of January (SSC/TA: 14.1 to 16.1), and February was the best month for harvesting Murcott (SSC/TA: 13.10 to 18.0) and Temple (SSC/TA:10.3 to 12.50). Sensory perception of sweetness, ripeness, and juiciness increased as SSC/TA increased while sourness and bitterness decreased. Pumpkin flavor, an indicator of overripe fruit, was mainly noticed late in the season. Tangerine flavor tended to decrease, whereas fruity-noncitrus flavor tended to increase with fruit maturity. Monoterpenes were the most abundant volatiles and tended to decrease with fruit maturity, whereas alcohols, esters, and aldehydes increase. Aldehydes, esters, and alcohols were positively correlated with sweetness, ripeness, juiciness, and fruity characteristics, and negatively with sourness and bitterness. On the other hand, monoterpenes were positively correlated with bitterness and tangerine flavor, and negatively correlated with sweetness and fruity-noncitrus flavor. The highest number of esters was found in Temple, whereas Murcott and 411 were high in aldehydes.


Assuntos
Citrus/genética , Aromatizantes/química , Frutas/crescimento & desenvolvimento , Aldeídos/química , Aldeídos/isolamento & purificação , Cruzamento , Citrus/química , Citrus/classificação , Citrus/crescimento & desenvolvimento , Comportamento do Consumidor , Ésteres/química , Ésteres/isolamento & purificação , Aromatizantes/isolamento & purificação , Frutas/química , Frutas/classificação , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Monoterpenos/química , Monoterpenos/isolamento & purificação , Microextração em Fase Sólida , Paladar , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
15.
PLoS One ; 15(3): e0226448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214345

RESUMO

Rapid Alkalinization Factors (RALFs) are cysteine-rich peptides ubiquitous within plant kingdom. They play multiple roles as hormonal signals in diverse processes, including root elongation, cell growth, pollen tube development, and fertilization. Their involvement in host-pathogen crosstalk as negative regulators of immunity in Arabidopsis has also been recognized. In addition, peptides homologous to RALF are secreted by different fungal pathogens as effectors during early stages of infection. Previous studies have identified nine RALF genes in the diploid strawberry (Fragaria vesca) genome. This work describes the genomic organization of the RALF gene families in commercial octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of F. vesca, and then compares findings with orthologs in Arabidopsis thaliana. We reveal the presence of 15 RALF genes in F. vesca genotype Hawaii 4 and 50 in Fragaria x ananassa cv. Camarosa, showing a non-homogenous localization of genes among the different Fragaria x ananassa subgenomes. Expression analysis of Fragaria x ananassa RALF genes upon infection with Colletotrichum acutatum or Botrytis cinerea showed that FanRALF3-1 was the only fruit RALF gene upregulated after fungal infection. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FanRALF3-1 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FanRALF3-1 promoter identified a 5' region required for FanRALF3-1 expression in fruit, but failed to identify a region responsible for fungal induced expression.


Assuntos
Botrytis , Colletotrichum , Cruzamentos Genéticos , Fragaria , Frutas , Família Multigênica , Proteínas de Neoplasias , Doenças das Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/microbiologia , Frutas/genética , Frutas/microbiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
PLoS One ; 15(3): e0230531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191748

RESUMO

Among several studied strains, Streptomyces rochei IT20 and S. vinaceusdrappus SS14 showed a high level of inhibitory effect against Phytophthora capsici, the causal agent of pepper blight. The effect of two mentioned superior antagonists, as single or combination treatments, on suppression of stem and fruit blight diseases and reproductive growth promotion was investigated in pepper. To explore the induced plant defense reactions, ROS generation and transcriptional changes of selected genes in leaf and fruit tissues of the plant were evaluated. The plants exposed to the combination of two species responded differently in terms of H2O2 accumulation and expression ratio of GST gene compared to single treatments upon pathogen inoculation. Besides, the increment of shoot length, flowering, and fruit weight were observed in healthy plants compared to control. Likely, these changes depended on the coordinated relationships between PR1, ACCO genes and transcription factors WRKY40 enhanced after pathogen challenge. Our findings indicate that appropriate tissue of the host plant is required for inducing Streptomyces-based priming and relied on the up-regulation of SUS and differential regulation of ethylene-dependent genes.


Assuntos
Capsicum/microbiologia , Especificidade de Órgãos , Phytophthora/fisiologia , Streptomyces/fisiologia , Aminobutiratos/farmacologia , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Especificidade de Órgãos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética
17.
PLoS One ; 15(3): e0230356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168329

RESUMO

Sea buckthorn (Hippophae rhamnoides) is an ecologically and economically important species. Here, we assessed the diversity of 78 accessions cultivated in northern China using 8 agronomic characteristics, oil traits (including oil content and fatty acid composition) in seeds and fruit pulp, and SSR markers at 23 loci. The 78 accessions included 52 from ssp. mongolica, 6 from ssp. sinensis, and 20 hybrids. To assess the phenotypic diversity of these accessions, 8 agronomic fruit traits were recorded and analyzed using principal component analysis (PCA). The first two PCs accounted for approximately 78% of the variation among accessions. The oil contents were higher in pulp (3.46-38.56%) than in seeds (3.88-8.82%), especially in ssp. mongolica accessions. The polyunsaturated fatty acid (PUFA) ratio was slightly lower in the seed oil of hybrids (76.06%) than that of in ssp. mongolica (77.66%) and higher than that of in ssp. sinensis (72.22%). The monounsaturated fatty acid (MUFA) ratio in the pulp oil of ssp. sinensis (57.00%) was highest, and that in ssp. mongolica (51.00%) was equal to the ratio in the hybrids (51.20%). Using canonical correspondence analysis (CCA), we examined the correlation between agronomic traits and oil characteristics in pulp and seeds. Oil traits in pulp from different origins were correlated with morphological groupings (r = 0.8725, p = 0.0000). To assess the genotypic diversity, 23 SSR markers (including 17 loci previously reported) were used among the 78 accessions with 59 polymorphic amplified fragments obtained and an average PIC value of 0.2845. All accessions were classified into two groups based on the UPGMA method. The accessions of ssp. sinensis and ssp. mongolica were genetically distant. The hybrid accessions were close to ssp. mongolica accessions. The 8 agronomic traits, oil characteristics in seed and pulp oils, and 23 SSR markers successfully distinguished the 78 accessions. These results will be valuable for cultivar identification and genetic diversity analysis in cultivated sea buckthorn.


Assuntos
Variação Genética , Hippophae/genética , Repetições de Microssatélites/genética , Óleos Vegetais/metabolismo , China , Ácidos Graxos Monoinsaturados/metabolismo , Frutas/genética , Frutas/metabolismo , Hippophae/crescimento & desenvolvimento , Hippophae/metabolismo , Sementes/genética , Sementes/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(14): 8187-8195, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179669

RESUMO

A dramatic evolution of fruit size has accompanied the domestication and improvement of fruit-bearing crop species. In tomato (Solanum lycopersicum), naturally occurring cis-regulatory mutations in the genes of the CLAVATA-WUSCHEL signaling pathway have led to a significant increase in fruit size generating enlarged meristems that lead to flowers with extra organs and bigger fruits. In this work, by combining mapping-by-sequencing and CRISPR/Cas9 genome editing methods, we isolated EXCESSIVE NUMBER OF FLORAL ORGANS (ENO), an AP2/ERF transcription factor which regulates floral meristem activity. Thus, the ENO gene mutation gives rise to plants that yield larger multilocular fruits due to an increased size of the floral meristem. Genetic analyses indicate that eno exhibits synergistic effects with mutations at the LOCULE NUMBER (encoding SlWUS) and FASCIATED (encoding SlCLV3) loci, two central players in the evolution of fruit size in the domestication of cultivated tomatoes. Our findings reveal that an eno mutation causes a substantial expansion of SlWUS expression domains in a flower-specific manner. In vitro binding results show that ENO is able to interact with the GGC-box cis-regulatory element within the SlWUS promoter region, suggesting that ENO directly regulates SlWUS expression domains to maintain floral stem-cell homeostasis. Furthermore, the study of natural allelic variation of the ENO locus proved that a cis-regulatory mutation in the promoter of ENO had been targeted by positive selection during the domestication process, setting up the background for significant increases in fruit locule number and fruit size in modern tomatoes.


Assuntos
Frutas/genética , Proteínas de Homeodomínio/genética , Lycopersicon esculentum/fisiologia , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Produção Agrícola , Domesticação , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Meristema/citologia , Mutação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas/genética , Células-Tronco/fisiologia , Fatores de Transcrição/genética
19.
Physiol Plant ; 169(4): 544-554, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32187689

RESUMO

An understanding of fruit gas exchange is necessary to determine the carbon balance in grapevines, but little attention has been paid to the relationships among fruit respiration, plant water status and genetic variability. The effect of plant water status and genotype on cluster respiration was studied over two seasons (2013 and 2014) under field conditions using a whole cluster respiration chamber. Whole cluster CO2 fluxes were measured in growing grapevines at hard-green, veraison and ripening stages under irrigated and non-irrigated conditions, and under light and dark conditions in two grapevine varieties, Tempranillo and Grenache. A direct relationship between cluster CO2 efflux and plant water status was found at hard-green stage. Genotype influenced the fruit CO2 efflux that resulted in higher carbon losses in Tempranillo than in Grenache. Fruit respiration rates decreased from the first berry developmental stages to ripening stage. The integration of fruit respiration rates under light and dark conditions showed the magnitude of fruit carbon losses and gains as well as interesting variety and environmental conditions effects on those processes.


Assuntos
Frutas/genética , Vitis/genética , Carbono , Genótipo , Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-32213457

RESUMO

The genus Prunus contains many fruits used in the human diet, which exhibit a variety of different flavors. However, publications on the diversity of carotenoid profiles and sequestering structures in Prunus fruits are limited. In this study, carotenoids and their associated sequestering structures in mature fruits of four Prunus species, including peach [Prunus persica (L.) Batschi], nectarine [Prunus persica (L.) Batschi var. nucipersica], plum (Prunus salicina L.), and apricot (Prunus armeniaca L.) were investigated. HPLC-PAD analysis revealed that mature fruits all accumulated carotenoid esters, while their profiles and levels differed significantly. Transcription analysis suggested a positive correlation between carotenogenic genes and carotenoid profiles. Transmission electron microscopy (TEM) analysis revealed a common globular chromoplast in Prunus. However, the number and size of plastids and plastoglobules varied between species. Noticeably, the white-flesh Ruiguang 19 nectarine contained plastids similar to chromoplasts, except with smaller plastoglobules. In addition, it seemed like a lipid-dissolved ß-carotene form in apricot fruits, which is more effectively absorbed by humans than the solid-crystalline form. Moreover, the lowest transcriptions of plastid-related genes were found in Friar plum, and GLK2 and OR genes were presumed to be associated with the largest chromoplasts observed in apricot. We investigated the correlations among carotenoid accumulation, plastid characteristics and gene transcription and found that chromoplast development is likely more important in determining carotenoid accumulation than carotenogenic transcription in Prunus fruits. This study presents the first report on the diversity of carotenoid sequestering structures in Prunus fruits and suggests some crucial genes associated with diversity.


Assuntos
Carotenoides/análise , Frutas/química , Prunus/química , Transcrição Genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Prunus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA