Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.908
Filtrar
1.
Front Immunol ; 13: 809711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185896

RESUMO

Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).


Assuntos
Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/prevenção & controle , Eimeria tenella/crescimento & desenvolvimento , Feminino , Masculino , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Saccharomyces cerevisiae/imunologia , Vacinação/métodos , Vacinação/veterinária , Vacinas de Subunidades/imunologia
2.
Virology ; 568: 115-125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35152043

RESUMO

Marek's disease (MD) vaccines reduce the incidence of MD but cannot control virus shedding. To develop new vaccines, it is essential to elucidate mechanisms of immunity to Marek's disease virus (MDV) infection. In this regard, gamma delta (γδ) T cells may play a significant role in prevention of viral spread and tumor surveillance. Here we demonstrated that MDV vaccination induced interferon (IFN)-γ+CD8α+ γδ T cells and transforming growth factor (TGF)-ß+ γδ T cells in lungs. γδ T cells from MDV-infected chickens exhibited cytotoxic activity. Importantly, γδ T cells from the vaccinated/challenged group exhibited maximum cytotoxic activity following ex vivo stimulation. These results suggest that MDV vaccines activate effector γδ T cells which may be involved in the development of protective immune responses against MD. Further, it was demonstrated that MDV infection increases the frequency of a subpopulation of γδ T cells expressing membrane-bound TGF-ß in MDV-infected birds.


Assuntos
Galinhas/imunologia , Doença de Marek/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Galinhas/virologia , Citocinas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunofenotipagem , Ativação Linfocitária , Contagem de Linfócitos , Doença de Marek/prevenção & controle , Doença de Marek/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vacinas Virais/imunologia , Replicação Viral , Eliminação de Partículas Virais
3.
J Immunol ; 208(5): 1128-1138, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173035

RESUMO

Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.


Assuntos
Galinhas/genética , Galinhas/imunologia , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos/genética , Animais , Sequência de Bases , Diferenciação Celular/imunologia , Perfilação da Expressão Gênica , Genoma/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência
4.
Poult Sci ; 101(3): 101693, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066384

RESUMO

The purpose of the present study was to evaluate the probiotic properties of Bacillus subtilis KC1 as a feed additive in the poultry feed. Effects of the Bacillus subtilis supplementation on growth performance, heat-stress tolerance, resistance to Mycoplasma gallisepticum (MG) and Salmonella Pullorum challenge of broilers were determined. The protective effects of the Bacillus subtilis on liver function and immune response of broilers challenged with Aflatoxin B1 (AFB1) were also scrutinized. The results showed that the Bacillus subtilis supplementation could improve growth performance, increased body weight, relative weight of the immune organ and dressing percentage, and decrease feed conversion ratio. In addition, the Bacillus subtilis supplementation alleviated adverse effects caused by heat stress, MG, and Salmonella Pullorum challenge. Furthermore, the Bacillus subtilis supplementation resulted in improved liver function and enhanced immune response of broilers challenged with AFB1. In conclusion, these results suggested a tremendous potential of Bacillus subtilis KC1 as a feed additive in the poultry feed.


Assuntos
Bacillus subtilis , Galinhas , Resistência à Doença , Probióticos/administração & dosagem , Termotolerância , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Dieta/veterinária
5.
Int Immunopharmacol ; 102: 108381, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34810126

RESUMO

BACKGROUND: Animal diarrhea due to diarrheagenic Escherichia coli (E. coli) has been a major concern in the field of livestock farming leading to a severe loss of domesticated animals. This systematic review aims to analyze medical shreds of evidence available in the literature and to discover the effect of IgY in treatment and protection against E. coli diarrhea. METHODS AND RESULTS: Research reports that aimed to evaluate the effect of IgY against E. coli diarrhea were searched and collected from several databases (Science Direct, Springer link, Wiley, T&F). The collected studies were screened based on the inclusion criteria. 19 studies were identified and included in the meta-analysis. The pooled relative risk ratios were calculated for the studies and found to be statistically significant to support the therapeutic effect of IgY against E. coli diarrhea but the 95% confidence interval of a majority of studies includes a relative risk of 1. This variability between the effect of IgY in the overall estimate and individual studies accounts due to the presence of methodological heterogeneity. In addition, subgroup analysis revealed the grounds for heterogeneity. CONCLUSIONS: This systematic review and meta-analysis provide concrete evidence for the favorable effect of IgY as a prophylactic and therapeutic modality against E. coli diarrhea. Yet, more research pieces of evidence with standardized animal studies aimed to utilize IgY against E. coli are vital. Further studies and trials on human subjects could open new perspectives in the application IgY as a therapeutic agent.


Assuntos
Diarreia/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Imunização Passiva , Imunoglobulinas/uso terapêutico , Animais , Galinhas/imunologia , Diarreia/veterinária , Gema de Ovo/imunologia , Escherichia coli , Infecções por Escherichia coli/veterinária
6.
J Sci Food Agric ; 102(3): 908-919, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34235749

RESUMO

BACKGROUND: Rhamnolipids (RLS), well known as glycolipid biosurfactants, display low toxicity, high biodegradability, and strong antibacterial properties. This study was carried out to evaluate the use of RLS supplementation as a substitute for antibiotics, and particularly to evaluate its effects on growth performance, immunity, intestinal barrier function, and metabolome composition in broilers. RESULTS: The RLS treatment improved the growth performance, immunity, and intestinal barrier function in broilers. The 16S rRNA sequencing revealed that the genus Alistipes was the dominant genus in broilers treated by RLS. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomic analysis indicated that the sphingolipid metabolism, glycine, serine, and threonine metabolism, the gycerophospholipid metabolism, and the tryptophan metabolism were changed in broilers that were treated with RLS. CONCLUSION: l-Tryptophan may be the medium for RLS to regulate the growth and physiological metabolism. Rhamnolipids can be used as a potential alternative to antibiotics, with similar functions to antibiotics in the diet of broilers. The optimal level of supplemented RLS in the diet was 1000 mg kg-1 . © 2021 Society of Chemical Industry.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Glicolipídeos/administração & dosagem , Intestinos/imunologia , Metaboloma/efeitos dos fármacos , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Galinhas/metabolismo , Galinhas/microbiologia , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/microbiologia , Metabolômica
7.
Methods Mol Biol ; 2411: 77-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34816399

RESUMO

Vaccines are the most effective and economic way of combating poultry viruses. However, the use of traditional live-attenuated poultry vaccines has problems such as antigenic differences with the currently circulating strains of viruses and the risk of reversion to virulence. In veterinary medicine, reverse genetics is applied to solve these problems by developing genotype-matched vaccines, better attenuated and effective live vaccines, broad-spectrum vaccine vectors, bivalent vaccines, and genetically tagged recombinant vaccines that facilitate the serological differentiation of vaccinated animals from infected animals. In this chapter, we discuss reverse genetics as a tool for the development of recombinant vaccines against economically devastating poultry viruses.


Assuntos
Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Aves Domésticas/imunologia , Genética Reversa/métodos , Vacinas Sintéticas/genética , Vacinas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Galinhas/imunologia , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia
8.
Mol Immunol ; 141: 258-264, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896925

RESUMO

BACKGROUND: Pseudomonas aeruginosa sepsis is associated with unacceptably high mortality and, for many of those who survive, long-term morbidity. The aims of this study were to production of IgY against chimeric protein pilQ-pilA-DSL region and killed- whole cell Pseudomonas aeruginosa O1 (PAO1) strain and their efficacy for immunoprophylaxis of sepsis caused by P. aeruginosa in a rabbit model. METHODS: Specific IgY was obtained by immunization of hens. The purity of IgY was determined by SDS-PAGE analysis. The effect of IgY on growth and hydrophobicity of P. aeruginosa were performed through time-kill assay and microbial adhesion to hydrocarbons test (MATH), respectively. The efficacy of specific IgYs was examined against P. aeruginosa sepsis in a rabbit model. The rabbits were monitored for 72 h to record physiological characters and survival. Hematologic factors, C-reactive protein, pro-inflammatory cytokines, and bacterial count from blood and solid organs were measured, periodically. RESULTS: We found that the growth inhibitory effect of the anti- killed whole cell IgY was higher than anti-pilQ-pilA IgY (P < 0.001). The hydrophobicity effect of PAO1 increased when bacteria were opsonized by anti- killed whole cell IgY while the hydrophobicity activity was decreased following incubation of PAO1 with anti-pilQ-pilA IgY in a broth medium (P < 0.001). Following intravenous (IV) administration of produced IgYs, no significant difference was observed in the survival, decrease in inflammatory mediators and clinical symptoms between the groups 48h post infection (P > 0.05). Moreover, no considerable decrease was observed in the bacterial load of blood, lungs and kidneys in rabbits treated with specific IgYs and control groups (P > 0.05). No bacteria were found in the spleen and liver samples from infected rabbits. CONCLUSION: Although produced IgYs had a good immunoreactivity, IV immunization of IgYs was not protective against P. aeruginosa sepsis in the rabbit model. Further studies are needed to assess the immune response and decreasing mortality rate using the rabbit sepsis model.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Fímbrias/imunologia , Imunoglobulinas/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Recombinantes de Fusão/imunologia , Sepse/imunologia , Animais , Carga Bacteriana/imunologia , Galinhas/imunologia , Modelos Animais de Doenças , Imunização/métodos , Imunização Passiva/métodos , Masculino , Infecções por Pseudomonas/microbiologia , Coelhos , Sepse/microbiologia
9.
Vet Microbiol ; 264: 109305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923248

RESUMO

The present study was undertaken to quantify the Marek's Disease Virus (MDV) serotypes in vaccinated commercial layer flocks at 7, 14, 21, 28, 35 and 60-90 days post vaccination (dpv) and to correlate the pathogenic Gallid herpesvirus 2 (GaHV-2, MDV1) load with vaccine viral load of Gallid herpesvirus 3 (GaHV-3, MDV2) and Meleagridis herpesvirus 1 (MeHV-1, MDV3). A total of 25 commercial layer flocks were selected in and around Namakkal district of Tamil nadu, India and the feather pulp (FP) and blood samples were collected. Out of 25 flocks, 14 were revaccinated with bivalent vaccine, six were revaccinated with monovalent vaccine apart from the initial bivalent vaccination done at hatchery and five flocks were not revaccinated. SYBR green based real time PCR was used for absolute quantification of MDV serotypes. The pathogenic MDV1 load had shown an increasing trend until 21 dpv followed by a dip and again had shown a constant uptick between 60 and 90 dpv in the flocks that went on to develop MD outbreak. The flocks which had not encountered any Marek's Disease outbreak had shown increasing trend of MDV2 and 3 load until 21 dpv followed by a slight decrease but maintained a higher load when compared to MDV 1 which had marked a sharp decline between 60 and 90 dpv. Outbreak of MD was observed in seven (28%) out of 25 flocks between 18 and 27 weeks of age. It includes, two out of fourteen farms (14%) revaccinated with bivalent vaccine, two out of six farms (33%) revaccinated with MDV3 vaccine and three out of five farms (60%) without revaccination. The overall mean of vaccine viral load at various stages of dpv was constantly low where as pathogenic MDV 1 load was constantly high between 60 and 90 dpv in the flocks that went on to develop Marek's Disease during later part of life.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/imunologia , Herpesvirus Galináceo 2/fisiologia , Índia , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Vacinação/veterinária , Vacinas Combinadas
10.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960643

RESUMO

Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.


Assuntos
Infecções por Astroviridae/imunologia , Avastrovirus/patogenicidade , Galinhas/genética , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/imunologia , Transcriptoma , Animais , Infecções por Astroviridae/virologia , Avastrovirus/fisiologia , Embrião de Galinha , Galinhas/imunologia , Galinhas/virologia , Doenças das Aves Domésticas/virologia , RNA-Seq , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Baço/virologia
11.
Sci Rep ; 11(1): 21690, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737359

RESUMO

Here, a Selenium-enriched Bacillus subtilis (SEBS) strain was generated and supplemented to broiler chickens' diet, and the impact in ileum bacterial microbiome, immunity and body weight were assessed. In a nutshell, five hundred 1-old old chicken were randomly divided into five groups: control, inorganic Se, Bacillus subtilis (B. subtilis), SEBS, and antibiotic, and colonization with B. subtilis and SEBS in the gastrointestinal tract (GIT) were measured by fluorescence in situ hybridization (FISH) assay and quantitative real-time polymerase chain reaction (qPCR). In summary, Chicks fed SEBS or B. subtilis had higher body weight than the control chicks or those given inorganic Se. SEBS colonized in distal segments of the ileum improved bacterial diversity, reduced the endogenous pathogen burden and increased the number of Lactobacillus sp. in the ileal mucous membrane. Species of unclassified Lachnospiraceae, uncultured Anaerosporobacter, Peptococcus, Lactobacillus salivarius, and Ruminococcaceae_UCG-014, and unclassified Butyricicoccus in the ileal mucous membrane played a key role in promoting immunity. Inorganic Se supplementation also improved bacterial composition of ileal mucous membranes, but to a less extent. In conclusion, SEBS improved performance and immunity of broiler chickens through colonization and modulation of the ileal mucous membrane microbiome.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Selênio/farmacologia , Ração Animal/análise , Criação de Animais Domésticos/métodos , Animais , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Galinhas/imunologia , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/microbiologia , Probióticos/análise , Selênio/metabolismo
12.
Vet Res ; 52(1): 139, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772449

RESUMO

Chicken immune responses to infectious bronchitis virus (IBV) vaccination can depend on route of administration, vaccine strain and bird age. Typically for layer chickens, IBV vaccinations are administered by spray in the hatchery at day-old and boosted at intervals with live vaccines via drinking water (DW). Knowledge of live attenuated IBV vaccine virus kinetics and the immune response in egg-laying hens is exceptionally limited. Here, we demonstrated dissemination of vaccine viruses and differences in hen innate, mucosal, cellular and humoral immune responses following vaccination with Massachusetts or 793B strains, administered by DW or oculonasal (ON) routes. Detection of IBV in the Mass-vaccinated groups was greater during early time-points, however, 793B was detected more frequently at later timepoints. Viral RNA loads in the Harderian gland and turbinate tissues were significantly higher for ON-Mass compared to all other vaccinated groups. Lachrymal fluid IgY levels were significantly greater than the control at 14 days post-vaccination (dpv) for both vaccine serotypes, and IgA mRNA levels were significantly greater in ON-vaccinated groups compared to DW-vaccinated groups, demonstrating robust mucosal immune responses. Cell mediated immune gene transcripts (CD8-α and CD8-ß) were up-regulated in turbinate and trachea tissues. For both vaccines, dissemination and vaccine virus clearance was slower when given by DW compared to the ON route. For ON administration, both vaccines induced comparable levels of mucosal immunity. The Mass vaccine induced cellular immunity to similar levels regardless of vaccination method. When given either by ON or DW, 793B vaccination induced significantly higher levels of humoral immunity.


Assuntos
Galinhas/imunologia , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/imunologia , Feminino , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas/virologia , Vacinação/veterinária , Vacinas Atenuadas/imunologia
13.
PLoS One ; 16(11): e0260280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843525

RESUMO

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 µg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


Assuntos
Proteínas Aviárias/imunologia , Antígenos CD4/imunologia , Galinhas/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella enteritidis/imunologia , Animais , Galinhas/microbiologia , Interações Hospedeiro-Patógeno , Imunidade , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia
14.
Viruses ; 13(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34696415

RESUMO

Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.


Assuntos
Vírus da Anemia da Galinha/imunologia , Galinhas/imunologia , Vírus da Doença de Newcastle/genética , Animais , Anticorpos Antivirais/sangue , Vírus da Anemia da Galinha/patogenicidade , Galinhas/virologia , Vetores Genéticos , Imunidade/imunologia , Imunidade Celular , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Vacinação/métodos , Vacinas Virais/imunologia
15.
Front Immunol ; 12: 742074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630423

RESUMO

Chickens are the natural host of Newcastle disease virus (NDV) and avian influenza virus (AIV). The discovery that the RIG-I gene, the primary RNA virus pattern recognition receptor (PRR) in mammals, is naturally absent in chickens has directed attention to studies of chicken RNA PRRs and their functions in antiviral immune responses. Here, we identified Asp-Glu-Ala-Asp (DEAD)-box helicase 1 (DDX1) as an essential RNA virus PRR in chickens and investigated its functions in anti-RNA viral infections. The chDDX1 gene was cloned, and cross-species sequence alignment and phylogenetic tree analyses revealed high conservation of DDX1 among vertebrates. A quantitative RT-PCR showed that chDDX1 mRNA are widely expressed in different tissues in healthy chickens. In addition, chDDX1 was significantly upregulated after infection with AIV, NDV, or GFP-expressing vesicular stomatitis virus (VSV-GFP). Overexpression of chDDX1 in DF-1 cells induced the expression of IFN-ß, IFN-stimulated genes (ISGs), and proinflammatory cytokines; it also inhibited NDV and VSV replications. The knockdown of chDDX1 increased the viral yield of NDV and VSV and decreased the production of IFN-ß, which was induced by RNA analog polyinosinic-polycytidylic acid (poly[I:C]), by AIV, and by NDV. We used a chicken IRF7 (chIRF7) knockout DF-1 cell line in a series of experiments to demonstrate that chDDX1 activates IFN signaling via the chIRF7 pathway. Finally, an in-vitro pulldown assay showed a strong and direct interaction between poly(I:C) and the chDDX1 protein, indicating that chDDX1 may act as an RNA PRR during IFN activation. In brief, our results suggest that chDDX1 is an important mediator of IFN-ß and is involved in RNA- and RNA virus-mediated chDDX1-IRF7-IFN-ß signaling pathways.


Assuntos
Proteínas Aviárias/imunologia , Galinhas/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Animais , Infecções por Vírus de RNA/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais/imunologia
16.
Biomed Res Int ; 2021: 1877075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712727

RESUMO

The objective of this study was to explore the therapeutic effects of berberine on necrotic enteritis (NE) in broilers caused by Clostridium perfringens. A total of 240 1-day-old Arbor Acres chicks were divided into four groups, as negative controls (NC), positive controls (PC), berberine- (BER-) treated, or lincomycin- (LMY-) treated groups. Broilers were challenged with C. perfringens at 15-21 days of age, followed by BER or LMY supplied in drinking water for 7 days. Experimental results showed that C. perfringens infection significantly decreased growth performance and increased intestinal necrosis index and the number of C. perfringens present to 6.45 Log10CFU/g (P < 0.001). Proinflammatory cytokines in the ileum were significantly increased, but the expression of ileal tight junction proteins occludin and claudin-1 was significantly reduced. Both BER and LMY ameliorated some of these observations. Compared with the PC group, the number of C. perfringens in the cecum was significantly decreased following treatment (P < 0.001), and growth performance and small intestine morphology were similar to those of the NC group (P > 0.05). IL-1ß, IL-6, and TNF-α levels as well as occludin and claudin-1 expression were also significantly improved (P < 0.05). BER has the potential to replace antibiotics for NE caused by C. perfringens.


Assuntos
Berberina/farmacologia , Galinhas/imunologia , Galinhas/microbiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Intestinos/microbiologia , Intestinos/patologia , Animais , Ceco/efeitos dos fármacos , Ceco/microbiologia , Clostridium perfringens/efeitos dos fármacos , Citocinas/metabolismo , Dieta , Enterocolite Necrosante/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Íleo/metabolismo , Intestinos/imunologia , Lincomicina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
17.
Int Immunopharmacol ; 101(Pt B): 108250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656906

RESUMO

Baicalin is a well-known flavonoid compound, possess therapeutic potential against inflammatory diseases. Previous studies reported that Mycoplasma gallisepticum (MG) induced inflammatory response and immune dysregulation inside the host body. However, the underlying molecular mechanisms of baicalin against MG-infected chicken-like macrophages (HD11 cells) are still illusive. Oxidant status and total reactive oxygen species (ROS) were detected by ELISA assays and flow cytometry respectively. Mitochondrial membrane potential (ΔΨM) was evaluated by immunofluorescence microscopy. Transmission electron microscopy was used for ultrastructural analysis. The hallmarks of inflammation and autophagy were determined by western blotting. Oxidative stress and reactive oxygen species (ROS) were significantly enhanced in the MG-infected HD11 cells. MG infection caused disruption in the mitochondrial membrane potential (ΔΨM) compared to the control conditions. Meanwhile, baicalin treatment reduced MG-induced reactive oxygen species (ROS), oxidative stress and alleviated the disruption in ΔΨM. The activities of inflammatory markers were significantly enhanced in the MG-infected HD11 cells. Increased protein expressions of TLR-2-NF-κB pathway, NLRP3-inflammasome and autophagy-related proteins were detected in the MG-infected HD11 cells. Besides, baicalin treatment significantly reduced the protein expressions of TLR-2-NF-κB pathway and NLRP3 inflammasome. While, the autophagy-related proteins were significantly enhanced with baicalin treatment in a dose-dependent manner in the MG-infected HD11 cells. The results showed that baicalin prevented HD11 cells from MG-induced oxidative stress and inflammation via the opposite modulation of TLR-2-NF-κB-mediated NLRP3-inflammasome pathway and autophagy, and baicalin could be a promising candidate for the prevention of inflammatory effects caused by MG-infection in macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Proteínas Aviárias/metabolismo , Galinhas/imunologia , Flavonoides/uso terapêutico , Inflamassomos/metabolismo , Macrófagos/imunologia , Infecções por Mycoplasma/tratamento farmacológico , Mycoplasma gallisepticum/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças das Aves Domésticas/tratamento farmacológico , Animais , Proteínas Aviárias/genética , Linhagem Celular , Potencial da Membrana Mitocondrial , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo
18.
Vet Microbiol ; 263: 109250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649009

RESUMO

Hypervirulent fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) with high mortality causes huge economic losses to the poultry industry worldwide. However, commercially available vaccines against FAdV-4 infection remain scarce. Here, we prepared a subunit vaccine candidate derived from the bacterially expressed recombinant Fiber2 protein (termed as rFiber2 subunit vaccine) of FAdV-4 GZ-QL strain (a hypervirulent strain isolated in Guizhou province) and a recombinant plasmid pVAX1-Fiber2 as DNA vaccine candidate (termed as Fiber2 DNA vaccine). The immune effects of different dosages (50, 100, and 150 µg) of these were evaluated through immunization and challenge studies in chickens. Three injections of the rFiber2 subunit vaccine or the Fiber2 DNA vaccine induced robust humoral and cellular immune responses in chickens, which was assessed based on the secretion of high-level neutralizing antibodies, Th1- (IL-2, IFN-γ) and Th2-type cytokines (IL-4, IL-6). Importantly, the efficacy of the rFiber2 subunit vaccine was significantly higher (80 %-100 %) compared with the Fiber2 DNA vaccine (50 %-60 %) and a commercial inactivated vaccine (80 %). Collectively, these results suggest that the rFiber2 subunit and Fiber2 DNA vaccine candidate induced remarkable humoral and cellular immune responses, while the rFiber2 subunit vaccine candidate possesses better potential in the fight against FAdV-4 infection, laying foundations for the effective control of HHS in chickens.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Vacinas de Subunidades , Vacinas Virais , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Sorogrupo , Vacinas de DNA/imunologia , Vacinas de Subunidades/imunologia , Vacinas Virais/imunologia
19.
Int J Biol Macromol ; 191: 1096-1104, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34610351

RESUMO

The purpose of this study was to prepare spiky titanium dioxide nanoparticles-loaded Plantaginis Semen polysaccharide (SN-TiO2-PSP), and the structural characterization and immune response of infectious laryngotracheitis (ILT) vaccine in Hetian chickens were investigated. The structural characterization of SN-TiO2-PSP was analyzed by FT-IR, TEM, and TGA analysis. And the immune organs indexes, lymphocytes proliferation, specific antibody levels, and ratios of CD4+ and CD8+ T lymphocytes were studied. Structural characterization results showed that SN-TiO2-PSP has a typical polysaccharide absorption peak and good stability. The SN-TiO2-PSP's shape was similar to sea urchin, and its zeta potential and particle size were 27.56 mV and 976.11 nm, respectively. In vivo results showed that SN-TiO2-PSP could enhance the proliferation of peripheral lymphocytes, specific antibody levels, CD4+ and CD8+ T lymphocytes ratios, IL-4 and INF-γ levels in Hetian chickens vaccinated with ILT vaccine on D7, D14, D21, and D28. In addition, SN-TiO2-PSP not only enhanced the indexes of immune organs but also promoted the development of immune organs. Therefore, SN-TiO2-PSP has immune adjuvant activity and may become a new potential immune adjuvant.


Assuntos
Adjuvantes Imunológicos , Imunidade , Nanopartículas Metálicas/química , Polissacarídeos/imunologia , Psyllium/química , Titânio/química , Animais , Proliferação de Células , Galinhas/imunologia , Citocinas/sangue , Ativação Linfocitária , Linfócitos/imunologia , Tamanho da Partícula , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Timo/patologia , Vacinas
20.
Avian Pathol ; 50(6): 540-556, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34612113

RESUMO

The types of immune cells that populate the trachea after ILTV vaccination and infection have not been assessed. The objective of this study was to quantify CD4+, CD8α+, CD8ß+, TCRγδ+, and MRC1LB+ cells that infiltrate the trachea after vaccination with chicken embryo origin (CEO), tissue culture origin (TCO), and recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccines, and after challenge of vaccinated and non-vaccinated chickens with a virulent ILTV strain. Eye-drop vaccination with CEO, or TCO, or in ovo vaccination with rHVT-LT did not alter the number of CD4+, CD8α+, CD8ß+, TCRγδ+, and MRC1LB+ cells in the trachea. After challenge, the CEO vaccinated group of chickens showed swift clearance of the challenge virus, the mucosa epithelium of the trachea remained intact, and a limited number of CD4+, CD8α+, and CD8ß+ cells were detected in the upper trachea mucosa. The TCO and rHVT-LT vaccinated groups of chickens showed narrow viral clearance with moderate disruption of the trachea epithelial integrity, and a significant increase in CD4+, CD8α+, CD8ß+, and TCRγδ+ cells infiltrated the upper trachea mucosa. Non-vaccinated challenged chickens showed high levels of viral replication, the epithelial organization of the upper trachea mucosa was heavily disrupted, and the predominant infiltrates were CD4+, TCRγδ+, and MRC1LB+ cells. Hence, the very robust protection provided by CEO vaccination was characterized by minimal immune cell infiltration to the trachea mucosa. In contrast, partial protection induced by the TCO and rHVT-LT vaccines requires a prolonged period of T cell expansion to overcome the established infection in the trachea mucosa.


Assuntos
Herpesvirus Galináceo 1 , Vacinas , Animais , Embrião de Galinha , Galinhas/imunologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Meleagrídeo 1 , Membrana Mucosa , Traqueia , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...