Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.029
Filtrar
1.
Ecotoxicol Environ Saf ; 241: 113832, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068758

RESUMO

Rapid development of aquaculture industry and increasing demand of various inputs (especially antibiotics), are suspected to promote the occurrence and spread of ARGs in aquaculture related environments. However, the occurrences of ARGs under different freshwater aquaculture practices are rarely known. Here, we investigated the seasonal profiles of the main ARGs, intI1 and bacteria in waters from three kinds of predominant freshwater aquaculture practices around the Honghu Lake (China), as well as their co-occurrences and interrelationships with antibiotics, heavy metals and general water quality. The results indicate that quinolone resistance genes (qnrB), tetracycline resistance genes (tetB and tetX) and sulfonamide resistance genes (sul1 and sul2) were the top five predominant ARGs with seasonal variations of abundance. Fish ponds were of the highest absolute abundances of tested ARGs than the other two modes. Crayfish ponds and their adjacent ditches shared similar ARGs profile. Different subtypes of ARGs belonging to the same class of resistance were varied in abundances. Some bacteria were predicted to carry different ARGs, which indicating multi-antibiotic resistances. Moreover, the combined environmental factors (antibiotics, heavy metals and water quality) partially shaped the profiles of ARGs and bacteria composition. Overall, this study provides new comprehensive understanding on the characterization of ARGs contamination in different freshwater aquaculture practices from the perspectives of environmental chemistry, microbiology and ecology. The results would benefit the optimization of aquaculture practices toward environmental integrity and sustainability.


Assuntos
Antibacterianos , Metais Pesados , Animais , Antibacterianos/farmacologia , Aquicultura , Bactérias/genética , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Lagos
2.
Ecotoxicol Environ Saf ; 241: 113844, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068766

RESUMO

Heavy metals are a group of anthropogenic contaminants in estuary ecosystems. Bacteria in estuaries counteract the highly concentrated metal toxicity through metal resistance genes (MRGs). Presently, metagenomic technology is popularly used to study MRGs. However, an easier and less expensive method of acquiring MRG information is needed to deepen our understanding of the fate of MRGs. Thus, this study explores the feasibility of using a machine learning approach-namely, random forests (RF)-to predict MRG abundance based on the 16S rRNA amplicon sequenced datasets from subtropical estuaries in China. Our results showed that the total MRG abundance could be predicted by RF models using bacterial composition at different taxonomic levels. Among them, the relative abundance of bacterial phyla had the highest predicted accuracy (71.7 %). In addition, the RF models constructed by bacterial phyla predicted the abundance of six MRG types and nine MRG subtypes with substantial accuracy (R2 > 0.600). Five bacterial phyla (Firmicutes, Bacteroidetes, Patescibacteria, Armatimonadetes, and Nitrospirae) substantially determined the variations in MRG abundance. Our findings prove that RF models can predict MRG abundance in South China estuaries during the wet season by using the bacterial composition obtained by 16S rRNA amplicon sequencing.


Assuntos
Estuários , Metais Pesados , Bactérias/genética , Ecossistema , Genes Bacterianos , Aprendizado de Máquina , Metais Pesados/análise , Metais Pesados/toxicidade , RNA Ribossômico 16S/genética
3.
PLoS Biol ; 20(9): e3001792, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067158

RESUMO

The growing threat of antimicrobial resistance (AMR) calls for new epidemiological surveillance methods, as well as a deeper understanding of how antimicrobial resistance genes (ARGs) have been transmitted around the world. The large pool of sequencing data available in public repositories provides an excellent resource for monitoring the temporal and spatial dissemination of AMR in different ecological settings. However, only a limited number of research groups globally have the computational resources to analyze such data. We retrieved 442 Tbp of sequencing reads from 214,095 metagenomic samples from the European Nucleotide Archive (ENA) and aligned them using a uniform approach against ARGs and 16S/18S rRNA genes. Here, we present the results of this extensive computational analysis and share the counts of reads aligned. Over 6.76∙108 read fragments were assigned to ARGs and 3.21∙109 to rRNA genes, where we observed distinct differences in both the abundance of ARGs and the link between microbiome and resistome compositions across various sampling types. This collection is another step towards establishing global surveillance of AMR and can serve as a resource for further research into the environmental spread and dynamic changes of ARGs.


Assuntos
Anti-Infecciosos , Metagenoma , Antibacterianos/farmacologia , Genes Bacterianos , Metagenoma/genética , Metagenômica/métodos
4.
J Hazard Mater ; 439: 129704, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104920

RESUMO

The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.


Assuntos
Fertilizantes , Microbiota , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Esterco/microbiologia , Solo/química , Microbiologia do Solo
5.
Huan Jing Ke Xue ; 43(9): 4616-4624, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096602

RESUMO

Wastewater treatment plants (WWTPs) are important sources of antibiotic resistance genes (ARGs) in aquatic environments. Mobile genetic elements (MGEs) and microbial communities are key factors that affect the proliferation of ARGs. To reveal the effects of WWTPs effluent discharge on the ARGs and microbial community in a coastal area, the structure and distribution of ARGs, MGEs, and microbial community in Shangyu (SY) and Jiaxing (JX) effluent receiving areas (ERAs) and the offshore area of Hangzhou Bay (HB) were investigated via high-throughput quantitative PCR and 16S rRNA high-throughput sequencing. The results showed that multidrug resistance genes were the most abundant ARGs across all the sampling sites. The diversity and abundance of ARGs and MGEs in the ERAs were much higher than those in the HB. Additionally, the diversities of the microbial community in the JX-ERA were higher than those in the SY-ERA and HB. PCoA showed that the distribution of ARGs, MGEs, and microbial communities in the ERAs and HB were significantly different, indicating that the long-term wastewater discharge could alter the distribution of ARGs, MGEs, and microbial communities in the coastal area. The co-occurrence pattern among ARGs, MGEs, and microbial communities revealed that 12 bacterial genera, such as Psychrobacter, Pseudomonas, Sulfitobacter, Pseudoalteromonas, and Bacillus, showed strong positive correlations with ARGs and MGEs. Most potential hosts carried multidrug and ß-lactamase resistance genes.


Assuntos
Microbiota , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia
6.
Water Res ; 223: 119018, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057234

RESUMO

Microplastics (MPs) are emerging as anthropogenic vectors for the colonization and transportation of microbial communities in aquatic ecosystems. However, the composition of the microbiome and its environmental risk on field MPs at watershed scale has rarely been explored. Here, geographical distributions of microbiome, antibiotic resistance genes (ARGs) and virulence factors (VFs) on field MPs at watershed scale were characterized and their potential environmental risks were evaluated based on the data from metagenomic analyzes. The succession of microbial communities on MPs was observed along the watershed, and some ARGs and VFs were significantly enriched on MPs in urban region in comparison with rural region. Potential environmental risk of MPs conducted by Projection Pursuit Regression model in midstream (peri-urban region) and downstream (urban region) were significantly higher than that in upstream (rural region), and exhibit close relationships with MPs concentration and water velocity. Furthermore, our source tracking results demonstrated that the microbiome, ARGs and VFs in urban region MPs were largely derived from rural region MPs. Our results caution us that special attention should be paid to the risks posed by MPs in urban water bodies, and highlight the threat of MPs from rural upstream areas.


Assuntos
Microbiota , Microplásticos , Antibacterianos , Genes Bacterianos , Plásticos , Fatores de Virulência , Água
7.
PLoS Biol ; 20(9): e3001727, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36067229

RESUMO

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Assuntos
Genes Bacterianos , Microfluídica , Eletroporação , Escherichia coli/genética
8.
Braz J Biol ; 84: e263363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36102374

RESUMO

Salmonella is a serious cause of the health issues in human and animal worldwide. Salmonella has been isolated from different biological samples and it considers as the key role in induction of inflammation of gastrointestinal tract which in turn cause diarrhoea in different species. To further understand the involvement of Salmonella in contaminating and infecting fresh eggs and meat of free-range chicken. This study aimed to establish the microbiological and molecular detections of Salmonella in the cloaca of the free-range chicken and to identify predicted biological functions using Kyoto Encyclopedia of Gene and Genomic (KEGG) pathways and protein-protein interaction. Cloacal swabs were collected from free range chicken raised in the local farm in Duhok city. The isolates were cultured and biochemical test performed using XLD and TSI, respectively. Molecular detection and functional annotation of invA gene was carried out using Conventional PCR and bioinformatics approaches. The present study found that Salmonella was detected in 36 out of 86 samples using microbiological methods. To confirm these findings, invA gene was utilised and 9 out of 36 Salmonella isolates have shown a positive signal of invA by agarose gel. In addition, bioinformatic analysis revealed that invA gene was mainly associated with bacterial secretion processes as well as their KEGG terms and Protein-Protein Interaction were involved in bacterial invasion and secretion pathways. These findings suggested that invA gene plays important role in regulating colonization and invasion processes of Salmonella within the gut host in the free range chicken.


Assuntos
Galinhas , Biologia Computacional , Animais , Galinhas/microbiologia , Genes Bacterianos , Humanos , Carne/microbiologia , Salmonella/genética
9.
Bioresour Technol ; 362: 127874, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049708

RESUMO

The sulfonamide antibiotic resistance genes (ARGs) especially sul1 was identified as the dominant in eutrophic water. The performance of Chlorella vulgaris-B. licheniformis consortium toward sul1 removal, total nitrogen (TN) removal, and the mechanism of sul1 removal was investigated. The removal efficiency of exogenous ARGs plasmids carrying sul1 reached (97.2 ± 2.3)%. The TN removal rate reached (98.5 ± 1.2)%. The enhancements of carbon metabolism, nitrogen metabolism, aminoacyl-tRNA biosynthesis, and glycoproteins had significant influences on sul1 and TN removals, under the premise of normal growth of algae and bacteria. The quantitative polymerase chain reaction (qPCR) results suggested that the absolute abundances of sul1 were low in algal-bacterial systems (0 gene copies/mL) compared with individual systems ((1 × 106 ± 15) gene copies/mL). The duplication of sul1 was inhibited in algal cells and bacterial cells. The algal-bacterial consortium seems to be a promising technology for wastewater treatment with a potential to overcome the eutrophication and ARGs challenges.


Assuntos
Chlorella vulgaris , Nitrogênio , Antibacterianos/metabolismo , Bactérias/metabolismo , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Nitrogênio/metabolismo , Nutrientes , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-36078515

RESUMO

Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including aminoglycosides, beta-lactams, macrolides, sulfonamides, and tetracyclines, were spiked in dairy manure and incubated with soil for 60 days. The high throughput qPCR and 16S rRNA amplicon sequencing were used to detect temporal shifts of the soil antibiotic resistomes and bacterial community. Results indicated dairy manure application increased the ARG abundance by 0.5-3.7 times and subtype numbers by 2.7-3.7 times and changed the microbial community structure in soils. These effects were limited to the early incubation stage. Selection pressure was observed after the addition of sulfonamides. Bacterial communities played an important role in the shifts of ARG profiles and accounted for 44.9% of the resistome variation. The incubation period, but not the different antibiotic treatments, has a strong impact on the bacteria community. Firmicutes and Bacteroidetes were the dominant bacterial hosts for individual ARGs. This study advanced our understanding of the effect of dairy manure and antibiotics on the antibiotic resistome in soils and provided a reference for controlling ARG dissemination from dairy farms to the environment.


Assuntos
Esterco , Solo , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Esterco/análise , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Sulfonamidas
11.
Sci Rep ; 12(1): 14550, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008577

RESUMO

Universal single-copy genes (USCGs) are widely used for species classification and taxonomic profiling. Despite many studies on USCGs, our understanding of USCGs in bacterial genomes might be out of date, especially how different the USCGs are in different studies, how well a set of USCGs can distinguish two bacterial species, whether USCGs can separate different strains of a bacterial species, to name a few. To fill the void, we studied USCGs in the most updated complete bacterial genomes. We showed that different USCG sets are quite different while coming from highly similar functional categories. We also found that although USCGs occur once in almost all bacterial genomes, each USCG does occur multiple times in certain genomes. We demonstrated that USCGs are reliable markers to distinguish different species while they cannot distinguish different strains of most bacterial species. Our study sheds new light on the usage and limitations of USCGs, which will facilitate their applications in evolutionary, phylogenomic, and metagenomic studies.


Assuntos
Evolução Biológica , Genoma Bacteriano , Bactérias/genética , Genes Bacterianos , Metagenômica , Filogenia
12.
Environ Pollut ; 310: 119870, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921944

RESUMO

Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and ß-lactams (blaOXA, blaTEM). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 102-3.90 × 109 copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected.


Assuntos
Águas Residuárias , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Humanos , Esgotos , Eliminação de Resíduos Líquidos
13.
Environ Pollut ; 310: 119891, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934152

RESUMO

Microplastics have been proven to be hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). The enrichment of ARGs in microplastisphere, the specific niche for diverse microbial communities attached to the surface of microplastic, has attracted worldwide attention. By collecting 477 pairs of ARG abundance data belonging to 26 ARG types, based on the standardized mean difference (SMD) under the random effect model, we have performed the first meta-analysis of the ARG enrichment on microplastics in aquatic environments in order to quantitatively elucidate the enrichment effect, with comparison of non-microplastic materials. It was found that ARGs enriched on the microplastics were more abundant than that on the inorganic substrates (SMD = 0.26) and natural water environments (SMD = 0.10), but lower abundant than that on the natural organic substrates (SMD = -0.52). Furthermore, microplastics in freshwater tended to have a higher degree of ARG enrichment than those in saline water and sewage. The biofilm formation stage, structure, and component of microplastisphere may play a significant role in the enrichment of ARGs.


Assuntos
Antibacterianos , Microplásticos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Plásticos
14.
J Water Health ; 20(8): 1157-1170, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36044186

RESUMO

The COVID-19 pandemic has brought new momentum to 'wastewater-based epidemiology' (WBE). This approach can be applied to monitor the levels of antibiotic-resistant genes (ARGs), which in terms are used to make inferences about the burden of antimicrobial resistance (AMR) in human settlements. However, there is still little information about temporal variability in ARG levels measured in wastewater streams and how these influence the inferences made about the occurrence of AMR in communities. The goal of this study was hence to gain insights into the variability in ARG levels measured in the influent and effluent of two wastewater treatment plants in The Netherlands and link these to levels of antibiotic residues measured in the same samples. Eleven antibiotics were detected, together with all selected ARGs, except for VanB. Among the measured antibiotics, significant positive correlations (p > 0.70) with the corresponding resistance genes and some non-corresponding ARGs were found. Mass loads varied up to a factor of 35 between days and in concomitance with rainfall. Adequate sampling schemes need to be designed to ensure that conclusions are drawn from valid and representative data. Additionally, we advocate for the use of mass loads to interpret levels of AMR measured in wastewater.


Assuntos
COVID-19 , Purificação da Água , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Pandemias , Eliminação de Resíduos Líquidos , Águas Residuárias/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-35954758

RESUMO

Nanoparticles (NPs) are widely used and ubiquitous in the environment, but the consequences of their release into the environment on antibiotics resistance genes (ARGs), microbial abundance, and community, are largely unknown. Therefore, this study examined the effect of nano zero-valent iron (nZVI) and zinc oxide (nZnO) on tetracycline resistance genes (tet-ARGs) and class 1 integron (intI1) in sediment under laboratory incubation. The coexistence of NPs and tetracycline (TC) on tet-ARGs/intI1 was also investigated. It was found that nZVI and nZnO promoted tet-ARGs/intI1 abundance in sediment without TC but reduced the inducing effect of TC on tet-ARGs/intI1 in sediment overlaid with TC solution. Without TC, nZVI, intI1, and the bacterial community could directly promote tet-ARGs spread in nZVI sediment, while intI1 and bacterial abundance were the most directly important reasons for tet-ARGs spread in nZnO sediment. With TC, nZVI and bacterial community could reduce tet-ARGs abundance in nZVI sediment, while nZnO and bacterial community could directly promote tet-ARGs in nZnO sediment. Finally, these findings provided valuable information for understanding the role of NPs in promoting and reducing ARGs in the environment.


Assuntos
Antibacterianos , Óxido de Zinco , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Ferro , Tetraciclina , Resistência a Tetraciclina/genética , Óxido de Zinco/farmacologia
16.
Water Res ; 222: 118841, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932710

RESUMO

Accelerated urbanization has promoted urban watersheds as important reservoirs of antibiotic resistance genes (ARGs); yet the biogeographical patterns and driving mechanisms of ARGs at the watershed scale remain unclear. Here, we examined the dynamic distribution of ARGs in a human-intensive watershed (including city, river and lake systems) over different seasons in a temperate region, as well as revealed the key factors shaping ARGs dynamics through structural equation models (SEMs). High diversity and abundance of ARGs were detected in sediments and surface water, with aminoglycoside, beta-lactamase and multidrug resistance genes dominating. PCoA showed distinct ARGs variations between the two phases. Seasonal changes and regional functions had significant impacts on the distribution patterns of ARGs. More diverse ARGs were detected in winter, while higher ARGs abundances were observed in spring and summer. The city system showed the highest level of ARGs contamination and was mainly derived from wastewater and human/animal feces based on SourceTracker analysis and ARGs indicators. Notably, watershed restoration could significantly mitigate the ARGs pollution status and improve biodiversity in the aquatic environment. Network analysis identified several hub ARGs and bacterial genera, which helped to infer potential bacterial hosts carrying ARGs. Furthermore, ARGs indicators provided insights to trace ARGs sources. SEMs indicated that bioavailable heavy metals and nutrients can greatly shape ARGs dynamics in regions with high-intensity human activities, while the microbial community and MGEs dominate the fate of ARGs in less human-impacted regions. More attention should be given to control heavy metals and nutrients to curb the spread of ARGs. Overall, this study highlights the environmental fate of ARGs and provides novel strategies to mitigate ARGs pollution in the human-intensive watershed.


Assuntos
Antibacterianos , Metais Pesados , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Rios/microbiologia
17.
Water Res ; 222: 118893, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933813

RESUMO

Centralized sludge treatment plants (CSTPs) are implicated as strong hotspots of antibiotic resistance genes (ARGs). However, the knowledge gap on the fate of intracellular and extracellular ARGs (iARGs and eARGs), and the functionality of resistant hosts limit risk assessment and management of CSTP resistome. Here, the flow of iARGs and eARGs across treatment units and analyses of ARG hosts were systematically explored in three full-scale CSTPs using quantitative metagenomic approaches. We found that 29% of sludge ARGs could be removed, with iARGs being dominant in the produced biosolids. The treatment process significantly affected the variations of iARG and eARG abundance while no significant difference in composition between iARGs and eARGs was observed in CSTPs. 15% of 295 recovered genomes were identified as antibiotic-resistant hosts, among which Actinobacteriota tended to encode multiple resistance. The key functions of ARG hosts were relative to the biological organic removal (e.g., carbohydrates). There also existed relationships between certain resistance mechanisms and functional traits, indicating that ARGs might take part in the physiological process of microorganisms in the sludge treatment. These findings provide important insight into the differential resistome variations and host functionality, which would be crucial in the management of antibiotic resistance in CSTPs.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Águas Residuárias
18.
Water Res ; 222: 118899, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940152

RESUMO

The ubiquitous microplastics (MPs) in water environment play an important role in the dissemination of antibiotic resistance genes (ARGs) due to their exchange between floating MPs and receiving waters. However, whether the ARG exchange is persistent or transient and what are the differences in ARG exchange between conventional plastics and biodegradable plastics are the two key issues to be addressed. In this study, biodegradable PBAT and non-biodegradable PET MPs were chosen to explore the MP-water ARG exchange after the MPs floated to the receiving waters. The results demonstrated that the active exchange of ARGs between MPs and receiving waters occurred, which, however, were transient for most of ARGs. The relative abundance of ARGs both on the MPs and in the waters rapidly decreased to the initial or lower levels within 4 weeks. Approximately 25-50% (ARG subtype number ratio) of studied ARG subtypes were introduced into the receiving waters by MPs, and 35-65% of studied ARG subtypes went through fluctuation in terms of abundance on MPs and in the receiving water. ARGs tended to converge between MPs and the receiving waters with time. Furthermore, the ARG exchange between MPs and waters facilitated horizontal gene transfer (HGT). IntI1 and tnpA05 played the crucial roles in HGT, which was indicated by their correlated change with most ARGs; in contrast, tnpA04 showed the obvious lagging responses. The biodegradable MP of PBAT generally accumulated higher levels of most ARGs including multidrug resistant genes than the non-biodegradable MP of PET. The transient exchange of most ARGs between MPs and water implies that the on-off hitchhiking of ARGs on MPs in aquatic environment may not exert significant influence on ARG transmission. However, compared with the conventional plastics, the biodegradable MPs might pose much higher ARG dissemination risks due to the higher enrichment of ARGs particularly with people's ever-increasingly usage. Enough attention must be paid to this emerging issue.


Assuntos
Plásticos Biodegradáveis , Plásticos , Antibacterianos/farmacologia , Plásticos Biodegradáveis/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Microplásticos , Água/farmacologia
19.
Huan Jing Ke Xue ; 43(8): 4166-4178, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971714

RESUMO

Antibiotics and antibiotic resistance genes (ARGs) in livestock and poultry manure pose potential ecological risks. In order to understand the distribution characteristic of antibiotics and ARGs in manure and surrounding soils of poultry farms in Ningxia, the poultry manure and relative soil samples were collected from 12 layers of different poultry breeding farms. The compositions of antibiotics and ARGs in the samples were analyzed using UPLC-MS/MS and HT-qPCR. The results showed that:① tetracycline, aminoglycoside, and sulfonamide were the dominant antibiotics in poultry manure. The types and contents of antibiotics in poultry manure were different in different breeding periods. There were more types of antibiotics in the brooding period, the average content was high, and the initial stage showed the opposite trend. ② A small amount of antibiotics was detected in the surrounding soil only 20 m away from the poultry farm, and the poultry farm had little effect on the distribution of antibiotics in the surrounding soil. The content of quinolone in the soils with poultry manure application was significantly higher than that in the control and surrounding soil. ③ We detected 132-168 ARGs in poultry manure, and the number of aminoglycosides and tetracycline was higher. The relative abundance of ARGs in the rearing period was highest, and the initial stage showed the opposite trend. The total relative abundance of ARGs in the brooding period was highest, but the terminal period showed the opposite. There were 110 ARGs in poultry manure during all breeding periods. ④ There were 23-105 ARGs in the soils, and the number of aminoglycoside was highest, followed by multidrug ARGs. The poultry farm had a great effect on the number and relative abundance of ARGs in the surrounding soil. For example, the number and relative abundance of ARGs in the surrounding soil of poultry farms gradually decreased with the increase in the distance from the poultry farms. The number and relative abundance of ARGs in the soil with applied poultry manure were significantly increased; however, these values were lower than those in the soil 20 m away from the poultry farm. ⑤ ß-lactamases, aminoglycosides, and macrolide lincosamide-streptogramin B (MLSB) ARGs were all at risk of horizontal movement in manure, and chloramphenicol ARGs were at risk of horizontal movement in soil. Correlation analysis showed that the relative abundance of aminoglycoside, tetracycline, sulfonamide, ß-lactamase, and MLSB were not significantly correlated with their contents. ⑥ Different types of ARGs had related co-occurrence phenomena, such as the positive correlation between the relative abundance of ARGs in poultry manure, and aminoglycoside and ß-lactamases, MGEs, multidrugs and vancomycins. The relative abundances of ARGs in soil, aminoglycoside and tetracyclines, vancomycins, sulfonamides, and MLSBs; tetracyclines and MLSBs; etc., all showed a significant positive correlation. In short, the co-occurrence among the relative abundance of ARGs in soil was significantly stronger than that in poultry manure. These results could provide the theoretical basis for the site selection of poultry farms, the selection of antibiotic types and dosages for large-scale breeding of laying hens, and the application of poultry manure.


Assuntos
Esterco , Solo , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Galinhas/genética , Cromatografia Líquida , Resistência Microbiana a Medicamentos/genética , Fazendas , Feminino , Genes Bacterianos , Macrolídeos/farmacologia , Esterco/análise , Aves Domésticas/genética , Microbiologia do Solo , Sulfonamidas/farmacologia , Espectrometria de Massas em Tandem , Tetraciclina/farmacologia , Tetraciclinas/farmacologia , beta-Lactamases/genética
20.
Biomolecules ; 12(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009027

RESUMO

The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.


Assuntos
Galinhas , Microbiota , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Fazendas , Genes Bacterianos , Esterco , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...