RESUMO
Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
Assuntos
Resistência Microbiana a Medicamentos , Microbiologia do Solo , Solo , Solo/química , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Bactérias/efeitos dos fármacos , Bactérias/genética , Poluentes do Solo/toxicidadeRESUMO
The Staphylococcus genus comprises multiple pathogenic and opportunistic species that represent a risk to public health. Epidemiological studies require accurate taxonomic classification of isolates with enough resolution to distinguish clonal complexes. Unfortunately, 16 S rRNA molecular analysis and phenotypic characterization cannot distinguish all species and do not offer enough resolution to assess intraspecific diversity. Other approaches, such as Multilocus Sequence Tagging, provide higher resolution; however, they have been developed for Staphylococcus aureus and a few other species. Here, we developed a set of genus-targeted primers using five orthologous genes (pta, tuf, tpi, groEs, and sarA) to identify all Staphylococcus species within the genus. The primers were initially evaluated using 20 strains from the Collection of Microorganisms of Interest in Animal Health from AGROSAVIA (CMISA), and their amplified sequences were compared to a set of 33 Staphylococcus species. This allowed the taxonomic identification of the strains even on close species and the establishment of intraspecies diversity. To enhance the scope and cost-effectiveness of the proposed strategy, we customized the primer sets for an Illumina paired-end amplicon protocol, enabling gene multiplexing. We assessed five genes across 177 strains, generating 880 paired-end libraries from the CMISA. This approach significantly reduced sequencing costs, as all libraries can be efficiently sequenced in a single MiSeq run at a fraction (one-fourth or less) of the cost associated with Sanger sequencing. In summary, this method can be used for precise identification and diversity analysis of Staphylococcus species, offering an advancement over traditional techniques in both resolution and cost-effectiveness.
Assuntos
Coagulase , DNA Bacteriano , RNA Ribossômico 16S , Staphylococcus , Staphylococcus/genética , Staphylococcus/classificação , Staphylococcus/isolamento & purificação , Staphylococcus/enzimologia , Coagulase/metabolismo , Coagulase/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Primers do DNA/genética , Filogenia , Infecções Estafilocócicas/microbiologia , Animais , Genes Bacterianos/genética , Proteínas de Bactérias/genética , Análise de Sequência de DNA , Tipagem de Sequências Multilocus , Técnicas de Tipagem Bacteriana/métodos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.
Assuntos
Titânio , Titânio/química , Titânio/farmacologia , Catálise , Águas Residuárias/microbiologia , Águas Residuárias/química , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos , Ozônio/química , Ozônio/farmacologia , Resistência Microbiana a Medicamentos/genética , Compostos de Nitrogênio/química , Luz , Nitrilas/química , Nitrilas/farmacologia , Cobre/química , Cobre/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Oxirredução , GrafiteRESUMO
As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.
Assuntos
Biofilmes , Fungicidas Industriais , Transferência Genética Horizontal , Triazóis , Triazóis/toxicidade , Triazóis/farmacologia , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , Genes BacterianosRESUMO
Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes1. Bacteria can generate heterogeneity through phase variation-a preprogrammed, reversible mechanism that alters gene expression levels across a population1. One well-studied type of phase variation involves enzyme-mediated inversion of specific regions of genomic DNA2. Frequently, these DNA inversions flip the orientation of promoters, turning transcription of adjacent coding regions on or off2. Through this mechanism, inversion can affect fitness, survival or group dynamics3,4. Here, we describe the development of PhaVa, a computational tool that identifies DNA inversions using long-read datasets. We also identify 372 'intragenic invertons', a novel class of DNA inversions found entirely within genes, in genomes of bacterial and archaeal isolates. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We validate ten intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, and experimentally characterize an intragenic inverton in the thiamine biosynthesis gene thiC.
Assuntos
Bacteroides , DNA Bacteriano , Genes Bacterianos , Fases de Leitura Aberta , Inversão de Sequência , Bacteroides/genética , Conjuntos de Dados como Assunto , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Arqueais/genética , Genes Bacterianos/genética , Aptidão Genética/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Inversão de Sequência/genética , Tiamina/biossínteseRESUMO
The reclassification of Butyrivibrio crossotus Moore et al. 1976 (Approved Lists 1980) as Eshraghiella crossota gen. nov., comb. nov. is proposed within the family Lachnospiraceae. This reclassification is based on differences revealed through the analysis of 16S rRNA, groEL, recA, and rpoB genes, as well as genome sequences, distinguishing it from other Butyrivibrio species. Comparative analysis showed that B. crossotus exhibited digital DNA-DNA hybridization (dDDH) values of 19.40-27.20% and average nucleotide identities based on blast (ANIb) values of 67.06-67.64% with other Butyrivibrio species. These values are significantly below the species delineation thresholds (dDDH, 70%; ANIb, 95-96%), justifying the proposed reclassification. Additionally, the results of the average amino acid identity (AAI) analysis indicated that this species shares 59.22-60.17% AAI with the other species of the genus Butyrivibrio, which is below the AAI threshold (65%) for a genus boundary. In addition, biochemical and morphological characteristics also support the proposal that this species is different from other species of the genus Butyrivibrio. The type strain is ATCC 29175T (DSM 2876T=T9-40AT).
Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Ácidos Graxos , Genes BacterianosRESUMO
Three bacterial strains, 1AS14IT, 1AS12I and 6AS6, isolated from root nodules of Acacia saligna, were characterized using a polyphasic approach. Phylogenetic analysis based on rrs sequences placed all three strains within the Rhizobium leguminosarum complex. Further phylogeny, based on 1â756 bp sequences of four concatenated housekeeping genes (recA, atpD, glnII and gyrB), revealed their distinction from known rhizobia species of the R. leguminosarum complex (Rlc), forming a distinct clade. The closest related species, identified as Rhizobium laguerreae, with a sequence identity of 96.4% based on concatenated recA-atpD-glnII-gyrB sequences. The type strain, 1AS14IT, showed average nucleotide identity (ANI) values of 94.9, 94.3 and 94.1% and DNA-DNA hybridization values of 56.1, 57.4 and 60.0% with the type strains of closest known species: R. laguerreae, Rhizobium acaciae and 'Rhizobium indicum', respectively. Phylogenomic analyses using 81 up-to-date bacteria core genes and the Type (Strain) Genome Server pipeline further supported the uniqueness of strains 1AS14IT, 1AS12I and 6AS6. The relatedness of the novel strains to NCBI unclassified Rhizobium sp. (396 genomes) and metagenome-derived genomes showed ANI values from 76.7 to 94.8% with a species-level cut-off of 96%, suggesting that strains 1AS14I, 1AS12I and 6AS6 are a distinct lineage. Additionally, differentiation of strains 1AS14IT, 1AS12I and 6AS6 from their closest phylogenetic neighbours was achieved using phenotypic, physiological and fatty acid content analyses. Based on the genomic, phenotypic and biochemical data, we propose the establishment of a novel rhizobial species, Rhizobium aouanii sp. nov., with strain 1AS14IT designated as the type strain (=DSM 113914T=LMG 33206T). This study contributes to the understanding of microbial diversity in nitrogen-fixing symbioses, specifically within Acacia saligna ecosystems in Tunisia.
Assuntos
Acacia , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rhizobium , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Rhizobium/genética , Rhizobium/classificação , Rhizobium/isolamento & purificação , DNA Bacteriano/genética , Acacia/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Tunísia , Nódulos Radiculares de Plantas/microbiologia , Genes Essenciais/genética , Genes Bacterianos , Composição de Bases , SimbioseRESUMO
Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.
Assuntos
Antibacterianos , Bactérias , Bactérias/genética , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodosRESUMO
Freeze-thaw cycle (FTC) is a naturally occurring phenomenon in high-latitude terrestrial ecosystems, which may exert influence on distribution and evolution of microbial community in the soil. The relationship between transmission of antibiotic resistance genes (ARGs) and microbial community was investigated upon the case study on the soil of cold-region dairy farm under seasonal FTC. The results demonstrated that 37 ARGs underwent decrease in the abundance of blaTEM from 80.4 % for frozen soil to 71.7 % for thawed soil, and that sul2 from 8.8 % for frozen soil to 6.5 % for thawed soil, respectively. Antibiotic deactivation was identified to be closely related to the highest relative abundance of blaTEM, and the spread of sulfonamide resistance genes (SRGs) occurred mainly via target modification. Firmicutes in frozen soil were responsible for dominating the abundance of ARGs by suppressing the native bacteria under starvation effect in cold regions, and then underwent horizontal gene transfer (HGT) among native bacteria through mobile genetic elements (MGEs). The TRB-C (32.6-49.1 %) and tnpA-06 (0.27-7.5 %) were significantly increased in frozen soil, while Int3 (0.67-10.6 %) and tnpA-04 (11.1-19.4 %) were up-regulated in thawed soil. Moreover, the ARGs in frozen soil primarily underwent HGT through MGEs, i.e. TRB-C and tnpA-06, with increased number of Firmicutes serving as carrier. The case study not only demonstrated relationship between transmission of ARGs and microbial community in the soil under practically relevant FTC condition, but also emphasized the importance for formulating better strategies for preventing FTC-induced ARGs in dairy farm in cold regions.
Assuntos
Indústria de Laticínios , Resistência Microbiana a Medicamentos , Congelamento , Microbiota , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Microbiota/efeitos dos fármacos , Fazendas , Transferência Genética Horizontal , Genes Bacterianos , China , Monitoramento AmbientalRESUMO
A self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe2+ and Fe3+ formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.92 log2). AMO exposed extra binding sites (ASP-69) for antibiotics, weakening the competition between NH4+-N and sulfamethoxazole (SMX). The NH4+-N removal efficiency in the S-eMABR (adding SMX and IC) increased by 44.87 % compared to the S-MABR (adding SMX). SME increased the removal performance of SMX by approximately 1.45 times, down-regulated the expressions of sul1 (-1.69 log2) and sul2 (-1.30 log2) genes, and controlled their transfer within the genus. This study provides a novel strategy for synergistic reduction of antibiotics and ARGs, and elucidates the corresponding mechanism based on metatranscriptomic and molecular docking analyses.
Assuntos
Amônia , Biofilmes , Sulfametoxazol , Amônia/metabolismo , Reatores Biológicos , Nitrogênio , Resistência Microbiana a Medicamentos/genética , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Difusão , Genes Bacterianos , Poluentes Químicos da ÁguaRESUMO
Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35 %), six E. coli (75 %) and seven Klebsiella (100 %) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.
Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Klebsiella , Mastite Bovina , Testes de Sensibilidade Microbiana , Leite , Staphylococcus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bovinos , Animais , Mastite Bovina/microbiologia , Feminino , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Klebsiella/genética , Klebsiella/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Leite/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Genes Bacterianos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
The effect of different levels of temperature on resistance genes is not clear in mesophilic static composting (<50 °C). This study conducted livestock manure composting with different temperature gradients from 20 to 50 °C, it was found that the reduction rates of risk rank-I antibiotic resistance genes (from 3 % to 66 %), metal resistance genes (from -50 % to 76 %) and bacterial pathogens (from 72 % to 91 %) all increased significantly with increasing temperature from 20 to 50°C. The vulnerability of bacterial communities increased significantly, and the assembly process of bacterial communities changed from deterministic to stochastic with the increase of composting temperature. Higher temperature could accelerate the removal of thermolabile resistance genes hosts or pathogenic hosts carrying mobile genetic elements by directly or indirectly affecting organic acids content. Therefore, for soil safety, the temperature of the manure recycling process should be increased as much as possible.
Assuntos
Bactérias , Compostagem , Resistência Microbiana a Medicamentos , Esterco , Temperatura , Compostagem/métodos , Esterco/microbiologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Genes Bacterianos , Microbiologia do Solo , Animais , Farmacorresistência Bacteriana/genéticaRESUMO
Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.
Assuntos
Antibacterianos , Compostagem , Resistência Microbiana a Medicamentos , Esgotos , Esgotos/microbiologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Temperatura AltaRESUMO
Sewage surveillance is a cost-effective tool for assessing antimicrobial resistance (AMR) in urban populations. However, research on sewage AMR in remote areas is still limited. Here, we used shotgun metagenomic sequencing to profile antibiotic resistance genes (ARGs) and ARG-carrying pathogens (APs) across 15 cities in Tibetan Plateau (TP) and the major cities in eastern China. Notable regional disparities in sewage ARG composition were found, with a significantly higher ARG abundance in TP (2.97 copies/cell). A total of 542 and 545 APs were identified in sewage from TP and the East, respectively, while more than 40 % carried mobile genetic elements (MGEs). Moreover, 65 MGEs-carrying APs were identified as World Health Organization (WHO) priority-like bacterial and fungal pathogens. Notably, a fungal zoonotic pathogen, Enterocytozoon bieneusi, was found for the first time to carry a nitroimidazole resistance gene (nimJ). Although distinct in AP compositions, the relative abundances of APs were comparable in these two regions. Furthermore, sewage in TP was found to be comparable to the cities in eastern China in terms of ARG mobility and AMR risks. These findings provide insights into ARGs and APs distribution in Chinese sewage and stress the importance of AMR surveillance and management strategies in remote regions.
Assuntos
Cidades , Metagenômica , Esgotos , Esgotos/microbiologia , Tibet , China , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genes BacterianosRESUMO
The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.
Assuntos
Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Microplásticos , Cloreto de Polivinila , Microbiologia do Solo , Poluentes do Solo , Microplásticos/toxicidade , China , Poluentes do Solo/toxicidade , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Metagenômica , Farmacorresistência Bacteriana/genéticaRESUMO
Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.
Assuntos
Plasmídeos , Espécies Reativas de Oxigênio , Temperatura , Espécies Reativas de Oxigênio/metabolismo , Plasmídeos/genética , Resistência Microbiana a Medicamentos/genética , Água/química , Antibacterianos/farmacologia , Genes Bacterianos , Transferência Genética Horizontal , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Microbiologia da ÁguaRESUMO
Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.
Assuntos
Antibacterianos , Biofilmes , Esterco , Microbiologia do Solo , Poluentes do Solo , Sulfadiazina , Trimetoprima , Sulfadiazina/farmacologia , Biofilmes/efeitos dos fármacos , Trimetoprima/farmacologia , Poluentes do Solo/toxicidade , Antibacterianos/farmacologia , Esterco/microbiologia , Arthrobacter/genética , Arthrobacter/efeitos dos fármacos , Arthrobacter/metabolismo , Carvão Vegetal , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genéticaRESUMO
Swine wastewater application can introduce antibiotics, antibiotic resistance genes (ARGs) into environments. Herein, the full-scale transmission of antibiotics, ARGs and their potential carriers from an intensive swine feedlot to its surroundings were explored. Results showed that lincomycin and doxycycline hydrochloride were dominant antibiotics in this ecosystem. Lincomycin concentration were strongly associated with soil bacterial communities. According to the risk quotient (RQ), lincomycin was identified as posing higher ecological risk in aquatic environments. ARGs and mobile genetic elements (MGEs) abundance in wastewater were reduced after anaerobic treatment. Notably, ARGs composition of environmental samples were clustered into two groups based on if they were directly affected by the wastewater. However, there were no remarkable difference of ARGs abundance among environmental samples. The total abundance of ARGs was positively related to that of MGEs. Pathogens Escherichia coli and Enterococcus revealed strong connection with qnrS, tet and sul. Overall, this study highlights the importance of responsible antibiotics use in livestock production and appropriate treatment technology before agricultural application and discharge.
Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Animais , Suínos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Microbiologia do Solo , Poluentes Químicos da Água/análise , Enterococcus/genética , Enterococcus/efeitos dos fármacosRESUMO
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Assuntos
Água Potável , Farmacorresistência Bacteriana , Água Potável/microbiologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia da Água , Genes Bacterianos , Antibacterianos , Bactérias/efeitos dos fármacos , Bactérias/genética , Purificação da Água/métodosRESUMO
The distribution and transmission of antibiotic resistance genes (ARGs) in agricultural soils constitute a significant threat to food safety and human health. Natural quorum sensing inhibitors (QSIs), with advantages such as low plant toxicity and low application costs, present a potential approach for mitigating ARG contamination by targeting bacterial quorum sensing systems. This study explored the impacts and mechanisms of three natural QSIs (vanillin, catechin, and tannin) on the abundance of tetracycline resistance genes (TRGs) in both rhizosphere and non-rhizosphere soils. Results illustrated a notable reduction in TRG abundance across three natural QSI treatments, with catechin displaying the most pronounced effect in the rhizosphere soil. Furthermore, the application of natural QSIs had a significant influence on the bacterial community structure and population dynamics, particularly evident in the alterations induced by catechin on bacterial interactions within the soil ecosystem. Natural QSIs inhibited the production of N-acyl homoserine lactone (AHL) signaling molecules. The primary environmental factors driving changes in bacterial community were identified as pH and NO3--N content. Through mechanisms involving the modulations of AHL concentrations and soil environmental factors, natural QSIs were found to impact bacterial population, ultimately leading to a decrease in TRG abundance. Importantly, the application of natural QSIs did not exhibit adverse effects on plant phenotypic traits. These findings serve as a useful reference for implementing natural QSIs to effectively control soil ARG contamination.