Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.618
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360643

RESUMO

Filamentous fungi are able to synthesise a remarkable range of secondary metabolites, which play various key roles in the interaction between fungi and the rest of the biosphere, determining their ecological fitness. Many of them can have a beneficial activity to be exploited, as well as negative impact on human and animal health, as in the case of mycotoxins contaminating large quantities of food, feed, and agricultural products worldwide and posing serious health and economic risks. The elucidation of the molecular aspects of mycotoxin biosynthesis has been greatly sped up over the past decade due to the advent of next-generation sequencing technologies, which greatly reduced the cost of genome sequencing and related omic analyses. Here, we briefly highlight the recent progress in the use and integration of omic approaches for the study of mycotoxins biosynthesis. Particular attention has been paid to genomics and transcriptomic approaches for the identification and characterisation of biosynthetic gene clusters of mycotoxins and the understanding of the regulatory pathways activated in response to physiological and environmental factors leading to their production. The latest innovations in genome-editing technology have also provided a more powerful tool for the complete explanation of regulatory and biosynthesis pathways. Finally, we address the crucial issue of the interpretation of the combined omics data on the biology of the mycotoxigenic fungi. They are rapidly expanding and require the development of resources for more efficient integration, as well as the completeness and the availability of intertwined data for the research community.


Assuntos
Fungos/fisiologia , Regulação Fúngica da Expressão Gênica , Micotoxinas/biossíntese , Animais , Vias Biossintéticas , Genômica , Humanos , Micotoxinas/genética
2.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281276

RESUMO

Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.


Assuntos
Vesículas Extracelulares/fisiologia , Fungos/fisiologia , Transporte Biológico Ativo , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/patogenicidade , Genes Fúngicos , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos , Micoses/diagnóstico , Micoses/microbiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo
3.
Arch Microbiol ; 203(7): 4281-4291, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34100101

RESUMO

The application of Trichoderma spp. has the potential to reduce not only mineral fertilizer use in agriculture but also improve soil health through increased soil biological activity. Trichoderma spp. have shown potential as bio-control agents and plant growth promoting ability, but little attention has been paid to the effect of Trichoderma spp. inoculation on nutrient availability and the soil microbiome. In this study, we evaluated the effect of Trichoderma spp. inoculation on nitrogen mineralization and quantified soil enzymatic activities along with plant growth promotion potential. The influence of Trichoderma spp. and organic amendments on the soil fungal community was also investigated. For this purpose, pots and incubation experiment was carried out, and seven treatments were set as follows; poultry compost (PC), poultry compost + RW309 (PCT), cattle compost (CC), cattle compost + RW309 (CCT), rapeseed oil cake (OC), inorganic fertilizer (N) and only soil (S) were set as control. We evaluated that Trichoderma sp. RW309 produced indole-3-acetic acid, which suggested that it could contribute to plant growth enhancement during early plant growth. Inoculation of RW309 with organic materials stimulated nitrogen mineralization and increased soil phosphatase activity. Furthermore, RW309 altered the fungal community in rhizosphere soil. However, cattle compost was a more suitable culture medium for RW309 than poultry compost in terms of nitrogen mineralization, soil enzyme activity, and growth of RW309. In conclusion, Trichoderma sp. RW309 could be considered for use as a bioorganic fertilizer in combination with organic compost to minimize the use of mineral fertilizers.


Assuntos
Compostagem , Fungos , Micobioma , Plantas , Microbiologia do Solo , Trichoderma , Animais , Bovinos , Enzimas/metabolismo , Fungos/fisiologia , Plantas/microbiologia , Trichoderma/fisiologia
4.
Int J Food Microbiol ; 353: 109295, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34166957

RESUMO

Spices and herbs are widely used in almost all types of food preparation and their microbial contamination may cause spoilage and pose public health risk. Thus, the aim of this study was to assess the effect of packaging, source and a food safety management system (FSMS) on the microbiological quality of spices and dried herbs in a developing country, like Lebanon. For this, a total of 96 composite samples of thirteen most commonly consumed types of spices and dried herbs were collected twice at three-month interval. Each type was purchased in 5 common brands from 4 categories: packaged in companies with FSMS, packaged in companies without FSMS, packaged imported, and unpackaged. Total aerobic mesophilic bacteria (TAMB), sulfite reducing anaerobic bacteria, C. perfringens, coliforms, E. coli, yeasts and molds were found in 89%, 43%, 18%, 15%, 1% and 54% of the samples, respectively. All samples were negative for Salmonella. One per cent, 4%, 6%, 1% and 7% of the samples had unacceptable levels of TAMB, coliforms, sulfite reducing anaerobic bacteria, E. coli, yeasts and molds, respectively. Among the four categories, imported samples had the lowest microbiological load, followed by locally packaged in companies with FSMS, then locally packaged in companies without FSMS and the highest microbiological load was for the unpackaged spices and dried herbs. This study highlighted the importance of storage conditions, good hygienic practices, process controls and FSMSs in the spices and dried herbs sector.


Assuntos
Microbiologia de Alimentos , Embalagem de Alimentos , Gestão da Segurança , Especiarias , Fenômenos Fisiológicos Bacterianos , Países em Desenvolvimento , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Embalagem de Alimentos/normas , Fungos/fisiologia , Gestão da Segurança/métodos , Especiarias/microbiologia
5.
Fungal Biol ; 125(7): 551-559, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140151

RESUMO

The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.


Assuntos
Besouros , Fraxinus , Fungos , Animais , Biodiversidade , Besouros/microbiologia , Fraxinus/microbiologia , Fraxinus/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/fisiologia , Larva
6.
Arch Microbiol ; 203(7): 4593-4607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34160629

RESUMO

Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.


Assuntos
Biodiversidade , Microbiota , Persea , Casca de Planta , Archaea/genética , Bactérias/genética , Fungos/genética , Fungos/fisiologia , Metagenômica , Microbiota/genética , Microbiota/fisiologia , Persea/microbiologia , Casca de Planta/microbiologia , Microbiologia do Solo
7.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071562

RESUMO

The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.


Assuntos
Candidíase/imunologia , Fungos/imunologia , Interleucina-17/imunologia , Pele/imunologia , Células Th17/imunologia , Tinha/imunologia , Animais , Candidíase/microbiologia , Fungos/fisiologia , Humanos , Interleucina-17/metabolismo , Infiltração de Neutrófilos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pele/microbiologia , Células Th17/metabolismo , Tinha/microbiologia
8.
Infect Immun ; 89(8): e0000521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031131

RESUMO

Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.


Assuntos
Fungos/fisiologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Micoses/genética , Micoses/microbiologia , Suscetibilidade a Doenças/imunologia , Patrimônio Genético , Genoma , Genômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Micoses/imunologia
9.
ACS Chem Biol ; 16(6): 1079-1089, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34032403

RESUMO

Lysobacter are new biocontrol agents known for their prolific production of lytic enzymes and bioactive metabolites. L. enzymogenes is a predator of fungi and produces several structurally distinct antimicrobial compounds, such as the antifungal HSAF (heat stable antifungal factor) and analogs. The mechanism by which L. enzymogenes interacts with fungal prey is not well understood. Here, we found that the production of HSAF and analogs in L. enzymogenes OH11 was significantly induced in media supplemented with ground fungal mycelia or chitin. In the OH11 genome, we identified a gene (LeLPMO10A) that was annotated to encode a chitin-binding protein. The stimulation of HSAF and analogs by chitin was diminished when LeLPMO10A was deleted. We expressed the gene in E. coli and demonstrated that purified LeLPMO10A oxidatively cleaved chitin into oligomeric products, including 1,5 δ-lactones and aldonic acids. The results revealed that LeLPMO10A encodes a lytic polysaccharide monooxygenase, which has not been reported in Lysobacter. The metabolite analysis, antifungal assay, and proteomic analysis showed that the antifungal compounds and the chitin-cleaving LeLPMO10A are colocalized in outer membrane vesicles. The enzymatic products that resulted from in vitro LeLPMO10A-cleaved chitin also significantly induced HSAF and analogs in OH11. Scanning electron microscopic analysis indicated that spherical vesicles were formed outside of OH11 cells, and fewer OH11 cells were observed to attach to fungal hyphae when LeLPMO10A was deleted. Together, the study revealed a previously uncharacterized synergistic strategy utilized by the predatory Lysobacter during interaction with fungal prey.


Assuntos
Antifúngicos/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Lysobacter/fisiologia , Oxigenases de Função Mista/metabolismo , Quitina/metabolismo , Fungos/fisiologia , Controle Biológico de Vetores , Polissacarídeos/metabolismo
10.
BMC Plant Biol ; 21(1): 165, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820543

RESUMO

BACKGROUND: To decipher the root and microbial interaction, secondary metabolite accumulation in roots and the microbial community's succession model during the plant's growth period demands an in-depth investigation. However, till now, no comprehensive study is available on the succession of endophytic fungi and arbuscular mycorrhizal fungi (AMF) with roots of medicinal licorice plants and the effects of endophytic fungi and AMF on the secondary metabolite accumulation in licorice plant's root. RESULTS: In the current study, interaction between root and microbes in 1-3 years old medicinal licorice plant's root and rhizospheric soil was investigated. Secondary metabolites content in licorice root was determined using high-performance liquid chromatography (HPLC). The composition and diversity of endophytic and AMF in the root and soil were deciphered using high-throughput sequencing technology. During the plant's growth period, as compared to AMF, time and species significantly affected the diversity and richness of endophytic fungi, such as Ascomycota, Basidiomycota, Fusarium, Cladosporium, Sarocladium. The growth period also influenced the AMF diversity, evident by the significant increase in the relative abundance of Glomus and the significant decrease in the relative abundance of Diversispora. It indicated a different succession pattern between the endophytic fungal and AMF communities. Meanwhile, distance-based redundancy analysis and Mantel tests revealed root's water content and secondary metabolites (glycyrrhizic acid, liquiritin, and total flavonoids), which conferred endophytic fungi and AMF diversity. Additionally, plant growth significantly altered soil's physicochemical properties, which influenced the distribution of endophytic fungal and AMF communities. CONCLUSIONS: This study indicated a different succession pattern between the endophytic fungal and AMF communities. During the plant's growth period, the contents of three secondary metabolites in roots increased per year, which contributed to the overall differences in composition and distribution of endophytic fungal and AMF communities. The endophytic fungal communities were more sensitive to secondary metabolites than AMF communities. The current study provides novel insights into the interaction between rhizospheric microbes and root exudates.


Assuntos
Fungos/fisiologia , Glycyrrhiza/microbiologia , Raízes de Plantas/metabolismo , Endófitos/fisiologia , Glycyrrhiza/crescimento & desenvolvimento , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/crescimento & desenvolvimento , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Metabolismo Secundário
11.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810292

RESUMO

Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.


Assuntos
Antifúngicos , Materiais Biocompatíveis , Biofilmes , Infecção Hospitalar/terapia , Farmacorresistência Fúngica/efeitos dos fármacos , Fungos , Nanopartículas/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Bandagens , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungos/fisiologia , Humanos
12.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808705

RESUMO

Fungal LysM effector proteins can dampen plant host-defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1-the smallest one-is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/classificação , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Hifas , Hypocreales/fisiologia , Modelos Moleculares , Plantas/metabolismo , Plantas/microbiologia , Conformação Proteica , Relação Estrutura-Atividade
13.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741636

RESUMO

Interactions and feedbacks between aboveground and belowground biomes are fundamental in controlling ecosystem functions and stability. However, the relationship between plant diversity and soil microbial diversity is elusive. Moreover, it remains unknown whether plant diversity loss will cause the stability of soil microbial communities to deteriorate. To shed light on these questions, we conducted a pot-based experiment to manipulate the plant richness gradient (1, 2, 4, or 8 species) and plant [Symphyotrichum subulatum (Michx.) G. L. Nesom] invasion status. We found that, in the noninvasion treatment, soil fungal diversity significantly and positively correlated with plant diversity, while the relationship between bacterial and plant diversity was not significant. Under plant invasion conditions, the coupling of plant-fungal alpha diversity relationship was enhanced, but the plant-fungal beta diversity relationship was decoupled. We also found significant positive relationships between plant diversity and soil microbial resistance. The observed positive relationships were determined by turnover (species substitution) and nestedness (species loss) processes for bacterial and fungal communities, respectively. Our study demonstrated that plant diversity enhanced soil fungal diversity and microbial resistance in response to plant invasion. This study expands our knowledge about the aboveground-belowground diversity relationship and the diversity-stability relationship.IMPORTANCE Our study newly showed that plant invasion significantly altered relationships between aboveground and belowground diversity. Specifically, plant richness indirectly promoted soil fungal richness through the increase of soil total carbon (TC) without plant invasion, while plant richness had a direct positive effect on soil fungal richness under plant invasion conditions. Our study highlights the effect of plant diversity on soil fungal diversity, especially under plant invasion conditions, and the plant diversity effect on microbial resistance in response to plant invasion. These novel findings add important knowledge about the aboveground-belowground diversity relationship and the diversity-stability relationship.


Assuntos
Asteraceae/fisiologia , Biodiversidade , Fungos/fisiologia , Microbiota , Microbiologia do Solo , Fungos/classificação , Plantas
14.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33771785

RESUMO

Enhancing soil suppressiveness against plant pathogens or pests is a promising alternative strategy to chemical pesticides. Organic amendments have been shown to reduce crop diseases and pests, with chitin products the most efficient against fungal pathogens. To study which characteristics of organic products are correlated with disease suppression, an experiment was designed in which 10 types of organic amendments with different physicochemical properties were tested against the soilborne pathogen Rhizoctonia solani in sugar beet seedlings. Organic amendments rich in keratin or chitin reduced Rhizoctonia solani disease symptoms in sugar beet plants. The bacterial and fungal microbial communities in amended soils were distinct from the microbial communities in nonamended soil, as well as those in soils that received other nonsuppressive treatments. The Rhizoctonia-suppressive amended soils were rich in saprophytic bacteria and fungi that are known for their keratinolytic and chitinolytic properties (i.e., Oxalobacteraceae and Mortierellaceae). The microbial community in keratin- and chitin-amended soils was associated with higher zinc, copper, and selenium, respectively.IMPORTANCE Our results highlight the importance of soil microorganisms in plant disease suppression and the possibility to steer soil microbial community composition by applying organic amendments to the soil.


Assuntos
Quitina/análise , Fertilizantes/análise , Queratinas/análise , Doenças das Plantas/prevenção & controle , Rhizoctonia/fisiologia , Microbiologia do Solo , Solo/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiota/fisiologia , Rhizoctonia/efeitos dos fármacos
15.
Plant Cell Environ ; 44(6): 1946-1960, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675052

RESUMO

Plants rely on their microbiota for improving the nutritional status and environmental stress tolerance. Previous studies mainly focused on bipartite interactions (a plant challenged by a single microbe), while plant responses to multiple microbes have received limited attention. Here, we investigated local and systemic changes induced in wheat by two plant growth-promoting bacteria (PGPB), Azospirillum brasilense and Paraburkholderia graminis, either alone or together with an arbuscular mycorrhizal fungus (AMF). We conducted phenotypic, proteomic, and biochemical analyses to investigate bipartite (wheat-PGPB) and tripartite (wheat-PGPB-AMF) interactions, also upon a leaf pathogen infection. Results revealed that only AMF and A. brasilense promoted plant growth by activating photosynthesis and N assimilation which led to increased glucose and amino acid content. The bioprotective effect of the PGPB-AMF interactions on infected wheat plants depended on the PGPB-AMF combinations, which caused specific phenotypic and proteomic responses (elicitation of defense related proteins, immune response and jasmonic acid biosynthesis). In the whole, wheat responses strongly depended on the inoculum composition (single vs. multiple microbes) and the investigated organs (roots vs. leaf). Our findings showed that AMF is the best-performing microbe, suggesting its presence as the crucial one for synthetic microbial community development.


Assuntos
Fungos/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Inoculantes Agrícolas/fisiologia , Azospirillum brasilense , Burkholderiaceae , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Proteômica/métodos , Triticum/metabolismo , Xanthomonas/patogenicidade
16.
Braz J Microbiol ; 52(2): 687-704, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33782910

RESUMO

INTRODUCTION: Biological control holds great promise for environmentally friendly and sustainable management of the phytopathogens. The multi-function features of plant growth-promoting rhizobacteria (PGPR) enable to protect the plants from disease infections by replacing the chemical inputs. The interaction between the plant root exudates and the microbes stimulates the production of secondary metabolism and enzymes and induces systemic resistance in the plants. AIM: The aim was to identify the potential PGPR which would show an antagonistic effect against basmati rice fungal and bacterial diseases. METHODS: In the study, native originating microbes have been isolated, characterized using 16S rRNA sequencing, and used as potential antagonistic microbial isolates against diseases of rice plants. RESULTS: Rhizobacteria isolated from rhizosphere, endo-rhizosphere, and bulk soil samples of Basmati 370 exhibited promising inhibitory activity against rice pathogens. Molecular characterization of bacterial isolates based on 16S rRNA sequencing classified the bacterial isolates into different genera such as Bacillus, Pseudomonas, Streptomyces, Exiguobacterium, Aeromonas, Chryseobacterium, Enterobacter, and Stenotrophomonas. PGPRs exhibited biocontrol activities against various rice diseases like bacterial leaf blight, leaf blast, brown spot, and sheath blight and boost the plant growth traits. CONCLUSION: In the study, the potentially identified PGPRs isolates could be used as efficient bioinoculants as bio-fertilizers and biocontrol agents for sustainable rice crop production.


Assuntos
Inoculantes Agrícolas/fisiologia , Antibiose , Bactérias/isolamento & purificação , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Oryza/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Microbiologia do Solo
17.
mSphere ; 6(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658277

RESUMO

Actinobacteria, one of the largest bacterial phyla, are ubiquitous in many of Earth's ecosystems and often act as defensive symbionts with animal hosts. Members of the phylum have repeatedly been isolated from basidiomycete-cultivating fungus-farming termites that maintain a monoculture fungus crop on macerated dead plant substrate. The proclivity for antimicrobial and enzyme production of Actinobacteria make them likely contributors to plant decomposition and defense in the symbiosis. To test this, we analyzed the prophylactic (biosynthetic gene cluster [BGC]) and metabolic (carbohydrate-active enzyme [CAZy]) potential in 16 (10 existing and six new genomes) termite-associated Actinobacteria and compared these to the soil-dwelling close relatives. Using antiSMASH, we identified 435 BGCs, of which 329 (65 unique) were similar to known compound gene clusters, while 106 were putatively novel, suggesting ample prospects for novel compound discovery. BGCs were identified among all major compound categories, including 26 encoding the production of known antimicrobial compounds, which ranged in activity (antibacterial being most prevalent) and modes of action that might suggest broad defensive potential. Peptide pattern recognition analysis revealed 823 (43 unique) CAZymes coding for enzymes that target key plant and fungal cell wall components (predominantly chitin, cellulose, and hemicellulose), confirming a substantial degradative potential of these bacteria. Comparison of termite-associated and soil-dwelling bacteria indicated no significant difference in either BGC or CAZy potential, suggesting that the farming termite hosts may have coopted these soil-dwelling bacteria due to their metabolic potential but that they have not been subject to genome change associated with symbiosis.IMPORTANCE Actinobacteria have repeatedly been isolated in fungus-farming termites, and our genome analyses provide insights into the potential roles they may serve in defense and for plant biomass breakdown. These insights, combined with their relatively higher abundances in fungus combs than in termite gut, suggest that they are more likely to play roles in fungus combs than in termite guts. Up to 25% of the BGCs we identify have no similarity to known clusters, indicating a large potential for novel chemistry to be discovered. Similarities in metabolic potential of soil-dwelling and termite-associated bacteria suggest that they have environmental origins, but their consistent presence with the termite system suggests their importance for the symbiosis.


Assuntos
Actinobacteria/genética , Fungos/fisiologia , Genoma Bacteriano , Genômica , Isópteros/microbiologia , Família Multigênica , Simbiose/genética , Actinobacteria/classificação , Actinobacteria/metabolismo , Animais , Fungos/genética , Filogenia
18.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656555

RESUMO

The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Fungos/metabolismo , Fungos/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/fisiologia
19.
Microbiol Res ; 248: 126734, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33690069

RESUMO

The diseases caused by phytopathogens account for huge economic losses in the agricultural sector. Paenibacillus polymyxa is one of the agriculturally important biocontrol agents and plant growth promoting bacterium. This study describes the antifungal potential of P. polymyxa HK4 against an array of fungal phytopathogens and its ability to stimulate seed germination of cumin and groundnut under in vitro conditions. The cumin and groundnut seeds bacterized with HK4 exhibited enhanced germination efficiency in comparison to controls. The use of HK4 as a soil inoculant significantly promoted the shoot length and fresh weight of groundnut plants in pot studies. The draft genome analysis of HK4 revealed the genetic attributes for motility, root colonization, antagonism, phosphate solubilization, siderophore production and production of volatile organic compounds. The bacterium HK4 harnessed several hydrolytic enzymes that may assist its competence in the rhizosphere. The PCR amplification and sequence analysis of the conserved region of the fusA gene amplicon revealed the ability of HK4 to produce fusaricidin. Furthermore, the LC-ESI-MS/MS of crude cell pellet extract of HK4 confirmed the presence of fusaricidin as a major antifungal metabolite. This study demonstrated the potential of HK4 as a biocontrol agent and a plant growth promoter.


Assuntos
Proteção de Cultivos/métodos , Cuminum/microbiologia , Paenibacillus polymyxa/genética , Doenças das Plantas/prevenção & controle , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cuminum/crescimento & desenvolvimento , Depsipeptídeos/análise , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Fungos/efeitos dos fármacos , Fungos/fisiologia , Genoma Bacteriano , Genômica , Espectrometria de Massas , Paenibacillus polymyxa/química , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...