Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.464
Filtrar
1.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615637

RESUMO

Osthole, a coumarin derivative, is found in several medicinal herbs. However, the protective effects of osthole against D-galactose (D-Gal)-induced liver injury still remain unclear. In this study, osthole treatment effectively reversed D-Gal-induced liver injury, according to the results of liver HE staining, and improved ALT and AST activities. Feeding with D-Gal significantly increased MDA content, and reduced the level or activity of SOD, CAT and GSH-Px, which were all alleviated by osthole intervention. Meanwhile, osthole treatment significantly inhibited the D-Gal-induced secretion of pro-inflammatory cytokines, such as TNF-α, IL-1ß and IL-6, in both serum and liver tissue. Investigations revealed that osthole ameliorated the D-Gal-induced activation of TLR4, MYD88 and its downstream signaling pathways of MAPK (p38 and JNK) and NF-κB (nucleus p65). Therefore, osthole mediates a protective effect against D-Gal-induced liver injury via the TLR4/MAPK/NF-κB pathways, and this coumarin derivative could be developed as a candidate bioactive component for functional food.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Galactose/metabolismo , Receptor 4 Toll-Like/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Cumarínicos/farmacologia , Cumarínicos/metabolismo
2.
Appl Microbiol Biotechnol ; 107(2-3): 785-795, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625911

RESUMO

In order to figure out the induction mechanisms of glycoside hydrolase genes in Aspergillus aculeatus, we screened approximately 9,000 transfer DNA (T-DNA)-inserted mutants for positive regulators involved in the induction. Since the mutants possess the orotidine 5'-monophosphate decarboxylase gene as a reporter gene to monitor the cellulose-responsive expression of the cellobiohydrolase I gene (cbhI), candidate strains were isolated by counterselection against 5-fluoroorotic acid (5-FOA). One 5-FOA-resistant mutant harboring the T-DNA at the uge5 locus showed reduced cellulose utilization and cbhI expression. A. aculeatus Uge5 is homologous to Aspergillus fumigatus uge5 (Afu5g10780; E-value, 0.0; identities, 93%), which catalyzes the conversion of uridine diphosphate (UDP)-glucose to UDP-galactopyranose. The uge5 deletion mutant in A. aculeatus (Δuge5) showed reduced conidium formation on minimal media supplemented with galactose, locust bean gum (LBG), and guar gum as a carbon source. ß-1,4-Endoglucanase and ß-1,4-mannanase production in submerged culture containing LBG was reduced to 10% and 6% of the control strain at day 5, respectively, but no difference was observed in cultures containing wheat bran. The expression of major cellulolytic and mannolytic genes in the presence of mannobiose in Δuge5 was reduced to less than 15% of the control strain, while cellobiose-responsive expression was only modestly reduced at early inducing time points. Since all test genes were controlled by a transcription factor ManR, these data demonstrate that Uge5 is involved in inducer-dependent selective expression of genes controlled via ManR. KEY POINTS: • UDP-glucose 4-epimerase (Uge5) regulates expression of glycosyl hydrolase genes. • ManR regulates both cellobiose- and mannobiose-responsive expression. • Uge5 plays a key role in mannobiose-responsive expression.


Assuntos
Glicosídeo Hidrolases , UDPglucose 4-Epimerase , Glicosídeo Hidrolases/genética , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Celobiose/metabolismo , Celulose/metabolismo , Galactose/metabolismo , Difosfato de Uridina
3.
BMC Microbiol ; 23(1): 14, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36639757

RESUMO

BACKGROUND: Tetragenococcus (T.) halophilus is a common member of the microbial consortia of food fermented under high salt conditions. These comprises salty condiments based on soy or lupine beans, fish sauce, shrimp paste and brined anchovies. Within these fermentations this lactic acid bacterium (LAB) is responsible for the formation of lactic and other short chain acids that contribute to the flavor and lower the pH of the product. In this study, we investigated the transcriptomic profile of the two T. halophilus strains TMW 2.2254 and TMW 2.2256 in a lupine moromi model medium supplied with galactose. To get further insights into which genomic trait is important, we used a setup with two strains. That way we can determine if strain dependent pathways contribute to the overall fitness. These strains differ in the ability to utilize L-arginine, L-aspartate, L-arabinose, D-sorbitol, glycerol, D-lactose or D-melibiose. The lupine moromi model medium is an adapted version of the regular MRS medium supplied with lupine peptone instead of casein peptone and meat extract, to simulate the amino acid availabilities in lupine moromi. RESULTS: The transcriptomic profiles of the T. halophilus strains TMW 2.2254 and TMW 2.2256 in a lupine peptone-based model media supplied with galactose, used as simulation media for a lupine seasoning sauce fermentation, were compared to the determine potentially important traits. Both strains, have a great overlap in their response to the culture conditions but some strain specific features such as the utilization of glycerol, sorbitol and arginine contribute to the overall fitness of the strain TMW 2.2256. Interestingly, although both strains have two non-identical copies of the tagatose-6P pathway and the Leloir pathway increased under the same conditions, TMW 2.2256 prefers the degradation via the tagatose-6P pathway while TMW 2.2254 does not. Furthermore, TMW 2.2256 shows an increase in pathways required for balancing out the intracellular NADH/NADH+ ratios. CONCLUSIONS: Our study reveals for the first time, that both versions of tagatose-6P pathways encoded in both strains are simultaneously active together with the Leloir pathway and contribute to the degradation of galactose. These findings will help to understand the strain dependent features that might be required for a starter strain in lupine moromi.


Assuntos
Enterococcaceae , Microbiologia de Alimentos , Lupinus , Enterococcaceae/genética , Enterococcaceae/metabolismo , Fermentação , Galactose/metabolismo , Glicerol , Lupinus/microbiologia , NAD/metabolismo , Peptonas/metabolismo , Sorbitol/metabolismo , Transcriptoma
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674610

RESUMO

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Assuntos
Curcumina , Doença de Fabry , Humanos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , alfa-Galactosidase/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Galactose/metabolismo , Mutação , Lisossomos/metabolismo , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico
5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675300

RESUMO

Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.


Assuntos
Cloreto de Lítio , Proteínas de Saccharomyces cerevisiae , Cloreto de Lítio/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Galactose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo
6.
J Mol Evol ; 91(1): 46-59, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482210

RESUMO

Galactose is a secondary fermentable sugar that requires specific regulatory and structural genes for its assimilation, which are under catabolite repression by glucose. When glucose is absent, the catabolic repression is attenuated, and the structural GAL genes are fully activated. In Saccharomyces cerevisiae, the GAL pathway is under selection in environments where galactose is present. However, it is unclear the adaptive strategies in response to long-term propagation in galactose as a sole carbon source in laboratory evolution experiments. Here, we performed a 4,000-generation evolution experiment using 48 diploid Saccharomyces cerevisiae populations to study adaptation in galactose. We show that fitness gains were greater in the galactose-evolved population than in identically evolved populations with glucose as a sole carbon source. Whole-genome sequencing of 96 evolved clones revealed recurrent de novo single nucleotide mutations in candidate targets of selection, copy number variations, and ploidy changes. We find that most mutations that improve fitness in galactose lie outside of the canonical GAL pathway. Reconstruction of specific evolved alleles in candidate target of selection, SEC23 and IRA1, showed a significant increase in fitness in galactose compared to glucose. In addition, most of our evolved populations (28/46; 61%) fixed aneuploidies on Chromosome VIII, suggesting a parallel adaptive amplification. Finally, we show greater loss of extrachromosomal elements in our glucose-evolved lineages compared with previous glucose evolution. Broadly, these data further our understanding of the evolutionary pressures that drive adaptation to less-preferred carbon sources.


Assuntos
Galactose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Galactose/metabolismo , Carbono/metabolismo , Variações do Número de Cópias de DNA , Mutação , Glucose/metabolismo
7.
J Agric Food Chem ; 71(1): 739-748, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538519

RESUMO

The tea of roasted Highland barley is a cereal-based drink rich in polyphenols. A model of skeletal muscle senescence and fibrosis was constructed using d-galactose-induced C2C12 myotubes, and Highland barley tea Polyphenols (HBP) were extracted for the intervention. We found that HBP effectively alleviated oxidative stress, inflammation, and fibrosis induced by d-galactose-induced skeletal muscle senescence. Also, HBP treatment significantly down-regulated pro-fibrotic genes, inflammation, and oxidative stress levels in a contusion model of senescent mice. Reduced levels of SIRT3 protein was found to be an essential factor in skeletal muscle senescence and fibrosis in both cellular and animal models, while HBP treatment significantly increased SIRT3 protein levels and viability in skeletal muscle. The ability of HBP to mitigate skeletal muscle fibrosis and oxidative stress was significantly reduced after SIRT3 silencing. Together, these results suggest that HBP intervention can significantly alleviate aging-induced oxidative stress, inflammation, and skeletal muscle fibrosis, with the activation of SIRT3 as the underlying mechanism of action.


Assuntos
Hordeum , Sirtuína 3 , Camundongos , Animais , Hordeum/metabolismo , Polifenóis/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Galactose/metabolismo , Estresse Oxidativo , Músculo Esquelético/metabolismo , Senescência Celular , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Fibrose , Chá/metabolismo
8.
J Agric Food Chem ; 71(1): 635-645, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580413

RESUMO

Oligosaccharides and anhydro-sugars derived from carrageenan have great potential as functional foods and drugs showing various bioactivities, including antioxidant, anti-inflammatory, antiviral, antitumor, and cytotoxic activities. Although preparation of sulfated carrageenan oligosaccharides by chemical and enzymatic processes has been widely reported, preparation of nonsulfated ß-neocarrabiose (ß-NC2) and the rare sugar 3,6-anhydro-d-galactose (d-AHG) was not reported in the literature. Based on the carrageenan catabolic pathway in marine heterotrophic bacteria, an enzymatic process was designed and constructed with recombinant κ-carrageenase, GH127/GH129 α-1,3 anhydrogalactosidase, and cell-free extract from marine carrageenolytic bacteria Colwellia echini A3T. The process consisted of three successive steps, namely, (i) depolymerization, (ii) desulfation, and (iii) monomerization, by which carrageenan oligosaccharides, ß-NC2, and d-AHG were obtained from κ-carrageenan. Unlike the chemical process, enzymatic hydrolysis yields oligosaccharides with the desired degree of polymerization facilitates specific removal of sulfated groups, free of toxic byproducts, and avoids chemical modifications. The final optimized enzymatic process produced 0.52 g of ß-NC2 and 0.24 g of d-AHG from 1 g of κ-carrageenan. The carrageenolytic process designed for the enzymatic hydrolysis of κ-carrageenan can be scaled up for the mass production of bioactive carrageeno-oligosaccharides.


Assuntos
Galactose , Sulfatos , Carragenina , Galactose/metabolismo , Oligossacarídeos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
9.
Food Funct ; 14(1): 215-230, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477974

RESUMO

Aging is an inevitable physiological process associated with an imbalance in the oxidative defense system. Angelica sinensis, a kind of traditional Chinese medicine (TCM), has anti-oxidant effects and has been considered as a potential supplement in anti-aging treatment. Nevertheless, it has the disadvantages of slow efficacy and long duration of treatment. Fermentation, as an efficient biotechnological approach, is beneficial for improving the nutritional capacity of the material. Fermented TCMs are considered to be more effective. In this study, fermented Angelica sinensis (FAS) and non-fermented Angelica sinensis (NFAS) were used to investigate changes in the chemical constituents. Furthermore, the improvement effect of FAS on D-galactose-induced aging in mice and the potential mechanisms were explored. The results revealed that FAS and NFAS had different constituents under the influence of fermentation, such as 3-phenyllactic acid, L-5-hydroxytryptophan, taxifolin and methyl gallate. These elevated constituents of FAS might help increase the ability of FAS to improve aging. The aging model was established by intraperitoneal injection of D-galactose (2.5 g kg-1 day-1) for 44 days, and FAS (3 g kg-1 day-1) was administered daily by oral gavage after 2 weeks of induction with D-galactose. FAS was observed to significantly ameliorate changes associated with liver aging, such as reduction of MDA, AGEs and 8-OHdG. The contents of pro-inflammatory cytokines containing TNF-α, IL-1ß and IL-6 were significantly suppressed in the FAS group. In addition, FAS activated Nrf2 signaling better than NFAS, improved the expression of Nrf2, HO-1, NQO1, GCLC, GCLM and GSS, and further increased the activities of SOD, CAT and other antioxidant enzymes in the liver. Simultaneously, it had a certain repair effect on the liver tissues of mice. The intestinal microbiota analysis showed that FAS could regulate the microbiota imbalance caused by aging, increase the ratio of Firmicutes/Bacteroidetes by 95% and improve the relative abundance of beneficial bacteria related to Nrf2 signaling, such as Lactobacillus. Besides, fecal metabolite analysis identified uric acid as an evidential metabolite, suggesting that FAS participates in purine metabolism to improve aging. Therefore, the regulation of intestinal microbiota and metabolism may be one of the important mechanisms of FAS in alleviating hepatic oxidative stress via the gut-liver axis. The results of this study could provide information for the future development of postbiotic products that may have beneficial effects on the prevention or treatment of aging.


Assuntos
Angelica sinensis , Microbioma Gastrointestinal , Camundongos , Animais , Angelica sinensis/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Galactose/metabolismo , Fígado/metabolismo , Envelhecimento , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
10.
ACS Synth Biol ; 12(1): 238-248, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520033

RESUMO

Engineering dynamic control of gene expression is desirable because many engineered functions interfere with endogenous cellular processes that have evolved to facilitate growth and survival. Minimizing conflict between growth and production phases can therefore improve product titers in microbial cell factories. We developed an autoinduced gene expression system by rewiring the Saccharomyces cerevisiae pheromone response pathway. To ameliorate growth reduction due to the early onset response at low population densities, α-pheromone of Kluyveromyces lactis (Kα) instead of S. cerevisiae (Sα) was expressed in mating type "a" yeast. Kα-induced expression of pathway genes was further enhanced by the transcriptional activator Gal4p expressed under the control of the pheromone-responsive FUS1 promoter (Pfus1). As a demonstration, the engineered circuit combined with the deletion of the endogenous galactose metabolic pathway genes was applied to the production of human milk oligosaccharides, 2'-fucosyllactose (2'-FL) and 3-fucosllactose (3-FL). The engineered strains produced 3.37 g/L 2'-FL and 2.36 g/L 3-FL on glucose with a volumetric productivity of 0.14 and 0.03 g/L·h-1 in batch flask cultivation, respectively. These represented 147 and 153% increases over the control strains on galactose wherein the respective pathway genes are expressed under GAL promoters only. Further fed-batch fermentation achieved titers of 32.05 and 20.91 g/L for 2' and 3-FL, respectively. The genetic program developed here thus represents a promising option for implementing dynamic regulation in yeast and could be used for the production of biochemicals that may place a heavy metabolic burden on cell growth.


Assuntos
Percepção de Quorum , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Percepção de Quorum/genética , Feromônios , Galactose/metabolismo , Oligossacarídeos , Engenharia Metabólica
11.
Fish Shellfish Immunol ; 132: 108513, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584757

RESUMO

A d-galacturonic acid-specific lectin, named AcL, was purified from the sea hare Aplysia californica by galactose-agarose affinity chromatography. AcL has a molecular mass of 27.5 kDa determined by MALDI-TOF mass spectrometry. This lectin shows a good affinity for d-galacturonic acid and a lower affinity for galactosides: raffinose, melibiose, α and ß-lactose, and d-galactose. We determined the amino acid sequence of AcL by trypsin digestion and subsequent peptide analysis by mass spectrometry, resulting in a 238 amino acid protein with a theoretical molecular mass of 26.4 kDa. The difference between the theoretical and experimental values can be attributed to post-translational modifications. Thiol-disulfide quantification discerned five disulfide bonds and three free cysteines. The structure of Acl is mainly comprised of beta sheets, determined by circular dichroism, and predicted with AlphaFold. Theoretical models depict three nearly identical tandem domains consisting of two beta sheets each. From docking analysis, we identified AcL glycan-binding sites as multiple conserved motifs in each domain. Furthermore, phylogenetic analysis based on its structure and sequence showed that AcL and its closest homologues (GalULs) form a clear monophyletic group, distinct from other glycan-binding proteins with a jelly-roll fold: lectins of types F and H. GalULs possess four conserved sequence regions that distinguish them and are either ligand-binding motifs or stabilizing network hubs. We suggest that this new family should be referred to as GalUL or D-type, following the traditional naming of lectins; D standing for depilans, the epithet for the species (Aplysia depilans) from which a lectin of this family was first isolated and described.


Assuntos
Aplysia , Lebres , Animais , Aplysia/química , Aplysia/metabolismo , Lebres/metabolismo , Galectinas/química , Filogenia , Galactose/metabolismo , Polissacarídeos/metabolismo
12.
BMC Gastroenterol ; 22(1): 541, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575375

RESUMO

BACKGROUND: Increasing incidence of non-alcoholic fatty liver disease (NAFLD) calls for improved understanding of how the disease affects metabolic liver function. AIMS: To investigate in vivo effects of different NAFLD stages on metabolic liver function, quantified as regional and total capacity for galactose metabolism in a NAFLD model. METHODS: Male Sprague Dawley rats were fed a high-fat, high-cholesterol diet for 1 or 12 weeks, modelling early or late NAFLD, respectively. Each NAFLD group (n = 8 each) had a control group on standard chow (n = 8 each). Metabolic liver function was assessed by 2-[18F]fluoro-2-deoxy-D-galactose positron emission tomography; regional galactose metabolism was assessed as standardised uptake value (SUV). Liver tissue was harvested for histology and fat quantification. RESULTS: Early NAFLD had median 18% fat by liver volume. Late NAFLD had median 32% fat and varying features of non-alcoholic steatohepatitis (NASH). Median SUV reflecting regional galactose metabolism was reduced in early NAFLD (9.8) and more so in late NAFLD (7.4; p = 0.02), both significantly lower than in controls (12.5). In early NAFLD, lower SUV was quantitatively explained by fat infiltration. In late NAFLD, the SUV decrease was beyond that attributable to fat; probably related to structural NASH features. Total capacity for galactose elimination was intact in both groups, which in late NAFLD was attained by increased fat-free liver mass to 21 g, versus 15 g in early NAFLD and controls (both p ≤ 0.002). CONCLUSION: Regional metabolic liver function was compromised in NAFLD by fat infiltration and structural changes. Still, whole liver metabolic function was preserved in late NAFLD by a marked increase in the fat-free liver mass.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia , Galactose/metabolismo , Ratos Sprague-Dawley , Fígado/patologia , Dieta Hiperlipídica/efeitos adversos
13.
PLoS Pathog ; 18(12): e1011020, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36542660

RESUMO

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Streptococcus pneumoniae/metabolismo , Vírus da Influenza A/genética , Virulência , Galactose/metabolismo , Proteômica , Influenza Humana/genética , Influenza Humana/complicações
14.
Toxins (Basel) ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36548760

RESUMO

Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal ß-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Inseticidas , Animais , Bacillus thuringiensis/metabolismo , Galactose/metabolismo , Aedes/metabolismo , Inseticidas/química , Culex/metabolismo , Proteínas de Bactérias/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo
15.
PLoS One ; 17(11): e0273868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417410

RESUMO

Cataract, a disease that causes opacity of the lens, is the leading cause of blindness worldwide. Cataracts secondary to diabetes are common, even in young patients, so they are of significant clinical importance. Here, we used an ex vivo model of galactose-induced cataracts in the rat lens to investigate the therapeutic effects of histone acetyltransferase (HAT) inhibitors. Among the tested HAT inhibitors, TH1834 was the only one that could reverse most of the opacity once it had formed in the lens. Combination treatment with C646/CPTH2 and CBP30/CPTH2 also had therapeutic effects. In lens cross-sections, vacuoles were present in the tissue of the cortical equatorial region of untreated cataract samples. In treated cataract samples, lens tissue regenerated to fill the vacuoles. To identify the genes regulated by HAT inhibitors, qRT-PCR was performed on treated and untreated cataract samples to determine candidate genes. Expression of Acta1 and Stmn4, both of which are involved in the cytoskeleton, were altered significantly in C646+CPTH2 samples. Expression of Emd, a nuclear membrane protein, and Prtfdc1, which is involved in cancer cell proliferation, were altered significantly in CBP30+CPTH2 samples. Acta1, Acta2, Arrdc3, Hebp2, Hist2h2ab, Pmf1, Ppdpf, Rbm3, RGD1561694, Slc16a6, Slfn13, Tagln, Tgfb1i1, and Tuba1c in TH1834 samples were significantly altered. These genes were primarily related to regulation of cell proliferation, the cytoskeleton, and cell differentiation. Expression levels increased with the onset of cataracts and was suppressed in samples treated with HAT inhibitors.


Assuntos
Catarata , Cristalino , Ratos , Animais , Galactose/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Catarata/induzido quimicamente , Catarata/tratamento farmacológico , Catarata/genética , Cristalino/metabolismo , Histonas/metabolismo
16.
Biomolecules ; 12(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358928

RESUMO

ß-Galactosidases (ß-Gal, EC 3.2.1.23) catalyze the cleavage of terminal non-reducing ß-D-galactose residues or transglycosylation reactions yielding galacto-oligosaccharides. In this study, we present the isolation and characterization of a ß-galactosidase from Arion lusitanicus, and based on this, the cloning and expression of a putative ß-galactosidase from Arion vulgaris (A0A0B7AQJ9) in Sf9 cells. The entire gene codes for a protein consisting of 661 amino acids, comprising a putative signal peptide and an active domain. Specificity studies show exo- and endo-cleavage activity for galactose ß1,4-linkages. Both enzymes, the recombinant from A. vulgaris and the native from A. lusitanicus, display similar biochemical parameters. Both ß-galactosidases are most active in acidic environments ranging from pH 3.5 to 4.5, and do not depend on metal ions. The ideal reaction temperature is 50 °C. Long-term storage is possible up to +4 °C for the A. vulgaris enzyme, and up to +20 °C for the A. lusitanicus enzyme. This is the first report of the expression and characterization of a mollusk exoglycosidase.


Assuntos
Galactose , Galactosidases , Animais , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Galactose/metabolismo , Oligossacarídeos , Moluscos/metabolismo
17.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364921

RESUMO

Placental extract has been used for skin care and delaying skin aging. Cow placenta is an abundant resource with a large mass, which has not been harnessed effectively. Cow placenta extract (CPE) has the functions of antioxidation, anti-inflammatory, promoting growth and development, and promoting hair growth. However, little is known about the effect of oral administration of cow placenta extract on skin conditions. Therefore, the present study aimed to investigate the antioxidant capacity of CPE in vitro and in vivo and its protective effect on d-galactose (D-gal) induced skin aging in mice. The results showed that CPE had strong free radical scavenging, reducing and metal chelating activities. CPE can increase the activity of catalase (CAT), glutathione peroxidase (GSH-Px), peroxidase (POD), superoxide dismutase (SOD), and the content of glutathione (GSH), decrease the content of malondialdehyde (MDA). Moreover, CPE can decrease the gene and protein expression of matrix metalloproteinase 1a (MMP-1a) and matrix metalloproteinase 3 (MMP-3) and increase the expression of transforming growth factor-ß (TGF-ß) and tissue inhibitor of metalloproteinase 1 (TIMP-1) of mouse skin. Histopathological analysis showed CPE reduced the collagen damage caused by D-gal, increased collagen synthesis and reduced its degradation to delay skin aging.


Assuntos
Antioxidantes , Envelhecimento da Pele , Animais , Bovinos , Feminino , Camundongos , Gravidez , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galactose/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
18.
J Transl Med ; 20(1): 496, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316782

RESUMO

BACKGROUND: Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presentation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desialylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) triggers anti-tumor immunity in ovarian cancer (OC). METHODS: Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neuraminidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identified using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger sequencing and cytotoxicity of αß T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs). RESULTS: Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αß T-cells that showed enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice. CONCLUSION: Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC immunotherapy in a clinical setting.


Assuntos
Vacinas Anticâncer , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Epitopos , Ácido N-Acetilneuramínico/metabolismo , Linhagem Celular Tumoral , Apoptose , Neoplasias Ovarianas/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Antígenos , Galactose/metabolismo
19.
Chem Commun (Camb) ; 58(90): 12518-12527, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285817

RESUMO

The liver is the largest detoxification organ in the human body, with an array of functions that help support metabolism, immunity, digestion, and vitamin storage, among other functions, and maintains the health and stability of the internal environment. Liver injury causes the concentration fluctuation of related biomarkers, small molecules, and enzymes, and in turn, the structure and function of the liver are changed by those alterations. With the principles of early detection, early diagnosis, and early treatment, it is crucial to design and synthesise a tool for detecting related biomarkers during liver damage and lesion, among which fluorescent probes have attracted attention in recent years. In the course of liver diseases, the asialoglycoprotein receptors (ASGPR) are overexpressed on the hepatoma cells, which can specifically recognize the galactose variant. Several galactose-based fluorescent probes have been developed to target hepatocytes via specific receptor-mediated endocytosis and release fluorophores after reacting with specific small molecules and enzyme biomarkers. The change in fluorescence intensity reflects the level of substances, such as reactive oxygen species, reactive nitrogen species, reactive sulfur species, enzymes or metal ions, etc. The application of fluorescent probes in vivo can aid in monitoring the dynamic changes of endogenous and exogenous biomarkers. This Highlight provides an update on the progress, limitations, and prospects of galactose-based fluorescent probes applications in the early diagnosis of liver diseases.


Assuntos
Corantes Fluorescentes , Hepatopatias , Humanos , Corantes Fluorescentes/química , Galactose/metabolismo , Espécies Reativas de Nitrogênio , Hepatopatias/diagnóstico , Biomarcadores
20.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293463

RESUMO

Cardiovascular diseases are associated with platelet hyperactivity, and downregulating platelet activation is one of the promising antithrombotic strategies. This study newly extracted two polysaccharides (purified exopolysaccharides, EPSp and purified intercellular exopolysaccharides, IPSp) from Cordyceps sinensis Cs-4 mycelial fermentation powder, and investigated the effects of the two polysaccharides and their gut bacterial metabolites on platelet functions and thrombus formation. EPSp and IPSp are majorly composed of galactose, mannose, glucose, and arabinose. Both EPSp and IPSp mainly contain 4-Galp and 4-Glcp glycosidic linkages. EPSp and IPSp significantly inhibited human platelet activation and aggregation with a dose-dependent manner, and attenuated thrombus formation in mice without increasing bleeding risk. Furthermore, the EPSp and IPSp after fecal fermentation showed enhanced platelet inhibitory effects. The results have demonstrated the potential value of Cs-4 polysaccharides as novel protective ingredients for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Cordyceps , Trombose , Camundongos , Humanos , Animais , Galactose/metabolismo , Fibrinolíticos/metabolismo , Manose/metabolismo , Arabinose , Pós , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Cordyceps/metabolismo , Trombose/tratamento farmacológico , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...