Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Biochemistry (Mosc) ; 85(7): 833-837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33040727

RESUMO

Nrf2 is a key transcription factor responsible for antioxidant defense in many tissues and cells, including alveolar epithelium, endothelium, and macrophages. Furthermore, Nrf2 functions as a transcriptional repressor that inhibits expression of the inflammatory cytokines in macrophages. Critically ill patients with COVID-19 infection often present signs of high oxidative stress and systemic inflammation - the leading causes of mortality. This article suggests rationale for the use of Nrf2 inducers to prevent development of an excessive inflammatory response in COVID-19 patients.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Terapia de Alvo Molecular/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Infecções por Coronavirus/virologia , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , /metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiossulfatos/farmacologia , Tiossulfatos/uso terapêutico
2.
Nat Commun ; 11(1): 4938, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009401

RESUMO

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fumarato de Dimetilo/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , Succinatos/agonistas , Adulto , Antioxidantes/farmacologia , Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Fumarato de Dimetilo/farmacologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interferon Tipo I , Pulmão/patologia , Masculino , Fator 2 Relacionado a NF-E2/genética , Pandemias , Pneumonia Viral/virologia , Transdução de Sinais/efeitos dos fármacos , Succinatos/farmacologia , Replicação Viral/efeitos dos fármacos
3.
BMC Bioinformatics ; 21(1): 443, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028195

RESUMO

BACKGROUND: Gene-set analysis tools, which make use of curated sets of molecules grouped based on their shared functions, aim to identify which gene-sets are over-represented in the set of features that have been associated with a given trait of interest. Such tools are frequently used in gene-centric approaches derived from RNA-sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. Gene-set analysis tools return, as a result, a list of significant gene-sets. However, while these results are useful for the researcher in the identification of major biological insights, they may be complex to interpret because many gene-sets have largely overlapping gene contents. Additionally, in many cases the result of gene-set analysis consists of a large number of gene-sets making it complicated to identify the major biological insights. RESULTS: We present GeneSetCluster, a novel approach which allows clustering of identified gene-sets, from one or multiple experiments and/or tools, based on shared genes. GeneSetCluster calculates a distance score based on overlapping gene content, which is then used to cluster them together and as a result, GeneSetCluster identifies groups of gene-sets with similar gene-set definitions (i.e. gene content). These groups of gene-sets can aid the researcher to focus on such groups for biological interpretations. CONCLUSIONS: GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https://github.com/TranslationalBioinformaticsUnit.


Assuntos
Interface Usuário-Computador , Linhagem Celular , Análise por Conglomerados , Metilação de DNA/efeitos dos fármacos , Mineração de Dados , Fumarato de Dimetilo/farmacologia , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
PLoS One ; 15(6): e0234484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511271

RESUMO

Inflammation plays a crucial role in the defense response of the innate immune system against pathogen infection. In this study, we selected 4 compounds for their potential or proven anti-inflammatory and/or anti-microbial properties to test on our in vitro model of bacteria-infected THP-1-derived macrophages. We first compared the capacity of sulforaphane (SFN), wogonin (WG), oltipraz (OTZ), and dimethyl fumarate (DMF) to induce the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of the antioxidant, anti-inflammatory response pathways. Next, we performed a comparative evaluation of the antioxidant and anti-inflammatory efficacies of the 4 selected compounds. THP-1-derived macrophages and LPS-stimulated macrophages were treated with each compound and expression levels of genes coding for inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified by RT-qPCR. Moreover, expression levels of genes coding for M1 (IL-23, CCR7, IL-1ß, IL-6, and TNF-α) and M2 (PPARγ, MRC1, CCL22, and IL-10) markers were determined in classically-activated M1 macrophages treated with each compound. Finally, the effects of each compound on the intracellular bacterial survival of gram-negative E. coli and gram-positive S. aureus in THP-1-derived macrophages and PBMC-derived macrophages were examined. Our data confirmed the anti-inflammatory and antioxidant effects of SFN, WG, and DMF on LPS-stimulated THP-1-derived macrophages. In addition, SFN or WG treatment of classically-activated THP-1-derived macrophages reduced expression levels of M1 marker genes, while SFN or DMF treatment upregulated the M2 marker gene MRC1. This decrease in expression of M1 marker genes may be correlated with the decrease in intracellular S. aureus load in SFN- or DMF-treated macrophages. Interestingly, an increase in intracellular survival of E. coli in SFN-treated THP-1-derived macrophages that was not observed in PBMC-derived macrophages. Conversely, OTZ exhibited pro-oxidant and proinflammatory properties, and affected intracellular survival of E. coli in THP-1-derived macrophages. Altogether, we provide new potential therapeutic alternatives in treating inflammation and bacterial infection.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/imunologia , Estresse Oxidativo/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Flavanonas/farmacologia , Humanos , Inflamação/imunologia , Isotiocianatos/farmacologia , Leucócitos Mononucleares , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Estresse Oxidativo/imunologia , Pirazinas/farmacologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/efeitos dos fármacos , Células THP-1 , Tionas , Tiofenos
5.
Life Sci ; 256: 117887, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497629

RESUMO

Vascular complications are a leading cause of morbidity and mortality among diabetic patients. This work aimed to investigate possible influences of dimethyl fumarate (DMF) on streptozotocin (STZ) diabetes-associated vascular complications in rats, exploring its potential to modulate ROS-TXNIP-NLRP3 inflammasome pathway. Two weeks after induction of diabetes (via a single injection of 50 mg/kg STZ, i.p.), diabetic rats were administered either DMF (25 mg/kg/day) or its vehicle for further eight weeks. Age-matched normal and DMF-administered non-diabetic rats served as controls. DMF treatment elicited a mild ameliorative effect on diabetic glycemia. DMF reduced serum TG and AGE levels and enhanced serum HDL-C concentrations in diabetic rats. Moreover, DMF significantly diminished aortic levels of ROS and MDA and restored aortic GSH, SOD and Nrf2 to near-normal levels in STZ rats. Aortic mRNA levels of TXNIP, NLRP3 and NF-κB p65 in diabetic rats were significantly reduced by DMF treatment. Serum and aortic protein levels of TXNIP and aortic contents of IL-1ß, iNOS, NLRP3 and TGF-ß1 were significantly lower in DMF-diabetic animals than non-treated diabetic rats. Furthermore, protein expression of TNF-α and caspase-3 in diabetic aortas was greatly attenuated by DMF administration. DMF enhanced eNOS mRNA and protein levels and increased bioavailable NO in diabetic aortas. Functionally, DMF attenuated contractile responses of diabetic aortic rings to KCl and phenylephrine and enhanced their relaxant responses to acetylcholine. DMF also mitigated diabetes-induced fibrous tissue proliferation in aortic tunica media. Collectively, these findings demonstrate that DMF offered vasculoprotective influences on diabetic aortas via attenuation of ROS-TXNIP-NLRP3 inflammasome pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Fumarato de Dimetilo/uso terapêutico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Biomarcadores/metabolismo , Caspase 3/metabolismo , Proteínas de Ciclo Celular/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/sangue , Fumarato de Dimetilo/farmacologia , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Ratos Sprague-Dawley , Estreptozocina , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Horm Cancer ; 11(2): 76-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32008217

RESUMO

There is a desperate need in the field for mouse mammary tumors and cell lines that faithfully mimic estrogen receptor (ER) expression and activity found in human breast cancers. We found that several mouse mammary cancer cell lines express ER but fail to demonstrate classical estrogen-driven proliferation or transcriptional activity. We investigated whether these cell lines may be used to model tamoxifen resistance by using small molecule inhibitors to signaling pathways known to contribute to resistance. We found that the combination of NFκB inhibition and ER antagonists significantly reduced cell proliferation in vitro, as well as growth of syngeneic tumors. Surprisingly, we found that ER was localized to the cytoplasm, regardless of any type of treatment. Based on this, we probed extra-nuclear functions of ER and found that co-inhibition of ER and NFκB led to an increase in oxidative stress and apoptosis. Together, these findings suggest that cytoplasmic ER and NFκB may play redundant roles in protecting mammary cancer cells from oxidative stress and cell death. Although this study has not identified a mouse model with classical ER activity, cytoplasmic ER has been described in a small subset of human breast tumors, suggesting that these findings may be relevant for some breast cancer patients.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , NF-kappa B/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Citoplasma/metabolismo , Fumarato de Dimetilo/farmacologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , NF-kappa B/antagonistas & inibidores , Estresse Oxidativo/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
7.
PLoS One ; 15(2): e0228617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32045436

RESUMO

OBJECTIVE: Determine if patient-specific factors modulate absolute lymphocyte count (ALC), neutrophil count (ANC), and/or Neutrophile-lymphocyte ratio (NLR) in Dimethyl Fumarate (DMF) treated patients. METHODS: A retrospective study of patients who initiated DMF between 2013-2018. A multicenter study of two MS clinics: Charlottesville, VA (UVA) and Dallas, TX (DaVA). RESULTS: 103 patients (67-UVA, 36-DaVA) met eligibility. At baseline, the DaVa population was younger (mean±sd: 38.6±9.0 vs 42.2±12.5, p 0.152) and had a higher proportion of males (61% vs. 35%), consistent with a veteran cohort. Pre-treatment, all other laboratory parameters were similar between the two groups. On treatment there was a 30% lowering of mean ALC, with 3% having grade-3 lymphopenia (ALC < 500). Sustained neutropenia occurred in 3.9% of patients and was more common in males. Over 50% of patients had a high NLR at baseline, with a further 44% increase in NLR on-treatment. Age was significantly predictive of lymphopenia, with grade-3 lymphopenia found in 33% of patients ≥ 55 years. Neutropenia was more common in males. Serum BG (sBG) has modest correlation to leukocyte parameters. BMI was not correlated with any leukocyte-related outcomes. CONCLUSIONS: Patient-specific factors, specifically-age, sex, and serum blood glucose, modulate leukocyte response and ratios in DMF treated MS patients. Age appears to be a relevant predictor of lymphopenia and should be a factor in treatment decision making. Neutropenia, independent of lymphopenia, can occur and males may be at increased risk. High sBG may impact leukocyte count and ratios in MS patients and merits further study, particularly in patients with diabetes. NLR is abnormal in MS and increased with DMF-treatment, the clinical implications of this will require further study.


Assuntos
Linfopenia/epidemiologia , Esclerose Múltipla/sangue , Neutropenia/epidemiologia , Adulto , Fatores Etários , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Leucócitos/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Modelagem Computacional Específica para o Paciente , Fatores Sexuais
8.
Carbohydr Polym ; 233: 115848, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059899

RESUMO

This study posed a novel strategy of interweaving carboxymethyl chitosan (CMCS) and HKUST-1 to build eco-friendly, recyclable, long-acting and intelligent antibacterial agent carrier of HKUST-1@CMCS. Combined characterizations revealed that the structure of HKUST-1@CMCS was destroyed step by step through different intensity of the stimulation of phosphate, thereby realizing intelligent release of antibacterial agent. The results showed that dimethyl fumarate-loaded HKUST-1@CMCS was much intelligent and long-acting (384 h, 0.04 M PBS) release performance than pure dimethyl fumarate, thus its inhibition zone diameters with and without stimulation of phosphate on S. aureus were 17.4 ±â€¯0.1, 10.2 ±â€¯0.7 mm at 7 d, respectively, while that of pure dimethyl fumarate had lost antibacterial activity at 2 d. With superior and long-acting antimicrobial activity, dimethyl fumarate-loaded HKUST-1@CMCS could effectively prolong the shelf life of strawberries as food packaging. Furthermore, HKUST-1@CMCS could easily regenerate, and regenerated HKSUT-1@CMCS still maintained intelligent response property at one cycle.


Assuntos
Antibacterianos/farmacologia , Quitosana/análogos & derivados , Fumarato de Dimetilo/farmacologia , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Antibacterianos/química , Quitosana/química , Cobre/química , Fumarato de Dimetilo/química , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Fragaria , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Ácidos Tricarboxílicos/química
9.
Anesthesiology ; 132(2): 343-356, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939850

RESUMO

BACKGROUND: Available treatments for neuropathic pain have modest efficacy and significant adverse effects, including abuse potential. Because oxidative stress is a key mechanistic node for neuropathic pain, the authors focused on the master regulator of the antioxidant response-nuclear factor erythroid 2-related factor 2 (NFE2L2; Nrf2)-as an alternative target for neuropathic pain. The authors tested whether dimethyl fumarate (U.S. Food and Drug Administration-approved treatment for multiple sclerosis) would activate NFE2L2 and promote antioxidant activity to reverse neuropathic pain behaviors and oxidative stress-dependent mechanisms. METHODS: Male Sprague Dawley rats, and male and female wild type and Nfe2l2 mice were treated with oral dimethyl fumarate/vehicle for 5 days (300 mg/kg; daily) after spared nerve injury/sham surgery (n = 5 to 8 per group). Allodynia was measured in von Frey reflex tests and hyperalgesia in operant conflict-avoidance tests. Ipsilateral L4/5 dorsal root ganglia were assayed for antioxidant and cytokine/chemokine levels, and mitochondrial bioenergetic capacity. RESULTS: Dimethyl fumarate treatment reversed mechanical allodynia (injury-vehicle, 0.45 ± 0.06 g [mean ± SD]; injury-dimethyl fumarate, 8.2 ± 0.16 g; P < 0.001) and hyperalgesia induced by nerve injury (injury-vehicle, 2 of 6 crossed noxious probes; injury-dimethyl fumarate, 6 of 6 crossed; P = 0.013). The antiallodynic effect of dimethyl fumarate was lost in nerve-injured Nfe2l2 mice, but retained in nerve-injured male and female wild type mice (wild type, 0.94 ± 0.25 g; Nfe2l2, 0.02 ± 0.01 g; P < 0.001). Superoxide dismutase activity was increased by dimethyl fumarate after nerve injury (injury-vehicle, 3.96 ± 1.28 mU/mg; injury-dimethyl fumarate, 7.97 ± 0.47 mU/mg; P < 0.001). Treatment reduced the injury-dependent increases in cytokines and chemokines, including interleukin-1ß (injury-vehicle, 13.30 ± 2.95 pg/mg; injury-dimethyl fumarate, 6.33 ± 1.97 pg/mg; P = 0.022). Injury-impaired mitochondrial bioenergetics, including basal respiratory capacity, were restored by dimethyl fumarate treatment (P = 0.025). CONCLUSIONS: Dimethyl fumarate, a nonopioid and orally-bioavailable drug, alleviated nociceptive hypersensitivity induced by peripheral nerve injury via activation of NFE2L2 antioxidant signaling. Dimethyl fumarate also resolved neuroinflammation and mitochondrial dysfunction-oxidative stress-dependent mechanisms that drive nociceptive hypersensitivity after nerve injury.


Assuntos
Antioxidantes/metabolismo , Fumarato de Dimetilo/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Animais , Fumarato de Dimetilo/farmacologia , Feminino , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Roedores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Int Immunopharmacol ; 80: 106131, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31981960

RESUMO

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury occurs in different clinical settings as hepatic transplantation, and different types of shock. I/R injury is the main cause of hepatic damage and failure due to the production of reactive oxygen species (ROS) and inflammatory cytokines. Dimethyl fumarate (DMF), an immunomodulatory drug, activates cellularantioxidantsignaling pathways exerting cytoprotective properties. Curcumin (CUR), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. METHOD: To study potential protective effects of DMF with CUR against hepatic I/R injury in rats, animals were randomly allocated into seven groups as follows: (1) Sham; (2) DMF (25 mg/Kg, p.o); (3) CUR (400 mg/Kg, p.o.); (4) I/R; (5) DMF + I/R; (6) CUR + I/R; and combination (COM) therapy + I/R. Drugs were given for 14 days before I/R. RESULTS: Compared with I/R group, COM group showed the best amelioration in hepatic injury induced by I/R insult. This was confirmed by a significant reduction in serum ALT and AST activity with improved histopathological results when compared to every single treatment. Hepatic protection afforded by DMF was mediated by activating Nrf2/HO-1 signaling and increasing GSH and TAC contents. CUR treatment improved the inflammatory markers (TNF-α, IL-1ß, Il-6 and iNOS) as well as neutrophilic infiltration assessed as MPO. Moreover, CUR potentiated Nrf2/HO-1 signaling induced by DMF with significant suppression in lipid peroxidation. CONCLUSION: We concluded that combining DMF and CUR has more efficient hepatoprotective effects against hepatic-induced IRI via potentiating antioxidant and anti-inflammatory properties mediated by Nrf2/HO-1 pathway.


Assuntos
Curcumina/farmacologia , Fumarato de Dimetilo/farmacologia , Falência Hepática Aguda/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Falência Hepática Aguda/imunologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
11.
J Neuroimmunol ; 340: 577163, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31982706

RESUMO

In multiple sclerosis (MS), cognitive dysfunction is common but difficult to treat. We analyzed the impact of dimethyl fumarate, an MS drug with neuroprotective properties, in spatial memory performance in a mouse model of MS and looked for structural correlates in the hippocampus. Treated mice presented better cognitive performance which was not associated with structural hippocampal damage but with decreased demyelination in the fimbria. Dimethyl fumarate, even if initiated after hindlimb paralysis, ameliorated memory deficits in the MS mouse model due, at least in part, to its positive impact in the demyelination of the main hippocampal output pathway.


Assuntos
Cognição/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Feminino , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Mol Neurobiol ; 57(1): 105-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494826

RESUMO

Recently, dimethyl fumarate (DMF) and Korean red ginseng (ginseng), based on their purported antioxidative and anti-inflammatory properties, have exhibited protective potential in various neurological conditions. Their effects on cerebral ischemia and underlying mechanisms remain inconclusive; however, increasing evidence indicates the involvement of the transcriptional factor Nrf2. This study evaluated the preventive effects of DMF and ginseng on hippocampal neuronal damage following hypoxia-ischemia (HI) and assessed the contributions of reactive gliosis and the Nrf2 pathway. Adult wild type (WT) and Nrf2-/- mice were pretreated with DMF or ginseng for 7 days prior to HI. At 24 h after HI, DMF or ginseng significantly reduced infarct volume (52.5 ± 12.3% and 47.8 ± 10.7%), brain edema (61.5 ± 17.4% and 39.3 ± 12.8%), and hippocampal CA1 neuronal degeneration, and induced expressions of Nrf2 target proteins in WT, but not Nrf2-/-, mice. Such hippocampal neuroprotective benefits were also observed at 6 h and 7 days after HI. The dynamic attenuation of reactive gliosis in microglia and astrocytes correlated well with this sustained neuroprotection in an Nrf2-dependent manner. In both early and late stages of HI, astrocytic dysfunctions in extracellular glutamate clearance and water transport, as indicated by glutamine synthetase and aquaporin 4, were also attenuated after HI in WT, but not Nrf2-/-, mice treated with DMF or ginseng. Together, DMF and ginseng confer robust and prolonged Nrf2-dependent neuroprotection against ischemic hippocampal damage. The salutary Nrf2-dependent attenuation of reactive gliosis may contribute to this neuroprotection, offering new insight into the cellular basis of an Nrf2-targeting strategy for stroke prevention or treatment.


Assuntos
Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Panax , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fumarato de Dimetilo/farmacologia , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroproteção/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 522(2): 381-387, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761320

RESUMO

Two-stage rat hepatocarcinogenesis model was used to induce early carcinogenesis in which thioacetamide (TAA) promotes diethylnitrosamine (DEN) initiated carcinogenesis. Dimethyl fumarate (DMF) used to treat multiple sclerosis, activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway during oxidative stress, and maintains antioxidant levels. Glibenclamide (GLB), a sulphonylurea drug used to treat type II diabetes, possesses anti-inflammatory properties and inhibits NLRP3 inflammasomes. The present study was designed to investigate the concurrent intervention of DMF and GLB on DEN + TAA-induced early hepatic carcinogenesis. DMF and GLB treatment improved DEN + TAA-induced decrease in body weight, increase in liver weight and plasma transaminases, histopathological alterations, DNA damage, and apoptosis. DMF and GLB intervention significantly ameliorated the DEN + TAA-induced alterations in the antioxidant (Nrf2, HO-1, SOD-1, catalase), inflammatory (NF-κB, NLRP3, ASC, caspase-1), fibrogenic (TGF-ß1, collagen) and regenerative proliferative stress (GST-p, HGF, c-MET, TGFα, EGF, AFP) markers. The present results indicate that Nrf2/ARE activation and NLRP3 inhibition might be a rational approach to attenuate oxidative stress and chronic inflammation associated progression of hepatocarcinogenesis.


Assuntos
Carcinogênese/patologia , Dietilnitrosamina/efeitos adversos , Fumarato de Dimetilo/farmacologia , Glibureto/farmacologia , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Tioacetamida/efeitos adversos , Animais , Peso Corporal/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Dano ao DNA , Fígado/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar
14.
Mult Scler Relat Disord ; 37: 101451, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31675639

RESUMO

BACKGROUND: Dimethyl fumarate (DMF) is a disease-modifying therapy for patients with relapsing-remitting multiple sclerosis (RRMS). T cells are major contributors to the pathogenesis of RRMS, where they regulate the pathogenic immune response and participate in CNS lesion development. OBJECTIVES: In this study we evaluate the therapeutic effects of DMF on T cell subpopulations, their CNS migration potential and effector functions. METHODS: Blood and CSF from untreated and DMF-treated patients with RRMS and healthy donors were analyzed by flow cytometry. RESULTS: DMF reduced the prevalence of circulating proinflammatory CD4+ and CD8+ memory T cells, whereas regulatory T cells were unaffected. Furthermore, DMF reduced the frequency of CD4+ T cells expressing CNS-homing markers. In coherence, we found a reduced recruitment of CD4+ but not CD8+ T cells to CSF. We also found that monomethyl fumarate dampened T cell proliferation and reduced the frequency of TNF-α, IL-17 and IFN-γ producing T cells. CONCLUSION: DMF influences the balance between proinflammatory and regulatory T cells, presumably favoring a less proinflammatory environment. DMF also reduces the CNS migratory potential of CD4+ T cells whereas CD8+ T cells are less affected. Altogether, our study suggests an anti-inflammatory effect of DMF mainly on the CD4+ T cell compartment.


Assuntos
Citocinas/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Fumaratos/farmacologia , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Adulto , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto Jovem
15.
Biochem Biophys Res Commun ; 521(4): 957-963, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31718798

RESUMO

The signaling elicited by the cytokine interleukin-17A (IL-17) is important for antimicrobial defense responses, whereas excessive IL-17 production leads to autoimmune diseases such as psoriasis and multiple sclerosis. IL-17-induced stabilization of mRNAs has been recognized as a unique and important feature of IL-17 signaling. Previously, we demonstrated that IL-17 signaling protein ACT1 is required to counteract constitutive inhibitor of nuclear factor kappa B zeta (IκB-ζ) mRNA degradation by the ribonuclease Regnase-1. However, information about the mechanism of mRNA stabilization in IL-17-stimulated cells remains insufficient. In the present study, we aimed to clarify the mechanism in more detail and identify an agent that can inhibit IL-17-induced mRNA stabilization. Experiments using small interfering RNA and an inhibitor of TANK-binding kinase 1 (TBK1) revealed that TBK1 was required for IκB-ζ mRNA stabilization through Regnase-1 phosphorylation. Intriguingly, this TBK1-mediated phosphorylation of Regnase-1 was suppressed by the addition of dimethyl fumarate (DMF), an electrophilic small molecule that has been used to treat IL-17-related autoimmune diseases. Confocal microscopic observation of the cellular localization of ACT1 revealed that DMF treatment resulted in the disappearance of ACT1 nuclear dots and perinuclear accumulation of ACT1. These results suggested that DMF is a small molecule that compromises IL-17-induced activation of the ACT1-TBK1 pathway, thereby inhibiting IL-17-induced mRNA stabilization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fumarato de Dimetilo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-17/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Linhagem Celular , Humanos , Fosforilação/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
16.
Nat Commun ; 10(1): 5722, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844089

RESUMO

IL-17-producing CD8+ (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8+ T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORγt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Adolescente , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fumarato de Dimetilo/uso terapêutico , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Imunossupressores , Interleucina-17/imunologia , Interleucina-17/metabolismo , Estudos Longitudinais , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Resultado do Tratamento , Adulto Jovem
17.
Pharmacol Res Perspect ; 7(6): e00540, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832203

RESUMO

Dimethylfumarate (DMF) has long been used as part of a fixed combination of fumaric acid esters (FAE) in some European countries and is now available as an oral monotherapy for psoriasis. The present investigation determined whether DMF and its main metabolite monomethylfumarate (MMF) interact with hepatic cytochrome P450 (CYP) enzymes and the P-glycoprotein (P-gp) transporter, and was performed as part of DMF's regulatory commitments. Although referred to in the available product labels/summary of product characteristics, the actual data have not yet been made publicly available. In vitro inhibition experiments using CYP-selective substrates with human liver microsomes showed 50% inhibitory concentrations (IC50) of >666 µmol/L for DMF and >750 µmol/L for MMF. MMF (≤250 µmol/L; 72 hours) was not cytotoxic in cultured human hepatocyte experiments and mRNA expression data indicated no CYP induction by MMF (1-250 µmol/L). DMF (≤6.66 mmol/L) showed moderate-to-high absorption (apparent permeability [Papp] ≥2.3-29.7 x 10-6 cm/s) across a Caucasian colon adenocarcinoma (Caco-2) cell monolayer, while MMF (≤7.38 mmol/L) demonstrated low-to-moderate permeability (Papp 1.2-8.9 × 10-6 cm/s). DMF was not a substrate for P-gp (net efflux ratios ≤1.22) but was a weak inhibitor of P-gp at supratherapeutic concentrations (estimated IC50 relative to solvent control of 1.5 mmol/L; [3H]digoxin efflux in Caco-2 cells). This inhibition is unlikely to be clinically relevant. MMF was not a substrate or inhibitor of P-gp. Thus, DMF and MMF should not affect the absorption, distribution, metabolism or excretion of coadministered drugs that are CYP and P-gp substrates.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fumarato de Dimetilo/farmacologia , Fumaratos/farmacologia , Maleatos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Fumarato de Dimetilo/uso terapêutico , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fumaratos/uso terapêutico , Hepatócitos , Humanos , Concentração Inibidora 50 , Fígado/metabolismo , Maleatos/uso terapêutico , Microssomos Hepáticos , Psoríase/tratamento farmacológico
18.
J Neuroinflammation ; 16(1): 228, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733652

RESUMO

BACKGROUND: In the past, multiple sclerosis (MS) medications have been primarily designed to modulate T cell properties. Based on the emerging concept that B cells are equally important for the propagation of MS, we compared the effect of four commonly used, primarily T cell-targeting MS medications on B cells. METHODS: Using flow cytometry, we analyzed peripheral blood mononuclear cells (PBMC) of untreated (n = 19) and dimethyl fumarate (DMF; n = 21)-, fingolimod (FTY; n = 17)-, glatiramer acetate (GA; n = 18)-, and natalizumab (NAT; n = 20)-treated MS patients, focusing on B cell maturation, differentiation, and cytokine production. RESULTS: While GA exerted minor effects on the investigated B cell properties, DMF and FTY robustly inhibited pro-inflammatory B cell function. In contrast, NAT treatment enhanced B cell differentiation, activation, and pro-inflammatory cytokine production when compared to both intraindividual samples collected before NAT treatment initiation as well as untreated MS controls. Our mechanistic in vitro studies confirm this observation. CONCLUSION: Our data indicate that common MS medications have differential, in part opposing effects on B cells. The observed activation of peripheral B cells upon NAT treatment may be instructive to interpret its unfavorable effect in certain B cell-mediated inflammatory conditions and to elucidate the immunological basis of MS relapses after NAT withdrawal. TRIAL REGISTRATION: Protocols were approved by the ethical review committee of the University Medical Center Göttingen (#3/4/14).


Assuntos
Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Esclerose Múltipla Recidivante-Remitente/imunologia , Natalizumab/farmacologia , Adulto , Linfócitos B/imunologia , Células Cultivadas , Fumarato de Dimetilo/farmacologia , Feminino , Cloridrato de Fingolimode/farmacologia , Acetato de Glatiramer/farmacologia , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
19.
Cells ; 8(11)2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661890

RESUMO

Recent studies have proven that Dimethylfumarate (DMF) has a marked anti-proliferative impact on diverse cancer entities e.g., on malignant melanoma. To explore its anti-tumorigenic potential, we examined the effects of DMF on human colon carcinoma cell lines and the underlying mechanisms of action. Human colon cancer cell line HT-29 and human colorectal carcinoma cell line T84 were treated with or without DMF. Effects of DMF on proliferation, cell cycle progression, and apoptosis were analyzed mainly by Bromodeoxyuridine (BrdU)- and Lactatdehydrogenase (LDH)assays, caspase activation, flowcytometry, immunofluorescence, and immunoblotting. In addition, combinational treatments with radiation and chemotherapy were performed. DMF inhibits cell proliferation in both cell lines. It was shown that DMF induces a cell cycle arrest in G0/G1 phase, which is accompanied by upregulation of p21 and downregulation of cyclin D1 and Cyclin dependent kinase (CDK)4. Furthermore, upregulation of autophagy associated proteins suggests that autophagy is involved. In addition, the activation of apoptotic markers provides evidence that apoptosis is involved. Our results show that DMF supports the action of oxaliplatin in a synergetic manner and failed synergy with radiation. We demonstrated that DMF has distinct antitumorigenic, cell dependent effects on colon cancer cells by arresting cell cycle in G0/G1 phase as well as activating both the autophagic and apoptotic pathways and synergizes with chemotherapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fumarato de Dimetilo/metabolismo , Humanos , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo
20.
Med Sci Monit ; 25: 7966-7975, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31645538

RESUMO

BACKGROUND This study aimed to investigate the effects of dimethyl fumarate (DMF) on thoracic aortic atherosclerosis in the apolipoprotein E (apo-E)-deficient mouse model with streptozotocin (STZ)-induced hyperglycemia, and the signaling pathways involved. MATERIAL AND METHODS Eight-week-old ApoE-/- male mice (n=30) were randomly divided into three groups: the Control group (ApoE-/-) (n=10); the diabetic model (STZ) group (n=10); and the DMF-treated (25 mg/kg) diabetic model (DMF+STZ) group (n=10). The area of the thoracic aortic atherosclerosis was determined by histology. Reactive oxygen species (ROS) levels in mouse serum and homogenates of the thoracic aorta were determined by colorimetry. Levels of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase subunit gp91phox were detected by immunological hybridization, and levels of heme oxygenase-1 (HO-1) were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with the Control group, in the STZ group, the area of aortic atherosclerosis was significantly increased, the levels of serum and aortic ROS, HO-1, nuclear factor-kappaB (NF-kappaB), intercellular adhesion molecule 1 (ICAM-1), and gp91phox were increased, and nuclear factor erythroid 2-related factor 2 (Nrf2), endothelial nitric oxide synthase (eNOS), and phosphorylated eNOS (p-eNOS) were significantly reduced. Compared with the STZ group, in the DMF+STZ group, the area of aortic atherosclerosis was significantly reduced, the levels of serum and aortic ROS, HO-1, NF-kappaB, ICAM-1, and gp91phox were significantly reduced, and Nrf2, eNOS, and p-eNOS were significantly increased. CONCLUSIONS In the apo-E-deficient mouse model with STZ-induced hyperglycemia, DMF reduced the development of atherosclerosis of the thoracic aorta through the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway.


Assuntos
Aterosclerose/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Animais , Elementos de Resposta Antioxidante/fisiologia , Aorta/patologia , Apolipoproteínas E/deficiência , China , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/deficiência , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA