RESUMO
The widespread use of silver nanoparticles (AgNPs) in consumer products and animal husbandry raises the need to study their impact on living organisms. This study was conducted on Hy-Line Brown hens at the age of 25 weeks with an average weight of 1.58 kg. Hens for 2 weeks received a solution of 50 nm AgNPs at a concentration of 100 pm (experimental group; n = 6) or a solution in which the nanoparticles were suspended (control group; n = 6). Thyroid hormones (thyroxine - T4, triiodothyronine - T3) were evaluated in the blood plasma and expression profiles of genes involved in thyroid hormone (TH) synthesis (TSHR, NIS, TPO, TG), metabolism (DIO1, DIO2, DIO3) and transport (MCT8, MCT10, LAT1) were determined in the chicken thyroid gland. Furthermore, iodothyronine deiodinase, TH transporter and TH receptor (THRA, THRB) mRNA expressions were evaluated in the livers isolated from the same chickens. AgNPs did not affect serum T4 levels but elevated serum T3 concentration. The results showed that AgNPs increased DIO3 mRNA in the thyroid gland. In turn, in the liver AgNPs administration significantly upregulated DIO2 and downregulated MCT10 mRNA levels. These results indicate that exposure to AgNPs leads to a tissue-specific alternative expression of genes engaged in TH metabolism. Moreover, the mRNA expression of DIO2 in the liver showed a positive correlation with plasma T3 levels. In conclusion, AgNPs may have an impact on TH metabolism by affecting deiodinases and TH transporter MCT10 mRNA expression.
Assuntos
Nanopartículas Metálicas , Glândula Tireoide , Animais , Feminino , Prata/farmacologia , Prata/metabolismo , Galinhas/genética , Galinhas/metabolismo , Hormônios Tireóideos , Tri-Iodotironina , Tiroxina , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Dietary supplementation with trace elements zinc (Zn), iron (Fe) and manganese (Mn) could promote intestinal development and improve intestinal health. There are, however, few studies examining the possibility that maternal original Zn, Fe and Mn could regulate intestinal development and barrier function in the offspring. This study aimed to investigate how the intestinal growth and barrier function of breeder offspring were affected by collagen peptide-chelated trace elements (PTE; Zn, Fe, Mn). RESULTS: PTE supplementation in the diet of breeder hens increased the concentrations of Zn, Fe and Mn in egg yolk. Maternal PTE supplementation improved morphological parameters of the intestine (villi height, crypt depth and villi height/crypt depth) and upregulated the mRNA expression level of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the ileum of chick embryos. Furthermore, maternal PTE effect improved villi height/crypt depth of offspring at 1 and 14 days of age, and upregulated Lgr5, Claudin-3 and E-cadherin mRNA expression in the broiler ileum. Additionally, PTE treatment could enhance the intestinal microbial diversity of offspring. Maternal PTE supplementation increased the relative abundance of Clostridiales at the genus level and decreased the relative abundance of Enterococcus in newborn offspring. Moreover, maternal PTE supplementation ameliorated the elevated nuclear factor kappa B, toll-like receptor 4 and interleukin 1ß mRNA expression in the ileum of offspring caused by LPS challenge. CONCLUSION: Maternal PTE supplementation could promote intestinal development and enhance the intestinal barrier function of chicken offspring. © 2023 Society of Chemical Industry.
Assuntos
Galinhas , Oligoelementos , Embrião de Galinha , Animais , Feminino , Galinhas/metabolismo , Oligoelementos/farmacologia , Dieta , Intestinos , Manganês , Zinco/farmacologia , RNA Mensageiro/metabolismo , Suplementos Nutricionais , Colágeno/farmacologia , Peptídeos/farmacologia , Ração Animal/análiseRESUMO
Aflatoxin B1 (AFB1) is the primary mycotoxin that is responsible for the severe issues plaguing poultry farming. The study was aimed to explore the relevant pathways connected with immunity (inflammation, oxidative stress and apoptosis) in an AFB1-challenged chicken by using Penthorum chinense Prush extract (PCPE) in Bursa of Fabricius (BF) of broilers. A total one hundred and eighty day-old broilers were divided into six groups: Control, AFB1 (3 mg/kg feed), Yin-Chen-Hao Tang extract (YCHT) (10 ml/kg feed), and PCPE groups (low 1 g/kg, medium 2 g/kg, and high 3 g/kg PCPE/kg feed) respectively. The results showed that AFB1-challenged birds showed significant decrease in growth, BF weight index, serum antioxidant biomarkers and histopathological changes in BF tissues. The mRNA analysis showed that AFB1 upregulated the apoptosis associated genes (caspase-3, caspase-9, Bak, Bax and p53) and downregulated BCL-2. Additionally, AFB1 downregulated expression level of Nuclear Factor EF-2 (Nrf2) related genes (Nrf2, HO-1, NQO1 and GCLC) in the BF of broilers. The PCPE treatment showed positive impact on final weight gain, bursal index, and reversing of pathological changes in the BF of AFB1-challanged broilers. PCPE ameliorated oxidative stress generated by AFB1, as an increase in antioxidant enzyme activities, alleviated histopathological changes in BF, enhanced the Nrf2 expression levels and lowered the apoptosis gene expressions as compared to AFB1. The findings revealed that PCPE activated the Nrf2 pathway, antioxidant defense system and modulated the apoptosis in the BF of broiler chicken.
Assuntos
Aflatoxina B1 , Galinhas , Animais , Galinhas/metabolismo , Aflatoxina B1/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Bolsa de Fabricius/metabolismo , Bolsa de Fabricius/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose , Estresse Oxidativo , Transdução de SinaisRESUMO
Copper (Cu) is a toxic heavy metal pollutant. The hepatic toxicity of Cu has attracted widespread attention from researchers. However, its underlying mechanism remains elusive. Mitochondrial microRNAs (mitomiRs) are considered important factors in regulating mitochondrial and cellular functions, and their roles have been implicated in the mechanisms of metal toxicity. Therefore, this research revealed the changes in the mitomiRs expression profile of chicken liver after Cu exposure. It was ultimately determined that mitomiR-1736-3p can be involved in Cu-induced chicken liver damage by targeting AATF. In particular, our investigations have uncovered that exposure to Cu can trigger heightened levels of apoptosis in the hepatic tissue of chickens and primary chicken embryo hepatocytes (CEHs). It is noteworthy that we found upregulation of miR-1736-3p expression can exacerbate Cu-induced cell apoptosis, while inhibition of miR-1736-3p can effectively reduce apoptosis occurrence. Subsequently, we found that Cu-induced cell apoptosis could be restored by overexpressing AATF, while silencing AATF exacerbated the level of apoptosis. Fascinatingly, this change in apoptotic level is directly influenced by AATF on Bax and Bak1, rather than on p53 and Bcl-2. Overall, these findings suggest that the mitomiR-1736-3p/AATF axis mediates the mitochondrial pathway of cell apoptosis potentially involved in Cu-induced chicken liver toxicity.
Assuntos
Galinhas , MicroRNAs , Embrião de Galinha , Animais , Galinhas/metabolismo , Cobre/metabolismo , Apoptose , Hepatócitos , MicroRNAs/metabolismoRESUMO
Bisphenol A (BPA) is a ubiquitous environmental pollutant that can have harmful effects on human and animal immune systems by inducing oxidative stress. Selenium (Se) deficiency damages immune organ tissues and exhibits synergistic effects on the toxicity of environmental pollutants. However, oxidative stress, cell apoptosis, and autophagy caused by the combination of BPA and low-Se, have not been studied in the bursa of Fabricius of the immune organ of poultry. Therefore, in this study, BPA and/or low-Se broiler models and chicken lymphoma cells (MDCC-MSB-1 cells) models were established to investigate the effects of BPA and/or low-Se on the bursa of Fabricius of poultry. The data showed that BPA and/or low-Se disrupted the normal structure of the bursa of Fabricius, BPA (60 µM) significantly reduced the activity of MDCC-MSB-1 cells and disrupted normal morphology (IC50 = 192.5 ± 1.026 µM). Compared with the Control group, apoptosis and autophagy were increased in the BPA or low-Se groups, and the generation of reactive oxygen species (ROS) was increased. This inhibited the AKT/FOXO1 pathway, leading to mitochondrial fusion/division imbalance (Mfn1, Mfn2, OPA1 were increased, DRP1 was decreased) and dysfunction (CI-NDUFB8, CII-SDHB, CIII-UQCRC2, CIV-MTCO1, CV-ATP5A1, ATP). Furthermore, combined exposure of BPA and low-Se aggravated the above-mentioned changes. Treatment with N-acetylcysteine (NAC) reduced ROS levels and activated the AKT/FOXO1 pathway to further alleviate BPA and low-Se-induced apoptosis and autophagy. Apoptosis induced by low-Se + BPA was exacerbated after 3-Methyladenine (3-MA, autophagy inhibitor) treatment. Together, these results indicated that BPA and low-Se aggravated apoptosis and autophagy of the bursa of Fabricius in chickens by regulating the ROS/AKT/FOXO1 pathway.
Assuntos
Bolsa de Fabricius , Galinhas , Animais , Humanos , Galinhas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bolsa de Fabricius/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Estresse Oxidativo , Autofagia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologiaRESUMO
Granulosa cells play a pivotal role in growth, development and ovulation of ovarian follicle. Simultaneously, autophagy and apoptosis processes are crucial determinants in the destiny of granulosa cells. Within this context, miR-29-3p, known to regulate a broad spectrum of biological processes and critical for tumor detection, prognosis, and treatment, is poised to clarify its roles in both autophagy and apoptosis. To enhance the understanding of the influence of miR-29-3p on follicular development, our study primarily delved into the realms autophagy and apoptosis. We employed a well-established chicken follicular atrophy model achieved through subcutaneous injection of tamoxifen (TMX) into hens. qPCR analysis revealed a significant decrease in the expression of miR-29-3p within the atrophic follicles. In our in vitro experiments with cultured chicken primary granulosa cells, miR-29-3p emerged as a novel microRNA capable of impeding autophagy and apoptosis when transfected with miR-29-3p mimics and inhibitors. Results from luciferase reporter assays corroborated that PTEN is a legitimate target of miR-29-3p. Unlike miR-29-3p, PTEN appeared to foster autophagy and apoptosis in chicken granulosa cells. Moreover, our findings uncovered that miR-29-3p facilitates the phosphorylation of Akt and mTOR proteins by targeting PTEN in chicken granulosa cells. In conclusion, the findings of this study suggest that miR-29-3p, through its targeting of PTEN via the Akt/mTOR signaling pathway, exerts inhibitory effects on autophagy and apoptosis. These effects may hold significant importance in the context of follicular development.
Assuntos
MicroRNAs , Animais , Feminino , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Galinhas/genética , Galinhas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia , Apoptose/genéticaRESUMO
The objective was to determine effects of dietary supplementation of barley sprouts (BS) and/or d-aspartic acid (DA) on the reproductive potential of aged broiler roosters. Birds (n = 32, 50 wk old) were randomly allocated to receive dietary supplements of BS powder (2 % of basal diet), and DA (200 mg/kg BW), both, or neither, for 12 wk. Roosters were housed individually, with 14-h light/10-h dark, ad libitum feed and water, and euthanized after 12 wk. Mean (±SEM) total phenolic compounds and IC50 in methanol extract of sprouted barley were 302.8 ± 10.9 mg GAE/g and 600.8 ± 50.5 mg TE per 100 g, respectively. In weekly semen collections, sperm total and progressive motility, plasma membrane integrity, sperm concentration, and sperm production were higher (P < 0.05) in both the DA + BS and BS groups compared to the Control, but sperm abnormalities were unaffected. Feeding DA increased right, left, and combined testicular weights (P < 0.05, P < 0.05, and P < 0.01, respectively) and, the testicular index (P = 0.01). Feeding BS increased seminiferous tubule diameter (P < 0.01), whereas BS + DA increased seminiferous epithelium thickness (P < 0.01). There were more spermatogonia (P < 0.01) and Leydig cells (P < 0.05) in BS-fed roosters but Sertoli cells were highest in BS + DA (P < 0.01). Serum MDA concentrations were lowest in BS (P < 0.01), whereas serum testosterone and LH were highest in DA (P < 0.05) and BS + DA (P < 0.01), respectively. Feeding BS reduced serum total cholesterol (P < 0.05) and increased serum HDL-cholesterol (P < 0.01), with decreases in serum LDL (P < 0.01) and the LDL/HDL ratio (P < 0.01) for BS + DA compared to Control. Relative expression of glutathione peroxidase mRNA was increased by BS (P < 0.01) or DA (P < 0.05), whereas relative mRNA expression of SOD was highest in BA (P < 0.01). Control roosters were highest for both BAX (P < 0.01) and the relative expression of the BAX/BCL-2 ratio (P < 0.01), whereas BS + DA increased BCL-2 (P < 0.05). In conclusion, feeding BS, and/or DA significantly improved reproductive potential in aged broiler roosters.
Assuntos
Antioxidantes , Hordeum , Animais , Masculino , Antioxidantes/farmacologia , Ácido D-Aspártico , Hordeum/metabolismo , Galinhas/metabolismo , Proteína X Associada a bcl-2 , Análise do Sêmen/veterinária , Sementes/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Testosterona , Apoptose , Colesterol , Ração Animal/análiseRESUMO
In the research presented in this manuscript, an intricate study has been carried out on the interaction of zinc ions with the hen egg white lysozyme (HEWL) protein. Utilizing a spectroscopic technique, the alterations that arise due to the binding of Zn2+ to the HEWL were scrutinized, underscoring the paramount significance of deprotonated carboxyl and thiol groups in the process of binding. The binding phenomena were substantiated using capillary electrophoresis integrated with inductively coupled plasma mass spectrometry (CE-ICP-MS). Further spectrometric assessments (MALDI-TOF MS and FT-ICR-MS) shed light on the direct interaction of zinc ions with the functional groups of the protein. Importantly, high-resolution FT-ICR-MS techniques elucidated the capability of a single protein molecule to bind to multiple zinc ions. The empirically derived spectroscopic data received additional confirmation via a molecular docking study of the Zn2+ binding process, which highlighted a substantial affinity between the predicted 3D model of zinc-lysozyme complexes. Predominantly, the interaction between the bound entities was observed at the cysteine residues. Lastly, the conducted antimicrobial tests revealed that the zinc-lysozyme complexes manifest an inhibitory effect against bacterial (E. coli and S. aureus) and yeast (C. albicans) strains.
Assuntos
Anti-Infecciosos , Muramidase , Animais , Simulação de Acoplamento Molecular , Muramidase/química , Zinco/química , Staphylococcus aureus/metabolismo , Clara de Ovo/química , Escherichia coli/metabolismo , Íons , Galinhas/metabolismoRESUMO
Umami peptides from different stages of Wuding chicken processing were discovered, isolated, and purified using ultrafiltration membrane, gel filtration chromatography, and reversed-phase high-performance liquid chromatography, and the binding mechanism was explored. Twelve umami peptides were found by nano-scale liquid chromatography-tandem mass spectrometry, three of which (HLEEEIK, LDDALR, and ELY) existed throughout the processing step. The umami score and the frequency of active fragments of umami were highest for LEEEL, followed by EEF. The main active sites between umami peptide and receptor T1R1/T1R3 were Tyr262, Glu325, and Glu292, and hydrophobic interaction and hydrogen bonding were the main forces, and bitter amino acids were also important components of umami peptides. It was found for the first time that heat-stable umami peptides exist in Wuding chickens, which provides a basis for the identification and screening of umami peptides in local chickens, and also helps to study the structure-activity relationship of umami peptides.
Assuntos
Galinhas , Temperatura Alta , Animais , Galinhas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Paladar , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. OBJECTIVES: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. METHODS: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR-27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a-3p) from all comparisons and their immune-related target genes. RESULTS: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. CONCLUSIONS: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , MicroRNAs , Humanos , Animais , Galinhas/genética , Galinhas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/genética , Traqueia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Influenza A/genéticaRESUMO
H9N2 influenza viruses are globally endemic in birds, and a sharp increase in human infections with H9N2 occurred during 2021 to 2022. In this study, we assess the antigenic and pathogenic impact of 23 hemagglutinin (HA) amino acid mutations. Our study reveals that three specific mutations, labeled R164Q, N166D, and I220T, are responsible for the binding of antibodies with escape mutations. Variants containing R164Q and I220T mutations increase viral replication in avian and mammalian cells. Furthermore, T150A and I220T mutations are found to enhance viral replication in mice, indicating that these mutations may have the potential to adapt mammals. Structure analysis reveals that residues 164 and 220 bearing R164Q and I220T mutations increase interactions with the surrounding residues. Our findings enrich current knowledge about the risk assessment regarding which predominant HA immune-escape mutations of H9N2 viruses may pose the greatest threat to the emergence of pandemics in birds and humans.
Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Camundongos , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Mutação/genética , Aves , Galinhas/metabolismo , Mamíferos/metabolismoRESUMO
The use of chicken waste can contribute to the development of new processes and obtaining molecules with high added value. An experimental design was applied to evaluate the effect of moisture, temperature, and inoculum size on the production of antioxidant peptides and proteases by A. oryzae IOC3999 through solid-state fermentation (SSF) of chicken viscera meal. As a result, the process conditions strongly influenced protease production and antioxidant activity of the fermented products. A global analysis of the results indicated that the most adequate conditions for SSF were (assay 9): 40% initial moisture, 30 °C as the incubation temperature, 5.05 × 106 spores/g as the inoculum size, and 48-h fermentation as the fermentation time. Under this condition, the antioxidant activities for the ABTS- and DPPH-radicals inhibition and ferric reducing antioxidant power (FRAP) methods were 376.16, 153.29, and 300.47 (µmol TE/g), respectively, and the protease production reached 428.22 U/g. Ultrafiltration of the crude extract obtained under optimized fermentation conditions was performed, and the fraction containing peptides with molecular mass lower than 3 kDa showed the highest antioxidant activity. The proteases were biochemically characterized and showed maximal activity at pH values ranging from 5.0 to 6.0 and a temperature of 50 °C. The thermodynamic parameters indicated that the process of thermal protease inactivation is not spontaneous (ΔG*d > 88.78 kJ/mol), increasing with temperature (ΔH*d 27.01-26.88 kJ/mol), and with reduced disorder in the system (ΔS*d < - 197.74 kJ/mol) probably caused by agglomeration of partially denatured enzymes.
Assuntos
Aspergillus oryzae , Animais , Aspergillus oryzae/metabolismo , Peptídeo Hidrolases , Antioxidantes , Galinhas/metabolismo , Vísceras/metabolismo , Temperatura , Endopeptidases , Peptídeos , FermentaçãoRESUMO
The T-2 toxin (T2) poses a major threat to the health and productivity of animals. The present study aimed to investigate the regulatory mechanism of Nrf2 derived from broilers against T2-induced oxidative damage. DF-1 cells, including those with normal characteristics, as well as those overexpressing or with a knockout of specific components, were exposed to a 24 h treatment of 50 nM T2. The primary objective was to evaluate the indicators associated with oxidative stress and the expression of downstream antioxidant factors regulated by the Nrf2-ARE signaling pathway, at both the mRNA and protein levels. The findings of this study demonstrated a noteworthy relationship between the up-regulation of the Nrf2 protein and a considerable reduction in the oxidative stress levels within DF-1 cells (p < 0.05). Furthermore, this up-regulation was associated with a notable increase in the mRNA and protein levels of antioxidant factors downstream of the Nrf2-ARE signaling pathway (p < 0.05). Conversely, the down-regulation of the Nrf2 protein was linked to a marked elevation in oxidative stress levels in DF-1 cells (p < 0.05). Additionally, this down-regulation resulted in a significant decrease in both the mRNA and protein expression of antioxidant factors (p < 0.05). This experiment lays a theoretical foundation for investigating the detrimental impacts of T2 on broiler chickens. It also establishes a research framework for employing the Nrf2 protein in broiler chicken production and breeding. Moreover, it introduces novel insights for the prospective management of oxidative stress-related ailments in the livestock and poultry industry.
Assuntos
Antioxidantes , Toxina T-2 , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Estudos Prospectivos , Estresse Oxidativo , Transdução de Sinais , Linhagem Celular , Fibroblastos/metabolismo , RNA Mensageiro/metabolismoRESUMO
Processing conditions, particularly temperature and duration of heating, impact pet food digestibility. Various commercial pet food formats are now available, but few have been tested thoroughly. The objective of this study was to determine the amino acid (AA) digestibilities and nitrogen-corrected true metabolizable energy (TMEn) values of frozen raw, freeze-dried raw, fresh (mildly cooked), and extruded dog foods using the precision-fed cecectomized and conventional rooster assays. The diets tested were Chicken and Barley Recipe [Hill's Science Diet, extruded diet (EXT)], Chicken and White Rice Recipe [Just Food for Dogs, fresh diet (FRSH)], Chicken Formula [Primal Pet Foods, frozen raw diet (FRZN)], Chicken and Sorghum Hybrid Freeze-dried Formula [Primal Pet Foods, hybrid freeze-dried raw diet (HFD)], and Chicken Dinner Patties [Stella & Chewy's, freeze-dried raw diet (FD)]. Two precision-fed rooster assays utilizing Single Comb White Leghorn roosters were conducted. Cecectomized roosters (nâ =â 4/treatment) and conventional roosters (nâ =â 4/treatment) were used to determine standardized AA digestibilities and TMEn, respectively. All roosters were crop intubated with 12 g of test diet and 12 g of corn, with excreta collected for 48 h. In general, FD had the highest, while EXT had the lowest AA digestibilities; however, all diets performed relatively well and few differences in AA digestibility were detected among the diets. Lysine digestibility was higher (Pâ <â 0.05) in FD and FRZN than EXT, with other diets being intermediate. Threonine digestibility was higher (Pâ <â 0.05) in FD than EXT, with other diets being intermediate. Digestibilities of the other indispensable AA were not different among diets. The reactive lysine:total lysine ratios were 0.94, 0.96, 0.93, 0.93, and 0.95 for EXT, FRSH, FRZN, HFD, and FD, respectively. TMEn was higher (Pâ <â 0.05) in FRZN than FD, FRSH, and EXT, higher (Pâ <â 0.05) in HFD than FRSH and EXT, and higher (Pâ <â 0.05) in FD than EXT. In conclusion, our results support the notion that AA digestibilities are affected by diet processing, with FD, HFD, FRZN, and FRSH diets having higher AA digestibility coefficients and greater TMEn values, than the EXT diet; however, other factors such as ingredient inclusion and macronutrient composition may also have affected these results. More research in dogs is necessary to test the effects of format on diet palatability, digestibility, stool quality, and other physiologically relevant outcomes.
Processing conditions, particularly temperature and duration of heating, impact pet food digestibility. This study tested the standardized amino acid (AA) digestibilities and nitrogen-corrected true metabolizable energy (TMEn) values of five commercial dog diets: extruded diet (EXT), fresh (mildly cooked) diet (FRSH), frozen raw diet (FRZN), hybrid freeze-dried raw diet (HFD), and freeze-dried raw diet (FD). The first study, to determine AA digestibility, used 20 roosters who had their ceca (the main site of microbial fermentation in chickens) surgically removed. The second study used 20 conventional roosters to determine the TMEn of the diets. In general, FD had the highest AA digestibilities, while EXT had the lowest AA digestibilities. True metabolizable energy concentration was higher in the FRZN diet than the FD, FRSH, and EXT diets, higher in the HFD diet than the FRSH and EXT diets, and higher in the FD diet than the EXT diet. Our results support the notion that differences in diet processing, as well as factors such as macronutrient composition, and ingredient source, characteristics, and inclusion may impact AA digestibility and TMEn of dog diets. More research should be conducted to determine exactly how, and to what extent, these different factors impact digestibility in dogs.
Assuntos
Aminoácidos , Galinhas , Animais , Masculino , Cães , Aminoácidos/metabolismo , Galinhas/metabolismo , Lisina/metabolismo , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
Adding oil to the feed of genetically improved broilers is necessary to provide energy requirements, in addition to enhancing metabolism, growth performance, immune response. This study aims to reveal the effect of adding different oil sources in the diets of broilers exposed to environmental heat stress on performance, digestibility, oxidative status, plasma lipids, fatty acids content, and meat quality. Six hundred twenty-five one-day-old broiler chicks were randomly distributed to five groups as follows: the first group fed a diet without oil (CON) as a control, while the second to the fifth group fed a diet containing soy oil (SO), corn oil (CO), olive oil (OO), and fish oil (FO), respectively. Results indicated a significant deterioration in growth performance, carcass traits, and oxidative state with a significant decrease in carcass quality in heat-stressed chickens fed the CON diet. Results showed increased growth, enhanced feed conversion ratio, and carcass dressing in broilers fed the oil-supplemented diet compared to the control diet, however, the digestive enzymes activity was not affected by receiving an oil-supplemented diet. The best performance was in chickens fed OO and SO, compared with FO and CO. Plasma aspartate aminotransferase (AST), and alanine aminotransferase (ALT) increased in broilers fed an oil-supplemented diet. Plasma high-density lipoprotein (HDL), and superoxide dismutase (SOD) remarkably increased in broilers fed OO, whereas the malondialdehyde (MDA) decreased compared to the other groups. Adding different dietary oil sources enhanced the breast muscle's fatty acid composition. Broiler diets supplemented with oils positively affected meat quality by enhancing color measurements, and TBA values, while the best were in chicken fed OO. It was concluded that adding dietary oil at 3% in the diets of broiler chicken exposed to environmental heat stress positively affected growth performance, enhanced oxidative status, and meat quality, best results were in broilers fed a diet that included olive oil.
Assuntos
Antioxidantes , Gorduras Insaturadas na Dieta , Animais , Ração Animal/análise , Antioxidantes/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Óleos de Peixe , Resposta ao Choque Térmico , Carne/análise , Azeite de OlivaRESUMO
In early vertebrate development, organizer regions-groups of cells that signal to and thereby influence neighboring cells by secreted morphogens-play pivotal roles in the establishment and maintenance of cell identities within defined tissue territories. The midbrain-hindbrain organizer drives regionalization of neural tissue into midbrain and hindbrain territories with fibroblast growth factor 8 (FGF8) acting as a key morphogen. This organizer has been extensively studied in chicken, mouse, and zebrafish. Here, we demonstrate the enrichment of FGF8-expressing cells from human pluripotent stem cells (hPSCs), cultured as attached embryoid bodies using antibodies that recognize "Similar Expression to Fgf" (SEF) and Frizzled proteins. The arrangement of cells in embryoid body subsets of these cultures and the gene expression profile of the FGF8-expressing population show certain similarities to the midbrain-hindbrain organizer in animal models. In the embryonic chick brain, the enriched cell population induces formation of midbrain structures, consistent with FGF8-organizing capability.
Assuntos
Proteínas de Homeodomínio , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Galinhas/metabolismo , Mesencéfalo/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento de Fibroblastos/metabolismo , Padronização CorporalRESUMO
Cecal tonsils are the main organs which generate an immune response and also the part of the GALT, thus they are in the close proximity of the intestinal microbiota and continuously exposed to microbe-associated molecular patterns. GALT developed regulatory and anti-inflammatory mechanisms which eliminate or tolerate microbiota. Bioactive substances in ovo administration ensures an early contact between the GALT and beneficial bacteria, which greatly promotes the development of tolerance. Our previous studies have shown that the administration of bioactive substances in ovo silences gene expression in the cecal tonsils. The research hypothesis assumes that negative silencing of expression is correlated with the level of methylation in the tonsils. Therefore the current study aimed to analyze the global and gene-specific DNA methylation profiles in the cecal tonsils of two distinct chicken genotypes administered in ovo with bioactive substances. Eggs of Ross 308 and Green-legged Partridgelike were stimulated on day 12 of incubation. The injected compounds were: probiotic-Lactococcus lactis subsp. cremoris, prebiotic-galactooligosaccharides, and synbiotic-combination of both. Chickens were sacrificed on d 42 post-hatching. Cecal tonsils was collected, RNA and DNA were isolated and intended to gene expression, gene methylation and global methylation analysis. Cecal tonsils changes were observed in the methylation of 6 genes: SYK, ANGPTL4, TNFRSF14, IKZF1, CYR61, SERPING. Analyzes showed that the suppression of gene expression is related to the level of methylation of individual genes. Based on the results obtained in the cecal tonsils, it can be concluded that the silencing of gene expression is of an epigenetic nature. This is another study aimed at analyzing the relationship between the host, its intestinal microbiota and the possibilities of its programming.
Assuntos
Galinhas , Simbióticos , Animais , Galinhas/metabolismo , Tonsila Palatina/metabolismo , Metilação , Expressão GênicaRESUMO
MicroRNAs are involved in the immune systems of host animals and play essential roles in several immune-related pathways. In the current study, we investigated the systemic biological function of the chicken miRNA gga-miR-148a-3p on immune responses in chicken lines resistant and susceptible to HPAIV-H5N1. We found that gga-miR-148a expression in the lung tissue of H5N1-resistant chickens was significantly downregulated during HPAIV-H5N1 infection. Overexpression of gga-miR-148a and a reporter construct with wild type or mutant IFN-γ, MAPK11, and TGF-ß2 3' untranslated region (3' UTR)-luciferase in chicken fibroblasts showed that gga-miR-148a acted as a direct translational repressor of IFN-γ, MAPK11, and TGF-ß2 by targeting their 3' UTRs. Furthermore, miR-148a directly and negatively influenced the expression of signalling molecules related to the MAPK signalling pathway, including MAPK11, TGF-ß2, and Jun, and regulated antiviral responses through interferon-stimulated genes and MHC class I and class II genes by targeting IFN-γ. Downstream of the MAPK signalling pathway, several proinflammatory cytokines such as IL-1ß, IFN-γ, IL-6, TNF-α, IFN-ß, and interferon-stimulated genes were downregulated by the overexpression of gga-miR-148a. Our data suggest that gga-miR-148a-3p is an important regulator of the MAPK signalling pathway and antiviral response. These findings improve our understanding of the biological functions of gga-miR-148a-3p, the mechanisms underlying the MAPK signalling pathway, and the antiviral response to HPAIV-H5N1 infection in chickens as well as the role of gga-miR-148a-3p in improving the overall performance of chicken immune responses for breeding disease-resistant chickens.
Assuntos
Virus da Influenza A Subtipo H5N1 , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , Fator de Crescimento Transformador beta2 , Virus da Influenza A Subtipo H5N1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Interferon gama/genética , Imunidade , AntiviraisRESUMO
The quality and quantity of animal meat are closely related to the development of skeletal muscle, which, in turn, is determined by myogenic cells, including myoblasts and skeletal muscle satellite cells (SMSCs). Circular RNA, an endogenous RNA derivative formed through specific reverse splicing in mRNA precursors, has the potential to influence muscle development by binding to miRNAs or regulating gene expression involved in muscular growth at the transcriptional level. Previous high-throughput sequencing of circRNA in chicken liver tissue revealed a circular transcript, circIGF2BP3, derived from the gene encoding insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). In this study, we confirmed the presence of the natural circular molecule of circIGF2BP3 through an RNase R enzyme tolerance assay. RT-qPCR results showed high circIGF2BP3 expression in the pectoral and thigh muscles of Yuexi frizzled feather chickens at embryonic ages 14 and 18, as well as at 7 weeks post-hatch. Notably, its expression increased during embryonic development, followed by a rapid decrease after birth. As well as using RT-qPCR, Edu, CCK-8, immunofluorescence, and Western blot techniques, we demonstrated that overexpressing circIGF2BP3 could promote the proliferation and differentiation of chicken primary myoblasts through upregulating genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1), cyclin E1 (CCNE1), cyclin dependent kinase 2 (CDK2), myosin heavy chain (MyHC), myoblast-determining 1 (MyoD1), myogenin (MyoG), and Myomaker. In conclusion, circIGF2BP3 promotes the proliferation and differentiation of myoblasts in chickens. This study establishes a foundation for further investigation into the biological functions and mechanisms of circIGF2BP3 in myoblasts proliferation and differentiation.
Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , Mioblastos/metabolismo , Proliferação de Células/genética , RNA Mensageiro/metabolismo , Desenvolvimento Muscular/genéticaRESUMO
Recently, interest has increased in using bio-additives, herbs, and their extracts as feed additives because of their potential role in improving chick's health and productivity, especially during stress. Thus, our aim in this study is to examine whether nutritional supplementation (probiotics and clove essential oils) will help mitigate the negative effect of heat stress on the bird by modifying the microbial content, boosting immunity, oxidative status, metabolic, and growth. In this study, three hundred one-day-old broiler chicks (Ross 308) were fed the following experimental diet: (CON) basal diet (control diet); (CEO) CON with clove essential oils (300 mg/kg); (PRO) CON with probiotics (2 g/kg); (PC) CON with probiotics and clove essential oils. Our results showed a significant improvement (P < 0.05) in body weight gain, feed conversion ratio, nutrient digestibility, and digestive enzymes activities in broilers fed on PC, CEO, and PRO compared to the control group. Moreover, a significant decrease was recorded in the abdominal fat content and an increase in the relative weight of bursa of Fabricius, and higher antibody levels against Newcastle disease virus, as well as, there was an increase (P < 0.05) in interleukin 10 (IL-10) in all treated groups. Meanwhile, there was a decrease in tumor necrosis factor-α (TNF-α) in all supplemented groups compared with the control group. Serum triglycerides, cholesterol, low-density lipoprotein concentrations, and alanine aminotransferase activities were significantly lower in the treated groups. Superoxide dismutase and glutathione peroxidase levels were elevated (P < 0.05) and the malondialdehyde level value significantly decreased in all supplemented groups. The treated groups enhanced the ileum structure by increasing Lactobacillus, decreasing E. coli, and improving the morphometrically (P < 0.05). This study strongly suggests that clove essential oil and probiotic mixture can be used as a feed supplement to reduce the effects of heat stress by improving the growth performance and enhancing immuno-antioxidant status, ileum morphometric, as well as modifying the microbial community structure of the ileum of broilers.