Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.275
Filtrar
1.
J Sci Food Agric ; 102(1): 350-359, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143449

RESUMO

BACKGROUND: The contribution of bacteria to fermented tea is not clear and the associated research is relatively limited. To reveal the role of microorganisms in fermented tea processing, the microbial community and metabolites of Fuzhuan brick tea (FBT), a Chinese traditional fermented tea, were revealed via high-throughput sequencing and liquid chromatography-mass spectrometry (LC-MS). RESULTS: In FBT, bacterial communities had a higher abundance and diversity, Lactococcus and Bacillus were the main bacteria, and Eurotium was the predominant fungus. The predictive metabolic function indicated the pathways of cellular growth, environmental information, genetics and material metabolism of bacterial communities were abundant, whereas the fungal community predictive metabolic function was almost saprotroph. Using LC-MS, 1143 and 536 metabolites were defined in positive and negative ion mode, respectively. There were essential correlations between bacterial populations and metabolites, such that Bacillus was correlated significantly with 44 metabolites (P < 0.05) and Enterococcus was significantly associated with 15 metabolites (P < 0.05). Some of the main active components were significantly correlated with the bacteria, such as Enterococcus, Lactococcus and Carnobacterium. CONCLUSION: Not only Eurotium, but also the bacteria were involved in the changes of metabolomics profile in fermented FBT. The present study assists in providing new insights into metabolomics profile generation in fermented tea. The present research lays a foundation for controlling the FBT fermentation by artificial inoculation to improve quality. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/metabolismo , Camellia sinensis/microbiologia , Bactérias/química , Bactérias/classificação , Bactérias/genética , Camellia sinensis/metabolismo , Cromatografia Líquida , Fermentação , Fungos/química , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , Metabolômica , Chá/química
2.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684752

RESUMO

Biogenic amines (BAs) and nitrites are both considered harmful compounds for customer health, and are closely correlated with the microorganisms in fermented mustard (FM). In this study, BAs and nitrite contents in fifteen FM samples from different brands were analyzed. The concentrations of cadaverine in one sample and of histamine in one sample were above the toxic level. Moreover, five FM samples contained a high level of nitrite, exceeding the maximum residue limit (20 mg/kg) suggested by the National Food Safety Standard. Then, this study investigated bacterial and fungal communities by high-throughput sequencing analysis. Firmicutes and Basidiomycota were identified as the major bacteria and fungi phylum, respectively. The correlations among microorganisms, BAs and nitrite were analyzed. Typtamine showed a positive correlation with Lactobacillus and Pseudomonas. Cadaverine and nitrite is positively correlated with Leuconostoc. Furthermore, thirteen strains were selected from the samples to evaluate the accumulation and degradation properties of their BAs and nitrite. The results indicated that the Lactobacillus isolates, including L. plantarum GZ-2 and L. brevis SC-2, can significantly reduce BAs and nitrite in FM model experiments. This study not only assessed the contents of BAs and nitrite in FM samples, but also provided potential starter cultures for BAs and nitrite control in the FM products industry.


Assuntos
Aminas Biogênicas/análise , Mostardeira/metabolismo , Mostardeira/microbiologia , Nitritos/análise , Bactérias/metabolismo , Aminas Biogênicas/química , Reatores Biológicos , Cadaverina/toxicidade , China , Fermentação , Alimentos e Bebidas Fermentados/análise , Fungos/metabolismo , Histamina/toxicidade , Lactobacillus/metabolismo , Microbiota/fisiologia , Mostardeira/química , Nitritos/química
3.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639017

RESUMO

Bisphenol (BPA) is a key ingredient in the production of epoxy resins and some types of plastics, which can be released into the environment and alter the endocrine systems of wildlife and humans. In this study, the ability of the fungus M. roridumIM 6482 to BPA elimination was investigated. LC-MS/MS analysis showed almost complete removal of BPA from the growth medium within 72 h of culturing. Products of BPA biotransformation were identified, and their estrogenic activity was found to be lower than that of the parent compound. Extracellular laccase activity was identified as the main mechanism of BPA elimination. It was observed that BPA induced oxidative stress in fungal cells manifested as the enhancement in ROS production, membranes permeability and lipids peroxidation. These oxidative stress markers were reduced after BPA biodegradation (72 h of culturing). Intracellular proteome analyses performed using 2-D electrophoresis and MALDI-TOF/TOF technique allowed identifying 69 proteins in a sample obtained from the BPA containing culture. There were mainly structural and regulator proteins but also oxidoreductive and antioxidative agents, such as superoxide dismutase and catalase. The obtained results broaden the knowledge on BPA elimination by microscopic fungi and may contribute to the development of BPA biodegradation methods.


Assuntos
Compostos Benzidrílicos/metabolismo , Biodegradação Ambiental , Fungos/metabolismo , Fenóis/metabolismo , Compostos Benzidrílicos/química , Biomassa , Biotransformação , Cinética , Lacase/metabolismo , Oxirredução , Fenóis/química
4.
Fungal Biol ; 125(11): 923-933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649679

RESUMO

The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.


Assuntos
Proteínas Fúngicas , Estresse Oxidativo , Proteínas Fúngicas/genética , Fungos/metabolismo , Micélio/metabolismo , Carbonilação Proteica
5.
PLoS One ; 16(10): e0256817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699529

RESUMO

The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.


Assuntos
Quitinases/genética , Endopeptidases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitinases/química , Quitinases/metabolismo , Bases de Dados de Proteínas , Endopeptidases/química , Endopeptidases/metabolismo , Evolução Molecular , Fungos/química , Fungos/genética , Fungos/metabolismo , Humanos , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Especificidade por Substrato
6.
An Acad Bras Cienc ; 93(suppl 3): e20210296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34586183

RESUMO

Fungi are excellent producers of extracellular enzymes. Therefore, the present study aimed to investigate the screening of marine fungi, which are laccase and manganese peroxidase potential producers, in solid fermentation for future applications in bioremediation processes of contaminated sites. For this purpose, two-level factorial planning was adopted, using time (6 and 15 days) and the absence or presence of oil (0 and 1%) as factors. The semi-quantitative evaluation was carried out by calculating radial growth, enzyme activity and enzyme index by measuring phenol red or syringaldazine oxidation halo. The results showed that all the studied strains showed a positive result for manganese peroxidase production, with an enzymatic activity in solid medium less than 0.61, indicating a strongly positive activity. Through the enzyme index, the study also showed prominence for Penicillium sp. strains, with values > 2. The enzyme index increase in oil presence and the inexpressive use of the genera studied for ligninolytic enzymes production from crude oil demonstrated these data importance for fermentative processes optimization. Considering the ability of these strains to develop into recalcitrant compounds and the potential for manganese peroxidase production, they are indicated for exploitation in various bioremediation technologies, as well as other biotechnological applications.


Assuntos
Lacase , Peroxidases , Biodegradação Ambiental , Meios de Cultura , Fermentação , Fungos/metabolismo , Peroxidases/metabolismo
7.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576274

RESUMO

Biotransformation of four bioactive phenolic constituents from licorice, namely licoisoflavanone (1), glycyrrhisoflavone (2), echinatin (3), and isobavachalcone (4), was performed by the selected fungal strain Aspergillus niger KCCM 60332, leading to the isolation of seventeen metabolites (5-21). Structures of the isolated compounds were determined on the basis of extensive spectroscopic methods, twelve of which (5-7, 10-17 and 19) have been previously undescribed. A series of reactions including hydroxylation, hydrogenation, epoxidation, hydrolysis, reduction, cyclization, and alkylation was observed in the biotransformation process. All compounds were tested for their cytotoxic activities against three different human cancer cell lines including A375P, MCF-7, and HT-29. Compounds 1 and 12 exhibited most considerable cytotoxic activities against all the cell lines investigated, while compounds 2 and 4 were moderately cytotoxic. These findings will contribute to expanding the chemical diversity of phenolic compounds, and compounds 1 and 12 may serve as leads for the development of potential cancer chemopreventive agents.


Assuntos
Biotransformação , Glycyrrhiza/química , Fenol/química , Anticarcinógenos/farmacologia , Antineoplásicos/química , Aspergillus niger/metabolismo , Linhagem Celular Tumoral , Fermentação , Fungos/metabolismo , Células HT29 , Humanos , Hidrólise , Concentração Inibidora 50 , Células MCF-7 , Fenóis , Extratos Vegetais , Raízes de Plantas/efeitos dos fármacos , Pós , Rizoma/metabolismo , Espectrofotometria , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
9.
PLoS Comput Biol ; 17(9): e1009372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570757

RESUMO

Secondary metabolites (SMs) are a vast group of compounds with different structures and properties that have been utilized as drugs, food additives, dyes, and as monomers for novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose corresponding genes are co-localized in the genome in biosynthetic gene clusters (BGCs). Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of the SM. Current genome mining tools can identify BGCs, but they have problems with distinguishing essential genes from gap genes. This can and must be done by expensive, laborious, and time-consuming comparative genomic approaches or transcriptome analyses. In this study, we developed a method that allows semi-automated identification of essential genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a BGC are blasted against a suitable proteome database. For each protein, a phylogenetic tree is created. The trees are compared by treeKO to detect co-evolution. The results of this comparison are visualized in different output formats, which are compared visually. Our results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that especially those genes that encode for enzymes of the biosynthetic pathway are co-evolutionary linked and can be identified with FunOrder. In light of the growing number of genomic data available, this will contribute to the studies of BGCs in native hosts and facilitate heterologous expression in other organisms with the aim of the discovery of novel SMs.


Assuntos
Vias Biossintéticas/genética , Evolução Molecular , Genes Essenciais , Família Multigênica , Software , Aspergillus/genética , Aspergillus/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Genes Sintéticos , Genoma Fúngico , Genômica , Lovastatina/biossíntese , Lovastatina/genética , Filogenia , Proteoma/genética
10.
Nat Commun ; 12(1): 4973, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404788

RESUMO

Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.


Assuntos
Fungos/classificação , Hepatófitas/classificação , Filogenia , Corpos Basais , Blastocladiomycota , Quitridiomicetos/classificação , Flagelos , Fungos/citologia , Fungos/genética , Fungos/metabolismo , Genômica , Hifas , Fenótipo , Manejo de Espécimes , Transcriptoma
11.
Biomolecules ; 11(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439820

RESUMO

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/biossíntese , Proteínas Anticongelantes/biossíntese , Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Redes e Vias Metabólicas/genética , Proteínas Anticongelantes/genética , Regiões Árticas , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biotecnologia/métodos , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Temperatura Baixa , Biologia Computacional/métodos , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Humanos , Lipídeos/biossíntese , Lipídeos/genética , Fluidez de Membrana , Metagenoma , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética
12.
Food Microbiol ; 100: 103865, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416965

RESUMO

The purpose of this study was to evaluate the inhibitory effect of allyl-isothiocyanate (AITC) and benzyl-isothiocyanate (BITC) on fungal growth and Ochratoxin A (OTA) production by Aspergillus ochraceus, A. carbonarius and A. niger. Here, we found that spore germination and fungal growth of the three fungi were significantly inhibited when the concentration of AITC and BITC was higher than 1.25 µg/mL. The inhibitory effect of AITC or BITC on A. carbonaceus and A. ochraceus was significantly stronger than that of A. niger. Scanning electron microscopy showed that the mycelia of all three fungi were changed by AITC and BITC. Compared with A. ochraceus and A. carbonarius, the damage to A. niger was lower. For OTA production, AITC and BITC could significantly down-regulated the expression of all five OTA biosynthesis genes in A. niger and A. carbonarius. In A. ochraceus, although several OTA biosynthesis genes were up-regulated, the key PKS gene was down-regulated by AITC and BITC. Twenty-five µg/mL of AITC or BITC could reduce the infection of the three fungi on grapes with inhibition rates of 28%-36% during 14 days and prolong the shelf life of grapes. In maize, the OTA production of the three fungi was significantly reduced by 25 µg/mL of AITC and BITC with the inhibition rates 68.04%-93.49% and 65.87%-75.45%, respectively. These results suggest that AITC and BITC can be used as natural fungicides to prevent A. niger, A. carbonarius and A. ochraceus from infecting grapes and maize and control OTA contamination.


Assuntos
Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Isotiocianatos/farmacologia , Ocratoxinas/biossíntese , Vitis/microbiologia , Zea mays/microbiologia , Contaminação de Alimentos/análise , Fungos/crescimento & desenvolvimento , Fungos/metabolismo
13.
Sci Rep ; 11(1): 15963, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354188

RESUMO

One group of promising pest control agents are the entomopathogenic fungi; one such example is Conidiobolus coronatus, which produces a range of metabolites. Our present findings reveal for the first time that C. coronatus also produces dodecanol, a compound widely used to make surfactants and pharmaceuticals, and enhance flavors in food. The main aim of the study was to determine the influence of dodecanol on insect defense systems, i.e. cuticular lipid composition and the condition of insect immunocompetent cells; hence, its effect was examined in detail on two species differing in susceptibility to fungal infection: Galleria mellonella and Calliphora vicina. Dodecanol treatment elicited significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles between the species, based on gas chromatography analysis with mass spectrometry (GC/MS), and had a negative effect on G. mellonella and C. vicina hemocytes and a Sf9 cell line in vitro: after 48 h, almost all the cells were completely disintegrated. The metabolite had a negative effect on the insect defense system, suggesting that it could play an important role during C. coronatus infection. Its high insecticidal activity and lack of toxicity towards vertebrates suggest it could be an effective insecticide.


Assuntos
Conidiobolus/metabolismo , Dodecanol/metabolismo , Dodecanol/farmacologia , Animais , Calliphoridae , Conidiobolus/química , Conidiobolus/patogenicidade , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fungos/química , Fungos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hemócitos/metabolismo , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Insetos/metabolismo , Inseticidas , Larva/metabolismo , Mariposas/metabolismo
14.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207073

RESUMO

Laccases are multicopper oxidases that have shown a great potential in various biotechnological and green chemistry processes mainly due to their high relative non-specific oxidation of phenols, arylamines and some inorganic metals, and their high redox potentials that can span from 500 to 800 mV vs. SHE. Other advantages of laccases include the use of readily available oxygen as a second substrate, the formation of water as a side-product and no requirement for cofactors. Importantly, addition of low-molecular-weight redox mediators that act as electron shuttles, promoting the oxidation of complex bulky substrates and/or of higher redox potential than the enzymes themselves, can further expand their substrate scope, in the so-called laccase-mediated systems (LMS). Laccase bioprocesses can be designed for efficiency at both acidic and basic conditions since it is known that fungal and bacterial laccases exhibit distinct optimal pH values for the similar phenolic and aromatic amines. This review covers studies on the synthesis of five- and six-membered ring heterocyclic cores, such as benzimidazoles, benzofurans, benzothiazoles, quinazoline and quinazolinone, phenazine, phenoxazine, phenoxazinone and phenothiazine derivatives. The enzymes used and the reaction protocols are briefly outlined, and the mechanistic pathways described.


Assuntos
Compostos Heterocíclicos/síntese química , Lacase/química , Lacase/metabolismo , Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , Fungos/metabolismo , Oxirredução/efeitos dos fármacos
15.
J Chem Ecol ; 47(7): 597-613, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34232439

RESUMO

Melanin is a heteropolymer formed by the polymerization of phenolic and indolic compounds. It occurs in organisms across all biological kingdoms and has a range different of functions, thus indicating its important evolutionary role. The presence of melanin offers several protective advantages, including against ultraviolet radiation, traumatic damage, oxidative stress, extreme temperatures, and pressure. For many species of fungi, melanin also participates directly in the process of virulence and pathogenicity. These organisms can synthesize melanin in two main ways: using a substrate of endogenous origin, involving 1,8-dihydroxynaphthalene (DHN); alternatively, in an exogenous manner with the addition of L-3, 4-dihydroxyphenylalanine (L-DOPA or levodopa). As melanin is an amorphous and complex substance, its study requires expensive and inaccessible technologies and analyses are often difficult to perform with conventional biochemical techniques. As such, details about its chemical structure are not yet fully understood, particularly for nematophagous fungi that remain poorly studied. Thus, this review presents an overview of the different types of melanin, with an emphasis on fungi, and discusses the role of melanin in the biology and ecology of nematophagous fungi.


Assuntos
Fungos/metabolismo , Melaninas/metabolismo , Fungos/patogenicidade , Lacase/metabolismo , Levodopa/química , Levodopa/metabolismo , Melaninas/química , Monofenol Mono-Oxigenase/metabolismo , Naftóis/química , Naftóis/metabolismo , Policetídeo Sintases/metabolismo
16.
Commun Biol ; 4(1): 871, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267314

RESUMO

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Assuntos
Biotecnologia/métodos , Corantes/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/metabolismo , Fungos/classificação , Fungos/genética , Variação Genética , Geografia , Humanos , Fenótipo , Filogenia , Especificidade da Espécie
17.
Nat Chem Biol ; 17(8): 845-855, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312558

RESUMO

One-carbon (C1) substrates are preferred feedstocks for the biomanufacturing industry and have recently gained attention owing to their natural abundance, low production cost and availability as industrial by-products. However, native pathways to utilize these substrates are absent in most biotechnologically relevant microorganisms. Recent advances in synthetic biology, genome engineering and laboratory evolution are enabling the first steps towards the creation of synthetic C1-utilizing microorganisms. Here, we briefly review the native metabolism of methane, methanol, CO2, CO and formate, and how these C1-utilizing pathways can be engineered into heterologous hosts. In addition, this review analyses the potential, the challenges and the perspectives of C1-based biomanufacturing.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Engenharia Metabólica , Bactérias/citologia , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Formiatos/metabolismo , Fungos/citologia , Metano/metabolismo , Metanol/metabolismo
18.
Biomolecules ; 11(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209734

RESUMO

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


Assuntos
Terpenos/química , Terpenos/isolamento & purificação , Terpenos/metabolismo , Alcaloides , Animais , Antibacterianos/metabolismo , Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Bactérias/metabolismo , Benzopiranos , Benzoquinonas , Produtos Biológicos/química , Vias Biossintéticas , Fungos/metabolismo , Humanos , Metabolismo Secundário/fisiologia , Sesquiterpenos
19.
Microb Biotechnol ; 14(5): 2140-2151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310858

RESUMO

Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH. O. rivulosa laccase variants with redox mediators oxidized both the dimeric lignin model compound and biorefinery poplar lignin. Significant structural changes, such as selective benzylic α-oxidation, were detected by nuclear magnetic resonance analysis, although no polymerization of lignin was observed by gel permeation chromatography. This suggests that especially rOrLcc2-D206N is a promising candidate for lignin-related applications.


Assuntos
Lacase , Polyporales , Fungos/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Oxirredução , Polyporales/metabolismo
20.
Microbiol Res ; 250: 126811, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34242923

RESUMO

Endophytic and rhizospheric microorganisms associated with six native plants adapted to heavy metal polluted soil from Punta Olímpica and Chahuapampa, located in Callejón de Huaylas mountains, were evaluated as potential candidates for technologies to clean polluted ecosystems. It was selected 14 bacteria and 9 fungi strains by their iron and/or aluminum siderophore production trait, where BEP17-Dm showed higher production. According to the 16S rDNA analysis, bacteria belong to Pseudomonas, Bacillus, and Achromobacter genera, whereas by ITS analysis fungi belong to Talaromyces, Hypoxylon, Tolypocladium, and Penicillium. All bacteria strains tolerated lead (2-8 mM) and eigth tolerated cadmium (1-6 mM); also all fungi tolerated lead (9-70 mM) and cadmium (3-10 mM). Two bacteria and six fungi solubilized cadmium carbonate, while eleven bacteria and two fungi solubilized tricalcium phosphate, where P. japonica BEP18-Dm and B. subtilis BRU16-Sr exhibited higher solubilization index. None strains solubilized lead carbonate. BEP18-Dm produced higher concentration of IAA (53.42 µgml-1); while six bacteria and all fungi strains produced a low concentration of auxins. Medicago sativa seedlings inoculated with BEP17-Dm, BEP18-Dm, or BRU16-Sr showed more surviving percentage under in vitro culture in presence of Cd, Pb (0.5-1.0 mM), or Al (2.5-5.0 mM). Finally, it is the first report of siderophore-producing microorganisms from polluted soil of Callejón de Huaylas highlands, interestedly they displayed metabolic properties useful to enhance phytoremediation and biotechnology application.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Metais Pesados/metabolismo , Plantas/microbiologia , Sideróforos/genética , Sideróforos/metabolismo , Poluentes do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Recuperação e Remediação Ambiental , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Metais Pesados/análise , Peru , Raízes de Plantas/microbiologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...