Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.436
Filtrar
1.
Talanta ; 266(Pt 1): 125007, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556952

RESUMO

Circulating tumor cells (CTCs) are tumor cells that spontaneously detach from the primary focus, and early detection and characterization of CTCs is vital for cancer diagnosis and appropriate treatment. Current methods commonly use EpCAM to capture CTCs, but this results in a loss of information on other CTC subsets (EpCAM-negative cells) due to the heterogeneity of CTCs. Here, we report a novel microfluidic device that integrates the capture and release of heterogeneous CTCs directly from whole blood. A spiral chip was designed for the separation of differently sized cells, and larger CTCs were effectively separated from smaller blood cells with a 98% recovery rate. CD146-containing magnetic beads were used to complement the EpCAM-based CTC capture methods, and the capture efficiency of Fe3O4@Gelatin@CD146/EpCAM increased by 20% over Fe3O4@Gelatin@EpCAM. Finally, MMP-9 was employed to release CTCs with high efficiency and less damage by degrading gelatins on the surface of Fe3O4. The established method was successfully applied to CTC capture and release in a simulated patient's whole blood. The developed method achieved enhanced capture and high activity release of heterogeneous CTCs with less interference by blood cells, which contributes to the early detection and clinical downstream analysis of CTCs.


Assuntos
Gelatina , Técnicas Analíticas Microfluídicas , Humanos , Molécula de Adesão da Célula Epitelial , Separação Celular/métodos , Linhagem Celular Tumoral , Antígeno CD146 , Dispositivos Lab-On-A-Chip
2.
Food Chem ; 431: 137102, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579608

RESUMO

To enhance the solubility of hydrophobic nutrients, the hydrophobicity of fish scale gelatin hydrolysate (FSGH) was increased with moderate acid or alkali hydrolysis. Acid-induced FSG hydrolysate (AcFSGH) at 3 h showed a superior curcumin loading efficiency (18.30 ± 0.38 µg/mL) among all FSGHs. Compared with FSG, the proportion of hydrophobic amino acids (from 41.1% to 46.4%) and the hydrophobic interaction (from 12.72 to 20.10 mg/mL) was significantly increased in the AcFSGH. Meanwhile, the transformation of the α-helix (from 12.8% to 4.9%) to the ß-sheet (from 29.0% to 42.8%) was also observed in the AcFSGH. Based on the observation in the molecular weight and morphological analysis, AcFSGH acquired the best hydrophobic interaction with curcumin, presumably due to the formation of the flexible structure of the linear hydrolyzates. The above results call for an investigation of the role of FSG hydrolysate in the synthesis of nanoparticles loaded with bioactive lipophilic compounds.


Assuntos
Carpas , Curcumina , Nanopartículas , Animais , Curcumina/química , Gelatina/química , Carpas/metabolismo , Antioxidantes/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas
3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762247

RESUMO

Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation.


Assuntos
Gelatina , Fração Vascular Estromal , Humanos , Perilipina-2 , Fator A de Crescimento do Endotélio Vascular , Pele , Fator 2 de Crescimento de Fibroblastos
4.
Biomed Mater ; 18(6)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691568

RESUMO

In the past few decades, although tissue engineering has made significant progress and achieved many accomplishments, there are still some key problems that remain unsolved. One of the urgent research challenges in this field is how to prepare large-scale tissue engineering scaffolds with spatially complex structures. In this work, a sacrificial template process using sucrose as the sacrificial material and a gelatin/microbial transglutaminase mixed solution as the bio-scaffold material is proposed to fabricate a bio-scaffold with multi-level branching and spatially complex vascular network channels that mimic the structure and function of the human vascular network. To validate the feasibility of the fabrication process and the rationality of the process parameters, the morphological characteristics, connectivity of vascular network channels, shaping accuracy, and mechanical properties of the bio-scaffold were tested and analyzed. The results showed that the bio-scaffold fabricated using this process had a complete morphology and excellent connectivity. The diameter of the sucrose sacrificial template showed a linear relationship with the feeding speed, and the average diameter error rate between the sucrose sacrificial template and the vascular network channels inside the bio-scaffold was less than 8%. The mechanical properties of the bio-scaffold met the requirements for large-scale tissue defect repair. To evaluate the effect of the bio-scaffold on cell activity, human umbilical vein endothelial cells (HUVECs) were seeded into the vascular network channels of the bio-scaffold, and their attachment, growth, and proliferation on the surface of the vascular network channels were observed. To further assess the biocompatibility of the bio-scaffold, the bio-scaffold was implanted subcutaneously in the dorsal tissue of rats, and the tissue regeneration status was compared and analyzed through immunohistochemical analysis. The results showed that the vascular network channels within the bio-scaffold allowed uniform cell attachment, growth, with fewer dead cells and high cell viability. Moreover, clear cell attachment and growth were observed within the vascular network channels of the bio-scaffold after implantation in rats. These results indicate that the fabricated bio-scaffold meets the basic performance requirements for the repair and regeneration of large-scale tissue defects, providing a new approach for oxygen and nutrient transport in large-scale tissues and opening up new avenues for clinical applications.


Assuntos
Gelatina , Oxigênio , Humanos , Animais , Ratos , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Sacarose
5.
Carbohydr Polym ; 320: 121266, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659804

RESUMO

Packaging plays a vital role in safeguarding food from environmental factors and contamination. However, the overuse and improper disposal of non-biodegradable plastic packaging materials have led to environmental concerns and health risks. To address these challenges, the development of degradable food packaging films is crucial. Biodegradable polymers, including natural biopolymers like starch (ST) and gelatin (GE), have emerged as promising alternatives to traditional plastics. This review focuses on the utilization of ST-GE blends as key components in composite films for food packaging applications. We discuss the limitations of pure ST-GE films and explore methods to enhance their properties through the addition of plasticizers, cross-linkers, and nanoparticles. The blending of ST-GE, facilitated by their good miscibility and cross-linking potential, is highlighted as a means to improve film performance. The review also examines the impact of various additives on the properties of ST-GE blend films and summarizes their application in food preservation. By providing a comprehensive overview of ST-GE hybrid systems, this study aims to contribute to the advancement of sustainable and effective food packaging solutions.


Assuntos
Embalagem de Alimentos , Gelatina , Contaminação de Medicamentos , Alimentos , Amido
6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686165

RESUMO

There is a growing interest for complex in vitro environments that closely mimic the extracellular matrix and allow cells to grow in microenvironments that are closer to the one in vivo. Protein-based matrices and especially hydrogels can answer this need, thanks to their similarity with the cell microenvironment and their ease of customization. In this study, an experimental design was conducted to study the influence of synthesis parameters on the physical properties of gelatin methacryloyl (GelMA). Temperature, ratio of methacrylic anhydride over gelatin, rate of addition, and stirring speed of the reaction were studied using a Doehlert matrix. Their impact on the following parameters was analyzed: degree of substitution, mass swelling ratio, storage modulus (log(G')), and compression modulus. This study highlights that the most impactful parameter was the ratio of methacrylic anhydride over gelatin. Although, temperature affected the degree of substitution, and methacrylic anhydride addition flow rate impacted the gel's physical properties, namely, its storage modulus and compression modulus. Moreover, this experimental design proposed a theoretical model that described the variation of GelMA's physical characteristics as a function of synthesis conditions.


Assuntos
Gastrópodes , Hidrogéis , Animais , Projetos de Pesquisa , Gelatina , Anidridos
7.
Medicine (Baltimore) ; 102(36): e34667, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682173

RESUMO

Although gelatin-thrombin matrix sealants have been used successfully in other surgery types, their effect on reducing blood loss during single-level transforaminal lumbar interbody fusion is unclear. We thus examined the efficacy of gelatin-thrombin matrix sealants for reducing blood loss during such surgery. We analyzed 102 patients who underwent single-level transforaminal lumbar interbody fusion for lumbar degenerative disease. We compared body mass index, surgical time, intraoperative blood loss, postoperative blood loss, true total blood loss, hidden blood loss, the proportion of blood transfusion, blood pressure pre- and post-surgery (systolic and diastolic), and pre-and post-surgery laboratory data (hemoglobin, hematocrit, platelets, prothrombin time, activated partial thromboplastin time, and D-dimer) between patients in whom gelatin-thrombin matrix sealants were (GTMS group) or were not (control group) used during surgery. One-week postoperative epidural hematoma size was measured using magnetic resonance imaging. The GTMS and control groups included 54 (24 males and 30 females) and 48 patients (19 males and 29 females). Intraoperative, true total, and hidden blood loss; epidural hematoma size; and hospitalization duration were significantly lower in the GTMS than in the control group. Intraoperative blood loss correlated with surgical time (R = 0.523, P = .001), body mass index (R = 0.221, P = .036), and the amount of gelatin-thrombin matrix sealant used (r = -0.313, P = .002). In multivariate linear regression analysis using intraoperative blood loss as the dependent variable, surgical time (standardization coefficient 0.516, P = .001) and amount of gelatin-thrombin matrix sealant used (standardization coefficient -0.220, P = .032) were independently related factors. In our study, the GTMS group had significantly less intraoperative true total and hidden blood loss than did the control group. Thus, use of gelatin-thrombin matrix sealants reduce perioperative blood loss in transforaminal lumbar interbody fusion.


Assuntos
Hematoma Epidural Craniano , Hematoma Epidural Espinal , Feminino , Masculino , Humanos , Trombina/uso terapêutico , Gelatina/uso terapêutico , Perda Sanguínea Cirúrgica/prevenção & controle , Hemorragia Pós-Operatória , Progressão da Doença
8.
Food Res Int ; 172: 113080, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689860

RESUMO

The integration of intramuscular fat-or marbling-into cultured meat will be critical for meat texture, mouthfeel, flavor, and thus consumer appeal. However, culturing muscle tissue with marbling is challenging since myocytes and adipocytes have different media and scaffold requirements for optimal growth and differentiation. Here, we present an approach to engineer multicomponent tissue using myogenic and adipogenic microtissues. The key innovation in our approach is the engineering of myogenic and adipogenic microtissues using scaffolds with customized physical properties; we use these microtissues as building blocks that spontaneously adhere to produce multicomponent tissue, or marbled cultured meat. Myocytes are grown and differentiated on gelatin nanofiber scaffolds with aligned topology that mimic the aligned structure of skeletal muscle and promotes the formation of myotubes in both primary rabbit skeletal muscle and murine C2C12 cells. Pre-adipocytes are cultured and differentiated on edible gelatin microbead scaffolds, which are customized to have a physiologically-relevant stiffness, and promote lipid accumulation in both primary rabbit and murine 3T3-L1 pre-adipocytes. After harvesting and stacking the individual myogenic and adipogenic microtissues, we find that the resultant multicomponent tissues adhere into intact structures within 6-12 h in culture. The resultant multicomponent 3D tissue constructs show behavior of a solid material with a Young's modulus of âˆ¼ 2 ± 0.4 kPa and an ultimate tensile strength of âˆ¼ 23 ± 7 kPa without the use of additional crosslinkers. Using this approach, we generate marbled cultured meat with âˆ¼ mm to âˆ¼ cm thickness, which has a protein content of âˆ¼ 4 ± 2 g/100 g that is comparable to a conventionally produced Wagyu steak with a protein content of âˆ¼ 9 ± 4 g/100 g. We show the translatability of this layer-by-layer assembly approach for microtissues across primary rabbit cells, murine cell lines, as well as for gelatin and plant-based scaffolds, which demonstrates a strategy to generate edible marbled meats derived from different species and scaffold materials.


Assuntos
Gelatina , Fibras Musculares Esqueléticas , Animais , Camundongos , Coelhos , Diferenciação Celular , Carne , Músculo Esquelético
9.
ACS Appl Mater Interfaces ; 15(37): 43309-43320, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37688542

RESUMO

Hypertrophic scar (HS) is an unfavorable skin disorder that typically develops after trauma, burn injury, or surgical procedures and causes numerous physical and psychological issues in patients. Currently, intralesional multi-injection of corticosteroid, particularly compound betamethasone (CB), is one of the most prevalent treatments for HS. However, injection administration could result in severe pain and dose-related side effects. Additionally, the vacuum therapeutic efficacy of this treatment relies on the level of expertise of the healthcare professional. To overcome the limitations of conventional injections, a new method that is convenient, painless, and self-administrable is urgently required. In this study, we developed a methacrylate gelatin (GelMA)/polyethylene glycol diacrylate (PEGDA) double-network hydrogel microneedle patch loaded with CB (CB-HMNP) as an intradermal delivery system for HS treatment. The double-network structure conferred the CB-HMNP with sufficient mechanical properties to successfully penetrate scar tissue while also helping to regulate the drug's sustained release rate. Subsequently, we confirmed that the CB-HMNP had a pronounced inhibitory effect on human HS fibroblasts (hHSFs), whereas drug-free HMNPs had no effect on hHSFs, indicating its high biocompatibility. In order to assess the therapeutic efficacy of CB-HMNPs, HS models of New Zealand rabbit ears were developed. The administration of CB-HMNP three times significantly decreased the scar elevation index (SEI), collagen I/III, and transforming growth factor-ß1 (TGF-ß1) protein. Therefore, the CB-HMNP may offer an administration pathway for the treatment of HS that is less painful, more convenient, less invasive, and sustain-released.


Assuntos
Cicatriz Hipertrófica , Humanos , Animais , Coelhos , Cicatriz Hipertrófica/tratamento farmacológico , Gelatina , Hidrogéis/farmacologia , Sistemas de Liberação de Medicamentos , Colágeno Tipo I
10.
Adv Skin Wound Care ; 36(10): 1-10, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729169

RESUMO

OBJECTIVE: Skin adhesives offer many advantages over traditional wound-closure devices. Recently, the current research group reported on tissue adhesives composed of natural polymers (gelatin and alginate), which are biocompatible with mechanical properties suitable for tissue adhesion. The objective of the present study was to conduct clinical and histologic assessment of this hemostatic bioadhesive in the healing of long skin incisions (≥4 cm) in comparison with traditional and commercially available methods. METHODS: Researchers created 24 long incisions on the ventral side of two domestic pigs to compare four different treatment modalities: two topical bioadhesives based on gelatin and alginate combined with the hemostatic agent kaolin, nylon sutures, and commercial tissue adhesive N-butyl-2-cyanoacrylate. The bioadhesive compounds were spread on the incision surface and then mixed either manually or with a double-headed syringe. After 14 days, clinical and histologic measurements were performed to evaluate the healing phase of the wounds. RESULTS: The bioadhesive formulation that contained a relatively low crosslinker concentration demonstrated superior results to the formulation that contained a standard crosslinker concentration. However, no significant statistical differences were observed compared with the control incisions (sutures and commercial adhesive N-butyl-2-cyanoacrylate). This was verified by immunohistochemical analysis for epithelial integrity and scar formation as well as by clinical assessment. CONCLUSIONS: This newly developed bioadhesive demonstrated suitable properties for the closure of long incisions in a porcine skin model.


Assuntos
Embucrilato , Hemostáticos , Ferida Cirúrgica , Adesivos Teciduais , Suínos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Adesivos Teciduais/farmacologia , Adesivos Teciduais/uso terapêutico , Gelatina , Alginatos
11.
Analyst ; 148(19): 4768-4776, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37665320

RESUMO

Rapid advancement of novel optical spectroscopy and imaging systems relies on the availability of well-characterised and reproducible protocols for phantoms as a standard for the validation of the technique. The tissue-mimicking phantoms are also used to investigate photon transport in biological samples before clinical trials that require well-characterized phantoms with known optical properties (reduced scattering (µ's) and absorption (µa) coefficients). However, at present, there is limited literature available providing well-characterized phantom recipes considering various biomarkers and tested over a wide range of optical properties covering most of the human organs and applicable to multimodal optical spectroscopy. In this study, gelatin-based phantoms were designed to simulate tissue optical properties where India ink and Intralipid were used as absorbing and scattering agents, respectively. Multiple biomarkers were simulated by varying the gelatin concentration to mimic the change in tissue hydration and hydroxyapatite concentration to mimic bone signature. The recipe along with biomarkers were optimized and characterised over a wide range of optical properties (µa from 0.1 to 0.5 cm-1; µ's from 5 to 15 cm-1) relevant to human tissue using a broadband time-domain diffuse optical spectrometer. The data collected showed a linear relationship between the concentration of ink/lipids and µa/µ's values with negligible coupling between µa and µ's values. While being stored in a refrigerator post-fabrication, the µa and µ's did not change significantly (<4% coefficient of variation, 'CV') over three weeks. The reproducibility in three different sets was validated experimentally and found to be strong with a variation of ≤6% CV in µa and ≤9% CV in µ's. From the 3 × 3 data of µa and µ's matrices, one can deduce the recipe for any target absorption or reduced scattering coefficient. The applicability of the phantoms was tested using diffuse reflectance and Raman spectrometers. A use case application was demonstrated for Raman spectroscopy where hydration and hydroxyapatite phantoms were designed to characterize the Raman instrument. The Raman instrument could detect the change in 1% of HA and 5% of hydration. This study presents a first-of-its-kind robust, well-characterized, multi-biomarker phantom recipe for calibration and benchmarking of multimodal spectroscopy devices assisting in their clinical translation.


Assuntos
Gelatina , Análise Espectral Raman , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Durapatita
12.
PLoS One ; 18(9): e0290902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733661

RESUMO

Nitric oxide synthase 3 (NOS3) eluting polyvinyl alcohol-based hydrogels have a large potential in medical applications and device coatings. NOS3 promotes nitric oxide and nitrate production and can effectively be delivered using insect cell viruses, termed baculoviruses. Nitric oxide is known for regulating cell proliferation, promoting blood vessel vasodilation, and inhibiting bacterial growth. The polyvinyl alcohol (PVA)-based hydrogels investigated here sustained baculovirus elution from five to 25 days, depending on the hydrogel composition. The quantity of viable baculovirus loaded significantly declined with each freeze-thaw from one to four (15.3 ± 2.9% vs. 0.9 ± 0.5%, respectively). The addition of gelatin to the hydrogels protected baculovirus viability during the freeze-thaw cycles, resulting in a loading capacity of 94.6 ± 1.2% with sustained elution over 23 days. Adding chitosan, PEG-8000, and gelatin to the hydrogels altered the properties of the hydrogel, including swelling, blood coagulation, and antimicrobial effects, beneficial for different therapeutic applications. Passive absorption of the baculovirus into PVA hydrogels exhibited the highest baculovirus loading (96.4 ± 0.6%) with elution over 25 days. The baculovirus-eluting hydrogels were hemocompatible and non-cytotoxic, with no cell proliferation or viability reduction after incubation. This PVA delivery system provides a method for high loading and sustained release of baculoviruses, sustaining nitric oxide gene delivery. This proof of concept has clinical applications as a medical device or stent coating by delivering therapeutic genes, improving blood compatibility, preventing thrombosis, and preventing infection.


Assuntos
Baculoviridae , Vírus de Insetos , Baculoviridae/genética , Gelatina , Óxido Nítrico , Álcool de Polivinil , Hidrogéis
13.
Int J Biol Macromol ; 249: 126112, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541461

RESUMO

Despite the adhesive hydrogels have gained progress and popularity, it is still an enormous challenge to develop a smart adhesion hydrogel for clinical medicine, which is an asymmetric adhesion hydrogel with on-demand detachment. Motivated by the thermal phase transition mechanism of gelatin, we have synthesized a Janus supramolecular hydrogel dressing with skin temperature-triggered adhesion by a simple one-pot process. This hydrogel has asymmetric and controllable adhesion, which not only can become the external objects barrier but also can achieve repeated adhesion and on-demand detachment triggered by temperature in tens of seconds. This hydrogel presents great mechanical performance (compressive strain of 65 %, 1.38 MPa) owing to the presence of supramolecular interactions in the hydrogel. Additionally, this hydrogel exhibits excellent antibacterial activity and biocompatibility. The synergistic effect of modified gelatin and ionic liquid greatly facilitates wound healing of full-thickness skin with high wound healing efficiency (98.45 %). Therefore, thanks to all these advantages, the Janus supramolecular hydrogel can be applied for wound management and treatment, which has huge potential in healing skin wounds.


Assuntos
Gelatina , Hidrogéis , Hidrogéis/uso terapêutico , Hidrogéis/farmacologia , Gelatina/farmacologia , Pele , Bandagens , Cicatrização , Antibacterianos/farmacologia
14.
Int J Biol Macromol ; 249: 126040, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541465

RESUMO

Innovative active and pH-colorimetric composite films were fabricated from gelatin/poly(vinyl alcohol) (Gel/PVA) integrated with copper-based metal-organic frameworks (Cu-MOFs) and red cabbage anthocyanin (RCA). The incorporation of Cu-MOFs improved the tensile strength, water resistance, and UV shielding properties of the developed composite films. The addition of anthocyanins and 3 wt% Cu-MOFs endowed the polymer matrix with excellent antioxidant (100 % against ABTS and DPPH radicals) and antibacterial (against Gram-positive and Gram-negative foodborne pathogenic bacteria) functions. The fabricated composite films exhibited significant color change at alkaline conditions of pH 7-12 and a marked color change upon exposure to ammonia. The designed indicator films used for shrimp freshness tracking and a visual color change from pink (for fresh shrimp) to green (for spoiled shrimp) was observed during storage at 28 °C for 24 h. The potential applications of the engineered composite films were studied by shrimp packaging, and the quality parameters of packaged samples were monitored during storage. The synergistic effects of adding anthocyanins and MOF nanostructures works for better product freshness preservation and responds well to shrimp spoilage level, introducing novel active and intelligent packaging options for practical smart packaging applications.


Assuntos
Embalagem de Alimentos , Estruturas Metalorgânicas , Álcool de Polivinil , Antocianinas , Cobre , Gelatina , Concentração de Íons de Hidrogênio
15.
Biomacromolecules ; 24(9): 4019-4032, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604780

RESUMO

Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.


Assuntos
Quitosana , Engenharia Tecidual , Levofloxacino/farmacologia , Gelatina , Hidrogéis , Impressão Tridimensional
16.
Phys Med ; 113: 102656, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625218

RESUMO

PURPOSE: The end-to-end (E2E) quality assurance (QA) test is a unique tool for validating the treatment chain undergone by patients in external radiotherapy. It should be conducted in three dimensions (3D) to get accurate results. This study aims to implement these tests with Fricke-Xylenol orange-Gelatin (FXG) gel dosimeter and a newly developed dual-wavelength reading method on the Vista16™ optical Computed Tomography (CT) scanner (ModusQA) for three treatment techniques in stereotactic radiotherapy, on Novalis (Varian) and CyberKnife (Accuray) linear accelerators. METHODS: The tests were performed in head phantoms. Gel measurements were compared with planned dose distributions and measured by film and ion chamber measurements by plotting isodose curves and dose profiles, and by conducting a 3D local gamma-index analysis (2%/2mm criteria). RESULTS: Gamma passing rates were higher than 95 %. Point dose differences between treatment planning and gel and ion chamber measurements at the isocenter were < 2.3 % for both treatments delivered on the Novalis accelerator, while this difference was higher than 4 % for the treatment delivered on the CyberKnife, highlighting a small overdosing of the tumor volume. A good agreement was observed between gel and film dose profiles. CONCLUSIONS: This study presents the successful implementation of 3D E2E QA tests for stereotactic radiotherapy with FXG gel dosimetry and a dual-wavelength reading method on an optical CT scanner. This dosimetric method provides 3D absolute dose distributions in the 0.25 - 10 Gy dose range with a high spatial resolution and a dose uncertainty of around 2 % (k=1).


Assuntos
Gelatina , Radiocirurgia , Humanos , Dosímetros de Radiação , Tomografia Computadorizada de Feixe Cônico
17.
Biomed Mater ; 18(5)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604152

RESUMO

Bioprinting has demonstrated great advantages in tissue and organ regeneration. However, constructing large-scale tissue and organsin vitrois still a huge challenge due to the lack of some strategies for loading multiple types of cells precisely while maintaining nutrient channels. Here, a new 3D bioprinting strategy was proposed to construct large-scale vascularized tissue. A mixture of gelatin methacrylate (GelMA) and sodium alginate (Alg) was used as a bioink, serving as the outer and middle layers of a single filament in the triaxial printing process, and loaded with human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells, respectively, while a calcium chloride (CaCl2) solution was used as the inner layer. The CaCl2solution crosslinked with the middle layer bioink during the printing process to form and maintain hollow nutrient channels, then a stable large-scale construct was obtained through photopolymerization and ion crosslinking after printing. The feasibility of this strategy was verified by investigating the properties of the bioink and construct, and the biological performance of the vascularized construct. The results showed that a mixture of 5% (w/v) GelMA and 1% (w/v) Alg bioink could be printed at room temperature with good printability and perfusion capacity. Then, the construct with and without channels was fabricated and characterized, and the results revealed that the construct with channels had a similar degradation profile to that without channels, but lower compressive modulus and higher swelling rate. Biological investigation showed that the construct with channels was more favorable for cell survival, proliferation, diffusion, migration, and vascular network formation. In summary, it was demonstrated that constructing large-scale vascularized tissue by triaxial printing that can precisely encapsulate multiple types of cells and form nutrient channels simultaneously was feasible, and this technology could be used to prepare large-scale vascularized constructs.


Assuntos
Bioimpressão , Humanos , Nutrientes , Alginatos , Cloreto de Cálcio , Gelatina , Células Endoteliais da Veia Umbilical Humana , Metacrilatos
18.
Biomater Adv ; 153: 213567, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540940

RESUMO

Tissue-engineered articular cartilage constructs are currently not able to equal native tissues in terms of mechanical and biological properties. A major cause lies in the deficiency in engineering the biomechanical microenvironment (BMME) of articular chondrocytes. In this work, to engineer the BMME of articular chondrocytes, heterogeneous hydrogel structures of gelatin methacrylated (GelMA) containing differential-stiffness domains were first fabricated, and then periodic dynamic mechanical stimulations were applied to the hydrogel structures. The chondrocyte phenotype of ATDC5 cells was enhanced as the spatial differentiation in stiffness was increased in the hydrogel structures and was further strengthened by dynamic mechanical stimulation. It was speculated that the mechanical signals generated by the engineered BMME were sensed by the cells through the integrin ß1-FAK signaling pathway. This study revealed the key role of the combined effects of differential and dynamic BMME on the chondrocyte phenotype, which could provide theoretical guidance for highly active tissue-engineered articular cartilage.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/metabolismo , Hidrogéis/análise , Gelatina , Cartilagem Articular/fisiologia , Engenharia Tecidual
19.
J Mech Behav Biomed Mater ; 146: 106056, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573762

RESUMO

Inspired by the orientation and the fibrous structure of human muscle tissues, we fabricated preconstructed porous liquid crystalline (LC) scaffolds through a two-step polymerization and salt leaching method. A novel strategy combining the aligning properties of LCs and the ease of processing of elastomers for the preparation of elliptical scaffolds for muscle cell culture was proposed in this research. Different from the other types of scaffolds, our biocompatible LC scaffold that can be implanted into the human body using a supporting unit to improve the mechanical properties compared with those of natural muscle. To evaluate the synthesized scaffolds, in vitro experiments using normal human dermal fibroblast (NHDF) cells and smooth muscle cells from rats were carried out, and the sample cells were cultured on each sample scaffold. Based on the results of long-term culture of NHDF cells on the LC scaffolds, it can be confirmed that all three kinds of LC scaffolds have good biocompatibility and provide enough space for cell growth. The addition of gelatin can significantly enhance the biocompatibility of the synthesized scaffolds. Evaluation of scaffold morphologies on cell growth indicates that the molecular arrangement on the scaffolds can induce the growth direction of smooth muscle cells to a certain extent, thereby increasing the formation of highly ordered arrangement tissues. The population doubling time of NHDF cells on the different scaffolds suggest that gelatin can improve the attachment and growth of cells. Investigation of cell viability on LC scaffolds shows that the original LC scaffolds already possess excellent biocompatibility. Additionally, the average cell viability of smooth muscle cells was above 90%, showing that the LC scaffolds in this research are suitable for application in muscle tissue engineering. Based on the results, the gelatin-coated scaffolds are more conducive to the growth of cells in this research and provide promising candidates for tissue engineering in biomedical fields and research fields.


Assuntos
Gelatina , Tecidos Suporte , Ratos , Humanos , Animais , Tecidos Suporte/química , Gelatina/química , Engenharia Tecidual/métodos , Elastômeros , Técnicas de Cultura de Células , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
20.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623704

RESUMO

Fish skin gelatin is an important functional product in the food, cosmetics, and biomedicine industries, and establishing a green and effective fish skin gelatin extraction method is an effective way to obtain high-quality gelatin and improve its production efficiency. In this study, a trypsin method was used to extract the skin gelatin of sea perch, tilapia, and grass carp, and the microstructures of skin gelatin of these three fish species were analyzed, with such functional characteristics as thermal stability, gel strength, and emulsifying properties measured. The study results show that the skin gelatin of sea perch and tilapia obtained through the trypsin method has a relatively big molecular mass, a dense network structure, and a stable trihelix conformation. In addition, the skin gelatin of these three fish species has a relatively high ß-turn content in the secondary structure, good gel strength, and water absorption properties. The compositions of the collagen-associated proteins in the skin gelatins of these three fish species extracted with the trypsin method are significantly different from each other, with positive effects of decorin and biglycan on the stability of the network structure of gelatin and a certain damaging effect of metalloendopeptidase on the network structure of gelatin. The skin gelatin of tilapia has high thermal stability and good emulsifying performance. Therefore, this gelatin type has bright application prospects in such fields as food processing, cosmetics, and drug development. In contrast, the skin gelatin of grass carp has poor functional properties. Therefore, there are significant differences among the structures and functions of skin gelatin extracted from different kinds of fish through the trypsin method. This finding has provided a useful reference for the production of customized fish gelatin according to demand.


Assuntos
Carpas , Percas , Tilápia , Animais , Gelatina , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...